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Abstract— Employing viability techniques to preserve safety
in safety-critical control applications has recently attracted
much attention. The techniques rely on a conservative approx-
imation of the viability kernel based on a state-space model of
the system. However, in the case where the system’s model
is uncertain the safety concern has yet to be addressed in
literature. In this work, we are seeking a single control action
preserving safety for a set-represented model uncertainty. We
define the model-invariant viability kernel for a multi-model
uncertainty description. Based on this kernel, we show that
under some assumptions, the control action taken based on
any model in the model set is capable of preserving safety for
the entire set. We propose a model-invariant safety-preserving
control input which is the same for all models in the set. We
evaluate and discuss the performance of the proposed scheme
by applying it to the closed-loop control of anesthesia in which
safety is critical.

I. INTRODUCTION

Addressing the problem of constraint satisfaction for sys-
tems under closed-loop control is a major concern, especially
in safety-critical applications. Such applications include con-
trol of anesthesia [1], aircraft envelop protection [2], and
process control [3]. Constrained model predictive control
(MPC) [4] is commonly employed in cases where control
variables are constrained and bounded due to safety concerns.
However, there is no guarantee that MPC controller provides
a feasible control input to keep the system’s states within the
constraint set (safe region).

Safety-preserving control addresses the above mentioned
problem by guaranteeing the existence of a control input for
a subset of the state space that can keep the states within the
safe region. The set of states for which there exists a safety-
preserving control input is called the “viability kernel” [5].
Accordingly, the first step in this method is viability kernel
approximation. Margellos et al. [6] employ set theory and
propose a dynamic programming based algorithm to approx-
imate the viability kernel based on recursive computation of
reachable sets. Kaynama et al. [7] use ellipsoidal represen-
tations of sets and propose a more computationally efficient
approach to under-approximate the viability kernel. Gao et
al. [8] discuss the viability approximation in the presence of
uncertainty. They discuss the case where the model includes
stochastic disturbances based on an approximation of the
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discriminating kernel, which is the viability kernel in the
presence of a stochastic disturbance.

Once the viability kernel is approximated, one needs to
synthesize a control law to preserve safety. Kurzhanski et
al. [9] address the control synthesis problem through set-
valued techniques as well as dynamic programming meth-
ods. Lygeros et al. [10] introduce a framework to design
controllers to satisfy reachability specifications. This work
was the basis for Kaynama et al. [11] to propose a hybrid
automaton by combining the safety-preserving control with
an arbitrary controller (performance controller) satisfying the
performance criteria. In the scheme proposed in [11], the
safety-preserving controller lets the performance controller
achieve the desired performance as long as the states are
sufficiently inside the safe region. As the states approach
the boundaries of the viability kernel, the safety-preserving
control adjusts the control input to prevent the states from
going beyond the safe region.

Although a number of articles have been reported on
different aspects of safety-preserving control, there is scant
literature on invariability of the control technique to model
uncertainties. Girard [12] and Kaynama et al. [7] discuss
the safety issue in uncertain linear systems. However, the
type of uncertainty they consider is additive state uncertainty,
not model uncertainty. Although model-uncertainty can be
represented as state uncertainty, the result might be very
conservative and may not lead to satisfactory performance.
Abate et al. [13] and Summers et al. [14] propose safety-
preserving control approaches for hybrid stochastic systems.
They define a control policy to be safety-preserving, if it
maximizes the probability that the trajectory starting from
the stochastic viability kernel remains within a safe region. In
this case the safety-preserving control policy is selected from
a set of control policies specified by the stochastic hybrid
model.

In this paper, we aim to reduce the conservatism in safety-
preserving control due to model uncertainty by extending the
framework to model-invariant safety-preserving control. The
proposed solution is limited to a specific model structure
commonly used in control in anesthesia. We define a control
input to be “model-invariant safety preserving” if it is capable
of keeping the states of a set of state-space models within
the safe region. Initially, for a finite set of models, we define
the “model-invariant viability kernel” as the intersection
of the viability kernels of all models in the model set.
Subsequently, under certain assumptions, we prove that the
safety preserving control input generated based on any model
in the model set maintains the states of all models inside the
safe region. We show that there exists a single control action



capable of preserving safety of the entire model set.
In this work, we evaluate performance of the proposed

technique by applying the model-invariant safety-preserving
control to closed-loop control of anesthesia [15] in which
safety is of utmost importance. In this application, a con-
troller [1] manipulates the infusion rate of propofol to
maintain a patient at a desired level of depth of hypnosis
(DoH) based on the wavelet-based index (WAVCNS) [16]
feedback. To describe the relation between the drug infusion
rates and a patient’s DoH, we employ a PK1PD2 model.
Yousefi et al. [17] applied a safety-preserving control scheme
to anesthesia control. In this paper, we extend this work by
discussing the case where the patient model is within a set
of models and there exists no exact knowledge of the model.

This paper is outlined as follows: Section II summa-
rizes relevant results from the viability theory and safety-
preserving control. In section III we introduce the model-
invariant safety-preserving control and discuss the problem
of control synthesis. Simulation results showing the effective-
ness of this approach are presented in Section IV. Section V
concludes the paper.

II. SAFETY-PRESERVING CONTROL

A. Viability Theory

Consider the following state-space model:

X : ẋ(t) = Ax(t) +Bu(t), (1)

where x(t) is the state vector in Rn, u(t) ∈ U is the input
vector in Rm, and A and B are matrices in Rn×n and Rn×m,
respectively. The set U is the convex subset of Rm which
specifies constraints on u(t). The problem that the safety-
preserving control techniques address is to guarantee the
existence of a control input that can maintain the states of
the model X inside the safe region K.

Definition 1: (Viability Kernel) The finite-horizon via-
bility kernel of K for the system X is a subset of K
characterizing all initial conditions for which there exists an
admissible control input u(t, x(t)) ∈ U (safety-preserving
control) that keeps the trajectory (xXx0,u) of X emanating
from those states within K for all t ∈ [0, τ ]:

V iab[0,τ ](K,U ,X ) = {x0 ∈ K | ∃u(t, x(t)) ∈ U s.t.

∀t ∈ [0, τ ], xXx0,u ∈ K }. (2)
Kaynama et. al [7] use the results from set theory and

propose an efficient recursive approach to approximate the
viability kernel using the maximal reachable set. They parti-
tion the operational time interval ([0, τ ]) into p subintervals.
Then V iab[ti,τ ](K,U ,X ) can be approximated by [7]:

V iab[ti,τ ](K,U ,X ) =

K↓
⋂
Reach#[ti+1,ti]

(V iab[ti+1,τ ](K,U ,X ),U ,X ) (3)

where Reach#[ti+1,ti]
(V iab[ti+1,τ ](K,U ,X ),U ,X ) is the

maximal reachable set of the model X at time ti starting from

1Pharmacokinetics describes the distribution of drugs in plasma.
2Pharmacodynamics relates drug concentration in plasma to clinical

effects.

V iab[ti+1,τ ](K,U ,X ) at time ti+1. V iab[0,τ ](K,U ,X ) is ap-
proximated by calculating (3) recursively, i.e. moving back-
ward in time from tp = τ to t0 = 0. K↓ is the eroded version
of K used instead of K to handle the effect of the time dis-
cretization [7]. Reach#[ti+1,ti]

(V iab[ti+1,τ ](K,U ,X ),U ,X )
can be approximated using the level set toolbox developed
by Mitchell [18]. To do so, we need to specify the constraint
sets in an appropriate form. In this paper, we use the
ellipsoidal technique [19] implemented in [20] to represent
the constraint sets and to conduct ellipsoidal calculations.
According to the ellipsoidal technique, any convex set can be
approximated as an ellipsoid or a union of ellipsoids defined
as follows:

E(q,Q) = {x ∈ Rn | (x− q)TQ−1(x− q) ≤ 1} (4)

where Q is a positive definite matrix called the shape matrix,
and q is the center of the ellipsoid. Kaynama et al. [7] discuss
the effect of approximating constraint sets with ellipsoids
on accuracy of viability kernel approximation compared
with other techniques such as polytopic, support vector and
Hamilton-Jacobi methods.

B. Control Synthesis

Safety-preserving control can be combined with any arbi-
trary controller (performance controller) and build a hybrid
automaton to satisfy performance criteria while keeping the
system safe [11]. Accordingly, once the system’s states
approach the constraint boundaries, the safety-preserving
control adjusts the control input provided by the performance
controller to keep the states within the safe bound. The hy-
brid automaton consists of two modes, namely, performance
mode and safety mode [11]:

1) Performance Mode: Starting from any point in
V iab[0,τ ](K,U ,X ), if

x(t) ∈ ˚V iab[t,τ ](K,U ,X ) (5)

we let the performance controller choose any value in
U which satisfies the performance criteria. We denote by

˚V iab[t,τ ](K,U ,X ) the interior of V iab[t,τ ](K,U ,X ). Since
the control input is constrained, the control input (ûc) pro-
vided by the performance controller may result in saturation.
The saturated input can be determined by the support vector
of U in the direction of the input generated by the perfor-
mance controller:

uprf =

{
ûc if ucnt ∈ U ;
qU +QU < ûc, QU ûc >−1/2 if uc /∈ U ,

(6)

where qU and QU are the centre and the shape matrix of
the ellipsoid specifying the input constraint and < ā, b̄ >
denotes the inner product of vectors ā and b̄.

2) Safety Mode: If x(t) /∈ ˚V iab[t,τ ](K,U ,X ), the follow-
ing control law will keep the states in K [11]:

usafe(t, x(t)) = qU −QUBT d < d,BQUB
T d >−1/2, (7)

where d = Q
(l)
K,t
−1

(x(t) − q(l)K,t). Q
(l)
K,t and q

(l)
K,t denote the

shape matrix and the center of the lth ellipsoid specifying



V iab[t,τ ](K,U ,X ). According to (7), the safety preserving
control law pushes the states inside K toward the origin of the
viability kernel. Kaynama et al. [11] prove that the control
policy illustrated in (8) is capable of keeping x(t) (t ∈ [0, τ ])
within K.

uc(t, x(t)) =

{
uprf (t, x(t)) if x(t) ∈ ˚V iab[t,τ ](K,U ,X );

usafe(t, x(t)) if x(t) /∈ ˚V iab[t,τ ](K,U ,X ).
(8)

Choosing an arbitrary value for uprf (t, x(t)) without consid-
ering the main control objective, which is preserving safety,
may result in high frequency switching between the two
modes (chatter). Kaynama et al. [11] address this problem
by using the convex combination of the two control modes
as follows:

uc(t, x(t)) = (1− βα(ζ))uprf (t, x(t)) + βα(ζ)usafe(t, x(t)),
(9)

where

βα(ζ) =





1 if ζ ≤ l;
1

1− α (ζ − α) if α ≤ ζ < 1;

0 if ζ < α.

(10)

In the above equation, α ∈ [0, 1) is a design variable and ζ
denotes how deep x(t) is in V iab[t,τ ](K,U ,X ):

ζ =< (x(t)− q(l)K,t), Q
(l)
K,t
−1

(x(t)− q(l)K,t) > . (11)

If the states are sufficiently inside V iab[t,τ ](K,U ,X ), the
safety control policy allows the performance controller to
choose any value in U to achieve the desired closed-loop
performance. As the states approach the boundaries of
V iab[t,τ ](K,U ,X ), the safety preserving control manipulates
uprf (t, x(t)) to make an smooth transition between the
performance and safety modes.

III. MODEL-INVARIANT SAFETY-PRESERVING CONTROL

The main objective of this paper is to extend the results
from safety-preserving control with a known system model
to the case where the system’s model lies within a finite set
of state-space models. Here, the objective is to find a control
input which keeps the states of all models in the model set
M specified below inside K:

M = {Xi|Xi : ẋ(t) = Aix(t) + αiBu(t), αi > 0,

i = 1, . . . , p}. (12)

Definition 2: (Model-Invariant Viability Kernel) The
finite-horizon model-invariant viability kernel of K for the
model set M is a subset of K characterizing all initial
conditions for which there exists an admissible control input
u(t, x(t)) ∈ U (model-invariant safety-preserving control)
that keeps the trajectory of all X ∈ M emanating from
those states within K for all t ∈ [0, τ ]:

V iab[0,τ ](K,U ,M) = {x0 ∈ K | ∃u(t, x(t)) ∈ U s.t.

∀t ∈ [0, τ ]& ∀X ∈ M, xXx0,u ∈ K }.
(13)

To ensure the model-invariant viability kernel does exist,
we must have:

K ⊆
⋂

X∈M
{WX }, (14)

where WX is the response space of X . Assume the set M
consists of a limited number of members. Let’s define I as an
intersection of the viability kernels of all individual models
in M:

I =
⋂

X∈M
{V iab[0,τ ](K,U ,X )}. (15)

I specifies a subset of the state space for which there exists
a safety-preserving control input for every model in the
model set. However, existence of a unique input keeping
the states of all models is debatable. Due to the convexity
of the constraint sets, the approximated viability kernel is
also convex [5]. Thus, the intersection I is convex too. In
Proposition 1, we will show that under certain assumptions
on M, we have:

I ⊂ V iab[0,τ ](K,U ,M). (16)

Let’s define Ĩ as an under-approximation of I with a set
of ellipsoids. We will show by using Ĩ as a subset of the
model-invariant viability kernel, the safety-preserving control
(7) calculated based on any model in M is capable of
maintaining the states of the entire set within the safe region.

Lemma 1: Assuming
d

dt
V (t, x(t)) exists, the following

control policy preserves safety for the state-space model X :

usafe(t, x(t)) = arg min
u(t)
{ d
dt
V (t, x(t))| u(t) ∈ U}, (17)

In the above equation, x(t) is characterized by a state-
space model X and V (t, x(t)) = Dist2(t, x(t),Z(t)), as-
suming Z(t) = V iab[t,τ ](K,U ,X ). Dist(t, x(t),Z(t)) is
the Hausdorff distance measuring the distance of x(t) from
the set Z(t), which is defined by:

Dist(t, x(t),Z(t)) = min{‖x(t)− z‖ | z ∈ Z(t)}. (18)
According to 18, if x(t) ∈ Z(t), then Dist(t, x(t),Z(t)) =
0 and if x(t) /∈ Z(t), Dist(t, x(t),Z(t)) > 0.

Proof: [21], chapter 1, page 25.
Lemma 2: (17) is capable of preserving safety for any

subset of the viability kernel of X (S ⊂ V iab[t,τ ](K,U ,X ))
if V (t, x(t)) is formulated based on S rather that
V iab[t,τ ](K,U ,X ) [21].

Proof: [21], chapter 1, page 25.
Proposition 1: For the model set M characterized as

(12), using the model-invariant viability kernel defined in
Definition 2, safety-preserving control (17) formulated based
on any model in M is capable of maintaining the states of
all members of M within the safe region K.

Proof: According to Lemma 1, for X ∈ M,
usafe(t, x(t)) defined in (17) is capable of keeping the
states of X inside K. Kurzhanski et al. [21] show that
Dist(t, x(t),Z(t)) can be expressed as

Dist(t, x(t),Z(t)) = max{ < l, x(t) > −ρ(l|Z(t))| ‖l‖ ≤ 1}
= < l0, x(t) > −ρ(l0|Z(t)), (19)



where l0 (l0 6= 0, ‖l0‖ = 1) is a unique maximizer for
< l, x(t) > −ρ(l|Z(t)) and

ρ(l|Z(t)) = max{< l, z > | z ∈ Z(t)} (20)

is the support function of Z(t) in direction l. Accordingly,
one can show (17) is equivalent to

usafe(t, x(t)) = arg min
u
{ d
dt
Dist(t, x(t),Z(t))| u ∈ U}.

(21)

According to Lemma 2, (21) also preserves safety for any
subset of the viability kernel. Thus, assuming Z(t) = I(⊂
V iab[t,τ ](K,U ,X )) which is defined in (15), and following
the analysis in [21] we have

d

dt
Dist(t, x(t),Z(t)) =

∂

∂t
Dist(t, x(t),Z(t))

+ <
∂

∂x
Dist(t, x(t),Z(t)), ẋ(t) >

= < l0, ẋ(t) > − ∂

∂t
ρ(l0|Z(t)). (22)

Kurzhanski et al. [21] show that

∂

∂t
ρ(l0|Z(t)) =< l0, Ax(t) > +ρ(l0|BU). (23)

By using any member of M in (23), we have

∂

∂t
ρ(l0|Z(t)) =< l0, Aix(t) > +ρ(l0|αiBU). (24)

Substituting (24) in (22) yields

d

dt
Dist(t, x(t),Z(t)) = < l0, Aix(t) + αiBu >

− < l0, Aix(t) > −ρ(l0|αiBU)

= < l0, αiBu > −ρ(l0|αiBU).
(25)

Thus, we can represent (17) as

usafe(t, x) = arg min
u
{< l0, αiBu > | u ∈ U}. (26)

Due to the convexity of the optimization problem in (26), the
minimizer is independent of the term αi, i.e. no matter which
value we choose for αi, (26) always has a unique minimizer.
Consequently, usafe(t, x) defined in (26) is a unique control
input which can keep the states of all members ofM defined
in (12), within the safe region and

I ⊂ V iab[0,τ ](K,U ,M). (27)

(7) is the solution to (17) assuming the viability kernel
as well as the constraint sets are under-approximated by
ellipsoids [11]. Accordingly, one can show that using any
model in the model set specified in (12) and Ĩ as an under-
approximation of the model-invariant viability kernel of M,
(7) results in the same usafe. Although the condition (12)
on the model set appears to be very strict, it is satisfied in
certain physical uncertain systems especially for all single
input model sets in which the input has a direct influence
on only one state of the models. This definition includes
applications such as closed-loop control of anesthesia.

symbol unit/range name
A, B, C - Schüttler PK system matrices
Ce mg·l−1 Effect site concentration
Cp mg·l−1 Primary compartment concentration
Cpm mg·l−1 Estimate of Cp from Em

DOH (100,0) Depth of hypnosis (100 ⇔ awake)
eL - Load step control error
E (0,1) Normalized DOH (0 ⇔ awake)
Em (0,1) Estimate of E from y
Emσ - Signal threshold
EC50 mg·l−1 Hill gain parameter
h s Controller sample period
kiji, j = 1, 2, 3 s−1 Rate constants (flow i → j)

k−1
d s Effect PD time constant

k10 s−1 Elimination rate constant
K - True FOTD gain

K̂ - Estimate of K
KD - Derivative controller gain
KI - Integral controller gain
KP - Proportional controller gain
L - True FOTD delay

L̂ - Estimate of L
N - Maximal derivative gain
pk, k = 1, 2, 3 - Schüttler PK poles
r (0,1) Normalized DOH reference
tγ s Duration of γ identification
tind s Duration of induction phase
T - True FOTD time constant

T̂ - Estimate of T
Td s Effect PD delay
TI s Controller integral time
TD s Controller derivative time
Tr s Reference filter time constant
Tt s Anti-windup tracking time
u mg·s−1 Infusion rate
umax mg·s−1 Upper bound of control signal
umin mg·s−1 Lower bound of control signal
uσ - Signal threshold
v - Signal in Hill function
v̂ - Feedback quantity
vm - Estimate of v from E
V1 l Primary compartment volume
x = [x1 x2 x3]T mg·l−1 Compartment concentrations
xD - PID derivative filter state
xI - PID integrator state
y (0,1) Normalized measured DOH
γ - Hill slope parameter
γ̂ - Estimate of γ

TABLE I

SIGNALS AND PARAMETERS.

k10

k12

k13k21

k31

u

Primary
compartment

Fast
compartment

Slow
compartment

ȷ

blood
liver

ȷ

muscles
viscera

ȷ

fat
bones

Fig. 2. Schüttler’s three-compartment mammillary model.

The drug is delivered into the primary (central) compartment
with rate u. Denoting x the vector of drug concentration in

each compartment, the Schüttler’s model is given by

ẋ =

⎡
⎣

−(k10 + k12 + k13) k12 k13

k21 −k21 0
k31 0 −k31

⎤
⎦x +

1

V1

⎡
⎣

1
0
0

⎤
⎦u.

(1)
The transfer function representation of (1) from u to x1 is

GCp,u(s) =
1

V1

(s + k21)(s + k31)

(s + p1)(s + p2)(s + p3)
, (2)

where pk, k ∈ {1, 2, 3} are defined accordingly from kij . It
was concluded by Schüttler et al. [6] that age and lean body

mass are reliable demographic covariates for the parameters
of (2). Functions relating these covariates to volumes and
clearance rates V1, kk, k ∈ {1, 2, 3} are presented in [6].

C. Pharmacodynamic (PD) Model – Hill Function

1) Effect Site Dynamics: The output of the Schüttler PK
model is the primary compartment concentration of propofol,
Cp. However, the effect site of the drug is the brain, not
the plasma. To account for the distribution of drug from the
plasma to the effect site, the PK model was augmented by a
delayed first order system [7]:

GCe,Cp
(s) =

kd

s + kd
e−Tds, (3)

where the delay is intended to model the drug transport from
the intravenous to the effect site.

2) Dose-Response Characteristics: The clinical effect E
is normalized to (0, 1), where 0 corresponds to fully awake
state. In the steady state, the relation between Ce and E is
well described by a sigmoidal Emax function:

E(Ce) =
Cγ

e

ECγ
50 + Cγ

e
, (4)

which is also known as the Hill function. It is parametrized
by EC50, the value of Ce corresponding to E = 0.5, and
γ, defining the steepness of the sigmoidal curve. The Hill
function (4) can be decomposed into a series of a linear gain

v(Ce) =
1

2EC50
Ce, (5)

and a sigmoidal nonlinearity

E = f(v; γ) =
vγ

1
2

γ
+ vγ

, (6)

which is parametrized only in γ. It is obvious from (6) that
E = 0.5 corresponds to v = 0.5.

For model identification purposes, the effect PD and linear
Hill gain are lumped together to yield the following first
order time delayed (FOTD) system:

v(s) =
Kd/(2EC50)

s + Kd
e−sTdCp(s), (7)

whereas the nonlinear part (6) is treated separately.

856

Fig. 1. Drug distribution in primary, fast and slow compartments (PK
model)

According to the above proof, if we can approximate the
model-invariant viability kernel for a set of models which can
be represented as described in (12), it does not matter which
model we use to calculate the safety-preserving control input,
the input would be able to keep the states of the entire model
set within the safe region.

IV. CASE STUDY

In this section, we apply model-invariant safety-preserving
control to the closed-loop control of DoH. The effect of
propofol anesthesia on DoH can be described by a Wiener
model, generally containing a 3-compartment PK model
[22], and a first-order model followed by a non-linearity to
describe the PD model [23]. The PK and PD models can be
combined and represented as a 4-state state-space model as
follows:

ẋ(t) = Ax(t) +Bu(t− τd), y = Ce. (28)

x ∈ R4 includes drug concentrations in the plasma Cp (x1),
fast peripheral (x2), and slow peripheral (x3) compartments
as well as the effect-site concentration Ce (x4). As illustrated
in fig. 1, the input u is the anesthetic drug which is injected
to the primary compartment and then it is distributed to
the other compartments. Therefore, The matrix B can be
represented as:

B = α
[
1 0 0 0

]T
. (29)

The relation between the effect-site concentration and the
anesthetic effect can be described by the non-linear Hill
equation:

E(Ce) =
Cγe

ECγ50 + Cγe
, (30)

where EC50 is the concentration results in 50% of the
overall effect and γ is the cooperativity coefficient. During
the maintenance phase of anesthesia, the control objective
is to keep the drug effect at E = 0.5. Bibian et al. [23]
identified and presented a set of 44 models corresponding
individual patient responses. The first 15 models of this set,
including PKPD models representing patients between ages
20 to 29 are used in this simulation example. Since the
PKPD models can be represented in the form of (12), we
can apply the model-invariant safety-preserving control to
the model set. This paper focusses on state-space uncertainty.
In the following, the anesthesia control problem is therefore
simplified by assuming that all states can be measured, EC50

is known and the system is delay free.



PID SP control Patient WAVCNS

r uprf uc y

−

x

Fig. 2. Closed-loop diagram of the safety-preserving control of Anesthesia

To overcome the effect of the non-linearity in the PKPD
model, we calculate the effect-site concentration by point-to-
point inverse mapping of the drug effect:

E−1(.) : E(Ce)→ Ce. (31)

Accordingly, if there is a constraint on the output (drug
effect) it can be described as a constraint on x4 (assuming
x4 = Ce in (28)):

E(Ce) ∈ [a, b]→ Ce ∈ [E−1(a), E−1(b)]. (32)

To satisfy the performance criteria in our simulations, we
implement the robust PID controller used by van Heusden
et al. in [1]. Fig. 2 depicts the block diagram of the safety-
preserving closed-loop control implemented in this paper.
The drug effect is measured by WAVCNS and is fed back
to the PID controller. In this control scheme, initially, we
let the PID controller bring the states inside the safe set.
Once the predicted states reach the viability kernel, safety-
preserving control is turned on and keeps the states within
the constraints over the operational time. The constraints we
define on the states and the input are:

0 ≤ x1,x2, x3 ≤ 12, (33)
1.52 ≤x4 ≤ 2.28, (34)

0 ≤u ≤ 600. (35)

Fig. 3 illustrates the projection of the constraint set in
x4-x1 plane (red region). In this figure, we focus on the
plasma (x1) and effect-site (x4) concentrations which are the
most important variables in closed-loop control of anesthesia.
Fig. 3 represents the normalized version of the constraint set
which is moved to the origin. The green region represents the
model-invariant viability kernel under-approximated by a set
of ellipsoids. This set is calculated by intersecting the viabil-
ity kernels of 15 patient models between ages of 20 to 29. In
this figure, we choose one of the patient models and compare
the trajectory of the states when the safety-preserving control
is applied and when it is not. Accordingly, in the case
without the safety-preserving control, the trajectory (blue
line) violates the constraint set for a short period of time.
When the safety preserving control is turned on, it prevents
the trajectory (red line) from going beyond the constraint set
(red region.) Fig. 4 depicts DoH and the drug infusion rate in
both cases for the same model. DoH of 100 is associated with
the drug effect of 0 and DoH of 0 is associated with the drug
effect of 1 (maximum effect). So, according to the constraint
defined in (34) and the value for EC50(=1.9), the objective
is to keep DoH between 40 and 60. The upper plot in fig.
4 shows the capability of the safety-preserving control in
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Fig. 3. x1-x4 plane, red region: constraint set (K), green region: under-
approximation of model-invariant viability kernel (V iab(K,U ,M)), blue
dashed line: the trajectory of the states with safety-preserving control off,
red line: the trajectory of the states with safety-preserving control on. The
trajectories are associated with the 4th model in the model set.
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Fig. 4. The comparison of DoH and the infusion rate in the case when
the safety-preserving control is on with the case when it is off. The result
is associated with the 4th model in the model set.

satisfying the constraints. Indeed, safety-preserving control
brings DoH inside the limits once it approaches the lower
bound. On the other hand, when DoH is within the constraint,
safety- preserving control lets the PID controller operate in
to satisfy the closed-loop performance. The lower plot shows
how the safety-preserving control manipulates and corrects
the control input provided by the PID controller to prevent
the states from going outside the preset limits.

Fig. 5 depicts performance of the model-invariant safety-
preserving control when it is applied to the set of PKPD
models. We choose two random models from the model
set to calculate the safety-preserving control input based
on the model-invariant viability kernel depicted in fig. 3.
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Fig. 5. Response of 15 PKPD models to MISP. In each plot, a single
random model from the model set is used to control the entire population.

Fig. 5 shows that no matter which model we choose to
calculate the safety-preserving control input, the proposed
control approach is capable of maintaining the variables of
the entire set within the safe bound.

V. CONCLUSION AND FUTURE WORK

In this paper, we introduced model-invariant safety-
preserving control. This control approach is the extension
of the safety-preserving control to the case where the model
includes uncertainty. We have defined the model-invariant
viability kernel as an intersection of the viability kernels of
all model in the model set, followed by a proof for the model-
invariant safety preserving control synthesis. We showed
that using the model-invariant viability kernel, no matter
which model from the model set we choose to calculate
the safety-preserving control input, it is able to satisfy
safety concerns. Finally, we illustrated the efficiency of the
proposed technique by applying it to closed-loop control of
anesthesia in which there is no unique model describing a
patient’s response to anesthetics.

Although we discussed model invariability of safety-
preserving control, we only considered the case where the
model set is finite. However, in an infinite model case or a
case where the model set includes a large number of models,
approximating the model-invariant viability kernel cannot be
achieved by intersecting the viability kernels of all individual
models. We also considered a specific uncertainty structure
and do not discus the impact of time delays on safety.
Moreover, we assumed states of the model are measurable.
To make model-invariant safety-preserving control applicable
to control of anethsia, further work on implementation of
the proposed technique in the presence of output-feedback,
infinite model sets, and time delays, will be needed.
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