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Abstract

In sampled data systems the controller receives periodically sampled state feedback
about the evolution of a continuous time plant, and must choose a constant control
signal to apply between these updates; however, unlike purely discrete time models the
evolution of the plant between updates is important. In contrast, for systems with non-
linear dynamics existing reachability algorithms—based on Hamilton-Jacobi equations
or viability theory—assume continuous time state feedback and the ability to instanta-
neously adjust the input signal. In this paper we describe an algorithm for determining
an implicit surface representation of minimal backwards reach tubes for nonlinear sam-
pled data systems, and then construct switched, set-valued feedback controllers which
are permissive but ensure safety for such systems. The reachability algorithm is adapted
from the Hamilton-Jacobi formulation proposed in Ding and Tomlin (2010). We show
that this formulation is conservative for sampled data systems. We implement the al-
gorithm using approximation schemes from level set methods, and demonstrate it on a
modified double integrator.

1 Introduction

A wide variety of reachability algorithms for continuous and hybrid systems have been
proposed in the literature over the last decade, but they have for the most part been driven
by safety verification problems; for example, given initial and terminal sets in the state space,
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do there exist trajectories leading from the former to the latter? For the purposes of system
design and debugging, this boolean decision problem is often augmented by a request for
counterexamples if the system is unsafe (for example, see Clarke (2008)). When the system
has inputs, however, there is a much less well-studied challenge: Given a particular state,
how can those inputs be chosen to maintain safety?

Here we study that problem in the context of sampled data systems. A common design pat-
tern in cyber-physical systems consists of a digital controller receiving periodically sampled
state feedback about the continuous time evolution of a continuous (or hybrid) state plant,
and then generating a control signal (typically constant) to use until the next sample time.
Feedback controllers for such systems are often designed using discrete time approaches, but
that treatment ignores the states through which the plant evolves between sample times.
Sampled data control takes the continuous time trajectories of the plant into account.

In this paper we extend a sampled data reachability algorithm, first proposed in Ding and
Tomlin (2010) and based on a Hamilton-Jacobi (HJ) partial differential equation (PDE) for-
mulation, to synthesize safe but permissive switched feedback control policies for nonlinear
continuous state sampled data systems. The contributions of this paper are:

• Adapting the algorithm to find minimal reach tubes and showing that these computed
tubes are conservative estimates of the true reach tubes.
• Partitioning the state space into regions where the full control authority can be used

safely, where only a subset may be used while maintaining safety, or where it may not
be possible to maintain safety.

We seek to design a permissive but safe control policy (also known as a feedback control
law). It is safe in the sense that if the system is in a state which is not identified as inevitably
unsafe and control signals are chosen from this policy at the sample times then the system
will never enter the unsafe set. It is permissive in the sense that it is set-valued when
possible, so that other criteria can be taken into account in choosing the final control signal
while still maintaining safety; for example, minimum control effort in an energy constrained
situation, or proximity to the human operator’s input in a collaborative control scenario.

The remainder of the paper is organized as follows. Section 2 formalizes the problem, while
section 3 discusses related work. Section 4 adapts the sampled data reachability algorithm
to minimal reach tubes and demonstrates conservatism, as well as showing how to determine
the set of states which may be unavoidably unsafe. Section 5 determines the sets where
limited control and where any control may be used to ensure safety. Section 6 discusses
how to utilize information from the computation of the sampled data minimal reach tube
to synthesize a switched, permissive (eg: set-valued) and safe control policy. Section 7
discusses implementation details, and section 8 demonstrates the algorithm on a simple
example.

This technical report is an extended version (with a full proof of proposition 1 and additional
material in section 8) of a paper presented at the 4th IFAC Conference on the Analysis
and Design of Hybrid Systems (Eindhoven, the Netherlands, June 6–8, 2012). After the
conference, that version may be found at http://www.ifac-papersonline.net/
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Figure 1: The partition of the state space. The unsafe set S0 and the state space Ω are
specified in the problem definition. The uncontrollable sets Sk for k > 0, the mandatory
control set Sctrl and the free control set Sfree are determined by the algorithms proposed in
this paper.

2 Problem Definition

Consider a deterministic nonlinear system described by the ordinary differential equation
(ODE)

ẋ = f(x, u) (1)

with initial condition x(0) = x0, where x ∈ Ω is the state, Ω ⊂ Rdx (or some similar vector
space of dimension dx), u ∈ U is the control input, U ⊂ Rdu is assumed to be convex
and compact, and the dynamics f : Ω × U → TΩ are assumed to be bounded, Lipschitz
continuous in x, and continuous in u.

We will assume that for feedback control purposes the state is sampled at times tk = kδ
for some fixed δ > 0 and integer k, and that the control signal is constant between sample
times. As a consequence, the actual dynamics are of the form

ẋ(t) = f(x(t), upw(t)) (2)

where the piecewise constant input signal upw(t) is chosen according to

upw(t) = ufb(x(tk)) for tk ≤ t < tk+1 (3)

and ufb : Ω→ U is a feedback control policy. Note that because the feedback control policy
is time sampled, the dynamics (2) cannot be written in the form ẋ = f(x).

The unsafe set S0 ⊂ Ω that we seek to avoid is assumed to be the closure of an open set; for
example, it need not be connected, but every unconnected component must have an interior
and an exterior. We divide the state space Ω into a number of subsets as shown in figure 1.
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The first is the terminal set S0. The next sets Sk may inevitably enter the terminal set by
time kδ no matter what ufb is chosen. The next set Sctrl is a superset of SN—where Nδ
will be our safety horizon—and is the set in which we will constrain ufb in order to ensure
safety. The final set Sfree is the set of states in which any ufb may be chosen at the next
sampling instant.

We will determine these sets through a series of reachability calculations. Starting from S0,
we determine Sk for k = 1, 2, . . . , N through a sampled time backward minimal reachability
calculation. We then use SN as the terminal set in a traditional, continuous time backward
maximal reachability calculation; Sctrl is the resulting backwards reach tube. Finally, Sfree
is the remainder of the state space.

We represent sets S ⊂ Ω using an implicit surface function ψS : Ω→ R such that

S = {x ∈ Ω | ψS(x) ≤ 0}.

The implicit surface function representation is very flexible; for example, it can represent
nonconvex and disconnected sets. Its main restriction is that sets must have a nonempty
interior and exterior. Analytic implicit surface functions for common geometric shapes
(such as spheres, hyperplanes, prisms, etc.) are easily constructed. The constructive solid
geometry operations of union, intersection and complement of sets are achieved through
pointwise minimum, maximum and negation operations on their implicit surface functions.

For notational simplicity, we have restricted the presentation below to the case of a single
input which is acting as a control. It is straightforward to modify the schemes in the same
manner as Ding and Tomlin (2010) to treat measurable disturbance inputs or hybrid au-
tomata dynamics with continuously available mode switches. More extensive modifications
would be required to treat the cases where the disturbance input and/or the mode switches
were based on sampled data as well.

3 Related Work

We broadly categorize reachability algorithms into Lagrangian (those which follow trajec-
tories of the system) and Eulerian (those which operate on a fixed grid); see Mitchell (2007)
for a more extensive discussion of types of reachability algorithms. Most algorithms for
systems with nonlinear dynamics and inputs are currently Eulerian; for example, there are
schemes based on viability theory (Cardaliaguet et al. (1999); Aubin et al. (2011)), static
HJ PDEs (Branicky and Zhang (2000); Sethian and Vladimirsky (2002)), or time-dependent
HJ PDEs (Lygeros et al. (1999); Lygeros (2004); Mitchell et al. (2005)). In the static HJ
PDE formulation, the value function is constant outside the reachable set; consequently,
this formulation is not useful for synthesizing safe controls. Using the viability and time-
dependent HJ PDE formulations, it is possible to synthesize control laws that are optimally
permissive: constraints are only placed upon the choice of control along the boundary of the
safe (viable) set. From a practical perspective, such policies are impossible to implement
because they require information about the state at all times and the ability to change the
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input signal at any time. In contrast, here we assume that state feedback and control signal
modification only occur at the periodic sample times, and the control signal is held constant
between sample times.

In Ding and Tomlin (2010) a time-dependent HJ PDE formulation of sampled data reacha-
bility is presented for hybrid automata. In that case, the HJ PDE is used to find an implicit
surface representation of the sampled data backward reach tube, where the piecewise con-
tinuous control input signal attempted to drive the trajectory to a terminal set without
entering an avoid set, despite the actions of a measurable disturbance input signal. In that
problem the terminal set was considered “good” from the viewpoint of the control input,
while in the problem we explore here the terminal set is considered “bad.” In section 4 we
describe the minor adaptation of the algorithm required to handle the different interpre-
tation of terminal sets, and then examine the relationship between the resulting HJ PDE
solutions and the desired reachability operators.

An alternative approach for finding safe trajectories is through sample based planning
schemes (for example, see LaValle (2006)), such as the rapidly-exploring random tree (RRT)
and its descendants. Adaptations of RRTs to verification/falsification are proposed in Bran-
icky et al. (2006); Plaku et al. (2009), but to synthesize permissive yet safe control policies
requires a slightly different but still quite feasible modification of traditional RRTs (to col-
lect sets of safe paths, rather than just the optimal or first path found). Like many sample
based schemes RRTs appear to scale better in practice to high dimensional systems than
do schemes based on grids, and unlike most Lagrangian approaches they do a good job of
covering the state space given sufficient samples. On the other hand, the output of RRTs
is not as easily or accurately interpolated into continuous spaces as are grid-based results,
and there is no simple method of introducing worst-case disturbance inputs to make the
results robust to uncertainty.

4 Sampled Data Reachability

In this section we define a minimal reach tube operator for the sampled data dynamics (2)–
(3), show how it can be represented as an implicit surface function constructed from the
solutions of HJ PDEs via some simple pointwise operations, demonstrate its (possibly strict)
conservatism, and specify a formula for Sk.

4.1 Minimal Reach Tubes

Define the sampled data backward minimal reach tube over time interval [tmin, tmax] as

R−sd([tmin, tmax], T ) , {x0 ∈ Ω | ∀upw(·), ∃t ∈ [tmin, tmax], x(t) ∈ T }, (4)

where x(·) solves (2)–(3) with initial condition x(0) = x0. The backward minimal reach
tube contains states that give rise to trajectories which cannot avoid entering T no matter
what input signal is chosen. Note that this definition is not precisely the same as those
in Mitchell (2007) because in this case we allow only piecewise constant control signals.
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4.2 Hamilton-Jacobi Formulation

We adapt the approach from Ding and Tomlin (2010) to approximate the backward minimal
reach tube. A finite subset of control input values U = {u(1), u(2), . . . , u(`)} is considered,
where u(j) ∈ U . Define the backward reach tube for a constant input value u(j) over a single
sample period as

R(j) , R([0, δ], T ) , {x0 ∈ Ω | ∃t ∈ [0, δ], x(t) ∈ T }

where x(·) solves (1) with fixed input u(j) and initial condition x(0) = x0. If T is represented
by the known implicit surface function ψT , then we can determine an implicit surface
function for R(j) (for example, see Mitchell et al. (2005))

ψR(j)(x) = φ(x, 0) (5)

where φ : Ω× [0, δ]→ R is the viscosity solution of the terminal value, time-dependent HJ
PDE

Dtφ+ min [0, H(x,Dxφ)] = 0 (6)

with Hamiltonian
H(x, p) = pT f(x, u(j)) (7)

and terminal condition
φ(x, δ) = ψT (x). (8)

Unlike Ding and Tomlin (2010), we use the control input to minimize the size of the reach
tube, so an implicit surface function for

R−1 (T ) , R−sd([0, δ], T )

is given by
ψR−1 (T )(x) = max

1≤j≤`
ψR(j)(x). (9)

This optimization ensures that if point x is outside R(j) for any j—in other words, input
u(j) generates a trajectory starting at x which does not reach T during the time interval
[0, δ]—then x is outside R−1 (T ). Because it is the maximum of continuous functions, ψR−1 (T )
is itself continuous.

Given some finite horizon T = Nδ for integer N > 1, we work recursively through

R−k+1(T ) , R−1 (R−k (T ))

ψR−k+1(T )
(x) = ψR−1 (R−k (T ))(x)

(10)

and the equations above to find an implicit surface function for R−N (T ).
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4.3 Conservatism of the Hamilton-Jacobi Reach Tube Formulation

Proposition 1. The true sampled data reach tube is a subset of the estimated reach tube
computed in section 4.2:

R−sd([0, Nδ], T ) ⊆ {x ∈ Ω | ψR−N (T )(x) ≤ 0}. (11)

It may be a strict subset.

Proof. We can prove (11) by showing

x ∈ R−sd([0, Nδ], T ) =⇒ ψR−N (T )(x) ≤ 0.

The proof itself is identical to the first part of lemma 8 in Mitchell et al. (2005) and so we
do not repeat it here (all lemmas and the corollary referenced in this proof are from the
same citation). To show that the true reach tube may be a strict subset of the computed
tube, we consider the other part of lemma 8, which turns out to be false for the sampled
data case:

ψR−N (T )(x) ≤ 0 =⇒6 x ∈ R−sd([0, Nδ], T ). (12)

The proof of this part of lemma 8 fails because the dynamics (2) depend implicitly on time
through the sampled control (3), the trajectories of the augmented system can be forced
into states which are not visited by the original system, and hence lemma 4 and corollary 5
are false.

Of course, the failure of the proof in Mitchell et al. (2005) does not prove (12). As a concrete
example for which R−k (T ) contains states that are not in R−([0, kδ], T ) for k > 1, consider
the system

ẋ =
d

dt

[
x1
x2

]
=

[
u
−1

]
= f(x, u)

with input set U = {−1,+1}, sample time δ = 1 and a terminal set T consisting of the
two black triangles shown in figure 2. Trajectories can escape through the gap of width
0.5 between the two triangles near the origin. Figure 2 shows that R−1 (T ) is correctly
computed as a diamond; however, for k > 1 the sets R−k (T ) are too large and touch
one another. As k → ∞, R−k (T ) will contain the entire upper half plane except for the
narrow corridors running diagonally just above T ; however, it is easy to determine that
R−sd([0, kδ], T ) actually looks more like a lattice of diamond shapes (each the size of R−1 (T )),
as shown in figure 3. With this counterexample, we prove (12).

The conservatism arises from the time dependence of (2). Care must be taken when adapting
HJ PDEs to time-varying optimal control problems—for example, see Vladimirsky (2006)—
and it is not yet clear how to adapt the formulation of reach tubes from Mitchell et al. (2005)
to avoid conservatism when treating time-varying dynamics. A tempting approach is to work
with the union over time of reach sets; however, for minimal or multi-input reachability the
union of reach sets was shown to be unable to verify safety in Mitchell (2007), and the same
problem occurs in the sampled data context.

7



Reach Tube Estimate δ = 1, N = 3

−4 −3 −2 −1 0 1 2 3 4

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 2: A demonstration that R−N (T ) may include states which can avoid hitting the
terminal set. The terminal set T is the two black triangles. The remaining shaded regions
are R−k (T ) for k = 1, 2, 3 (darkest to lightest). The blue line shows a trajectory starting
from within R−2 (T ) which nonetheless avoids the terminal set. The input is sampled at the
points marked by small circles.

Figure 3: A sketch of the actual R−([0, kδ], T ) for k = 1, 2, 3 for the example in figure 2.
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4.4 Determining Sk

Using the operators defined above, we (conservatively) determine the set of states that may
inevitably enter S0 over time horizon kδ as

Sk = R−k (S0). (13)

Using (5)–(10) we can determine an implicit surface representation ψSk .

For many problems of interest, we find that this calculation converges such that Sk = Sk−1
for sufficiently large k, and hence we can determine the infinite horizon S∞.

5 Continuous Time Maximal Reachability

In order to allow maximum flexibility in the choice of control in Sfree at time t, we must
ensure that it contains no states which can give rise to trajectories that enter SN before
the next state observation and change of input at time t + δ. In this section we recall the
standard maximal reach tube operator and the HJ PDE whose solution provides an implicit
surface representation of this set. We use this operator to determine Sctrl and hence Sfree.

5.1 Maximal Reach Tubes

The backward maximal reach tube for a given terminal set T over time interval [tmin, tmax]
is defined as

R+([tmin, tmax], T ) , {x0 ∈ Ω | ∃u(·), ∃t ∈ [tmin, tmax], x(t) ∈ T }, (14)

where x(·) solves (1) with initial condition x(0) = x0. Note that this definition is exactly
the same as in Mitchell (2007), and we allow for measurable input signals u(·) rather than
those that are just piecewise constant.

5.2 Hamilton-Jacobi Formulation

We use the algorithm from Mitchell et al. (2005) to determine an implicit surface function
representation of R+([0, δ], T ):

ψR+([0,δ],T )(x) = φ(x, 0),

where φ : Ω× [0, δ]→ R is the viscosity solution of the terminal value, time-dependent HJ
PDE (6) with Hamiltonian

H(x, p) = min
u
pT f(x, u) (15)

and terminal condition (8).
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Figure 4: The general form of the switched sampled data control policy. Arrows show
transitions which are possible under the policy.

5.3 Determining Sctrl and Sfree

We choose
Sctrl = R+([0, δ],SN ) \ S1.

We omit S1 (and hence S0) because it is impossible to ensure safety for even a single
sample period when starting in those states. By using a maximal reach set, we capture the
set of states which might enter SN over the next δ time units before the input is able to
change. While the HJ PDE formulation of the continuous time backwards maximal reach
tube is exact (unlike the sampled data case above), determining Sctrl in this fashion is still
conservative because it may include states which can only reach SN by applying a control
which is not piecewise constant.

Finally,
Sfree = Ω \ R+([0, δ],SN ).

6 Safe but Permissive Sampled Data Feedback Control Poli-
cies

In this section we synthesize several sampled data control policies which are guaranteed
to ensure that trajectories starting in Sfree ∪ Sctrl do not enter S0 during the time interval
[0, Nδ]. All are switched feedback control policies of the form shown in figure 4. It was
shown in Lygeros et al. (1999) that there exists a control policy which renders the system
safe if and only if there exists a feedback control policy which renders the system safe,
so we restrict ourselves to feedback control policies without loss of generality. We do not
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synthesize a policy for x ∈ S0, since the system has already failed the safety criterion in
such states and so its future evolution is irrelevant to that criterion.

6.1 Policy in Sfree

As shown in figure 4, it is impossible by the construction of Sctrl for the state to go from
Sfree to S0 over a single sampling interval no matter what input is chosen. Consequently,
the permissive control policy in Sfree is always u ∈ U .

6.2 Policies in Sctrl

For states in Sctrl some choices of input may lead trajectories directly into S0 and others
may unnecessarily reduce the horizon over which safety can be maintained; consequently,
the range of inputs must be constrained. We propose two possible choices of Uctrl(x). The
first maximizes permissiveness by providing the largest set of controls which maintains
safety over the maximum possible time horizon. The second aggressively attempts to drive
the trajectory back into Sfree (which might provide more long-term flexibility in choice of
input). Both choices ensure safety, and are subsets of the finite collection of input samples
U used in constructing the Sk.

Let Nδ be the safety horizon used to compute Sctrl. Given x0 ∈ Sctrl define the safety
horizon of x0 as

n(x0) ,


∞, if SN = SN−1 = S∞ and ψSN (x0) > 0;

N, if SN 6= SN−1 and ψSN (x0) > 0;

k, if ψSk+1
(x0) ≤ 0 and ψSk(x0) > 0.

(16)

Observe that n(x) ≥ 1 because Sctrl does not contain S1. Define the value at the next
sample time under input u(j) ∈ U as

ψ
(j)
δ (x0) , ψSn(x0)−1

(x(j)(δ)), (17)

where x(j)(·) solves (2) with fixed input u = u(j) and initial condition x(0) = x0.

The permissive policy is given by

U→ctrl(x) , {u(j) ∈ U | ψ(j)
δ (x) ≥ ψSn(x)

(x)}. (18)

The aggressive policy is given by

U↗ctrl(x) , argmax
u(j)∈U

ψ
(j)
δ (x). (19)

Note that neither policy is guaranteed to be unique.

Proposition 2. For all x ∈ Sctrl, U→ctrl(x) 6= ∅.
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Proof. The HJ PDE (6)–(8) used to compute ψR(j) and the optimization in (9) implies that
ψR−1 (T ) is the value function for the finite horizon terminal value optimal control problem

ψR−1 (T )(x0) = max
u(j)∈U

min
s∈[0,δ]

ψT (x(j)(s)) (20)

where x(j)(·) solves (2) with initial condition x(j)(0) = x0 and constant control u(j).

Consider x0 ∈ Sctrl. Let ñ = n(x0) and ψ̃ = ψSñ(x0). By (13) and (10), Sñ = R−1 (Sñ−1),
which implies that

ψR−1 (Sñ−1)
(x0) = ψSñ(x0) = ψ̃.

Therefore, by (20) there exists ̃ ∈ {1, 2, . . . , `} and u(̃) ∈ U such that

min
s∈[0,δ]

ψSñ−1(x(̃)(s)) = ψ̃;

consequently, by (17)

ψ
(̃)
δ (x0) = ψSñ−1(x(̃)(δ)) ≥ ψ̃.

Therefore, u(̃) ∈ U→ctrl(x0).

Corollary 1. For all x ∈ Sctrl, U↗ctrl(x) 6= ∅. For all u(j) ∈ U↗ctrl(x), ψ
(j)
δ (x) ≥ ψSn(x)

(x).

6.3 Policies in S1

For x0 ∈ S1 = R−1 (S0), x(δ) ∈ S0 for all u(j) ∈ U . Furthermore, the computation of
R−1 (S0) does not suffer from the conservatism discussed in proposition 1, because the dy-
namics (2)–(3) are not time-dependent over a single sample interval. Consequently, one
possible response is to sit back and wait for the inevitable failure. The corresponding most
permissive control policy is U◦inev(x) , U . However, if there is some conservatism in the
model—for example, if disturbance inputs have been introduced into (2) and treated in a
worst-case manner when computing R−1 (S0)—it may be possible to avoid S0. The corre-
sponding policy

U↗inev(x) , argmax
u(j)∈U

ψS0(x(j)(δ)) (21)

is defined in a manner similar to U↗ctrl(x), although for x ∈ S1 there is no guarantee that
application of this policy will avoid S0 for even a single sample interval.

6.4 Safety of the Policies

Proposition 3. Let trajectory x(·) solve (2)–(3) with initial condition x(0) = x0 and sam-
pled feedback control policy

ufb(x) ∈

{
Uctrl(x), for x ∈ Sctrl;
U , for x ∈ Sfree.

(22)

If x0 ∈ Sfree, then x(t) /∈ S0 for all t ∈ [0, (N + 1)δ], where Nδ is the horizon used in the
computation of Sctrl. If x0 ∈ Sctrl, then x(t) /∈ S0 for all t ∈ [0, n(x0)δ].
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Proof. Consider first x0 ∈ Sctrl. Let ñ = n(x0) and ψ̃ = ψSñ(x0). By (16), ψ̃ > 0, which
implies that ψSñ−1(x(δ)) > 0 by (17) and either (18) and proposition 2 (if Uctrl = U→ctrl) or

corollary 1 (if Uctrl = U↗ctrl). Therefore x(δ) /∈ Sñ−1. Use induction to show that x(kδ) /∈
Sñ−k and hence that x(t) /∈ S0 for t ∈ [0, ñδ].

Now consider x0 ∈ Sfree, which implies

ψR+([0,δ],SN )(x0) > 0. (23)

The HJ PDE (6), (15) and (8) used to compute ψR+([0,δ],SN ) implies that it is the value
function for the finite horizon terminal value optimal control problem

ψR+([0,δ],SN )(x0) = min
u(·)∈U

min
s∈[0,δ]

ψSN (x̃(s)) (24)

where x̃(·) solves (1) with initial condition x̃(0) = x0 and U is the set of all measurable
input signals u(·) such that u(s) ∈ U for all s ∈ [0, δ]. Note that U is a much broader choice
of input signals than piecewise constant, and it draws values from U not U , so the set of
all possible trajectories x̃(·) contains all sampled data trajectories x(·). From (23) and (24)
we conclude that ψSN (x(s)) > 0 for all s ∈ [0, δ] and hence that either x(δ) ∈ Sfree or
x(δ) ∈ Sctrl with n(x(δ)) = N . Using either induction in the former case or the proof above
for x0 ∈ Sctrl in the latter case, it is easily shown that x(t) /∈ S0 for all t ∈ [0, (N + 1)δ]

Corollary 2. If the sampled data reachability calculation converged such that SN−1 =
SN = S∞ and x0 ∈ Sfree ∪ (Sctrl \ S∞), then using the control policy (22) will ensure that
x(t) ∈ Sfree ∪ (Sctrl \ S∞) for all t > 0.

7 Approximation and Implementation

In this section we describe a particular approach to approximating the solution of the
equations above for the common case where we do not have analytic solutions to those
equations.

7.1 Calculating the Sets

We use the Toolbox of Level Set Methods (ToolboxLS) as described in Mitchell and
Templeton (2005) to manipulate implicit surface functions. Implicit surface functions are
represented by values sampled at nodes on a regular orthogonal grid. When values are
needed away from grid points, interpolation is used (eg: interpn in Matlab). Maximum
and minimum operations are done pointwise at each node in the grid.

The HJ PDE (6)–(8) used to determine Sk is purely convective because there are no inputs;
consequently, it can be solved using an upwind finite difference scheme. High order of
accuracy finite difference approximations of the spatial and temporal derivatives are used
to evolve the equation (for example, see Osher and Fedkiw (2002)). However, because we
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use the value of ψSk , and not just its zero level set, during construction of the control
policies (via (17)), it is important that reinitialization and/or velocity extension not be
applied when approximating the solution of these PDEs.

The HJ PDE (6), (15) and (8) used to determine Sctrl involves an input, so a Lax-Friedrichs
centered difference scheme is used. The same spatial and temporal finite difference approx-
imations are used. Only the zero level set of ψSctrl is referenced, so it is possible to use
reinitialization and/or velocity extension during this process; however, it is unlikely to be
needed because the equations are solved only over δ time units.

7.2 Constructing the Feedback Controller

For a state x0 ∈ Sfree ∪ S0 the control policies are straightforward to implement. For
x0 ∈ Sctrl, we approximate (17) for each j = 1, 2, . . . , ` by using an ODE solver (eg:
ode45 in Matlab) to find the point x(j)(δ) and then interpolate over the approximation

of ψSn(x0)−1
to determine ψ

(j)
δ (x0). The set-valued policy is constructed from (18) or (19),

where ψSn(x0)
(x0) might also need to be interpolated in (18).

7.3 Guaranteeing an Overapproximation

While the analytic formulation presented in sections 4–6 guarantees safety, the numerical
implementation described above does not maintain those guarantees. The decision to use
an unsound implementation was primarily driven by convenience, and also the empirical
accuracy that the level set schemes have demonstrated in the past.

It is possible to reformulate the reachability calculations described above in viability theory
and then use sound numerical implementations such as those described in Cardaliaguet
et al. (1999). The sampled data minimal reachability calculation in section 4 is solved
by a series of fixed input reachability calculations with switches at the sample times, but
could also be solved by a series of fixed input viability kernels with switches at the sample
times. The maximal reachability calculation in section 5 can be solved with a capture
basin. It is less obvious how to synthesize safe controls from the indicator-like viability
kernel representation, but there are several approaches to reformulate HJ PDEs as viability
kernels if necessary. The primary shortcoming of these viability schemes is their relative
inaccuracy when compared to the schemes implemented in ToolboxLS. It is possible that
a combination of the two approaches might be able to achieve both sound and accurate
approximations.

8 Example

Computations were done on an Intel Core2 Duo at 1.87 GHz with 4 GB RAM running
64-bit Windows 7 Professional (Service Pack 1), 64-bit Matlab version 7.11 (R2010b),
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delta = 0.30, steps = 50, |u| ≤ 1.00, input samples = 7, accuracy veryHigh
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Figure 5: The partition of Ω for the spatially varying double integrator with δ = 0.3 and
horizon N = 50 (eg: T = 15, long enough for convergence). Because this is an envelope
protection problem, the relationship of the sets is opposite that shown in figure 1: S0 is
everything outside the outermost thin red rectangle, S∞ is everything outside the thick
magenta contour, Sctrl is everything outside the dotted blue contour, and Sfree is everything
inside that innermost contour (where the legend is).

and ToolboxLS version 1.1. Matlab code can be found at the first author’s web site
http://www.cs.ubc.ca/~mitchell

We demonstrate the algorithms using an envelope protection problem for a variation on
the double integrator because it is much easier to visualize results in two dimensions. In
the standard double integrator, once deceleration begins the optimal control stays constant
until the system stops no matter what the state; consequently, the results are very similar
in a sampled data environment to what they would be in a continuous time environment.
Instead, we modify the double integrator so that the optimal choice of input depends on
state (a “spatially varying double integrator”). The dynamics are given by

ẋ =
d

dt

[
x1
x2

]
=

[
x2

cos(2πx1)u

]
= f(x, u)

with |u| ≤ 1. Note that the effect of the input varies considerably over the domain, and
the sign of the optimal input will switch every 0.5 units in the x1 direction. The safe
envelope is the interior of the rectangle [−4.5,+4.5] × [−2.0,+2.0], so S0 is everything
outside this rectangle. For the sampled data problem, we choose δ = 0.3 and N = 50
(which is empirically sufficient time for convergence). We choose sampled input set

U =
{
−1,−2

3 ,−
1
3 , 0,+

1
3 ,+

2
3 ,+1

}
.

Figure 5 shows the results for the above parameters. They were calculated on a grid of
size 201 × 101 using a fifth order accurate spatial and a third order accurate temporal
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Figure 6: The effect of δ on the spatial partition. Top: Traditional reachability with
continuous state feedback and measurable control signals (T = 4). Middle: Sampled data
with δ = 0.1, N = 40 (T = 4). Bottom: Sampled data with δ = 1.0, N = 24 (T = 24).

16



derivative approximation. Figure 6 shows results for the continuous time version, and also
for versions with δ = 0.1 and δ = 1.0. Notice that the continuous time version has a much
larger Sfree because it can always choose an input that generates deceleration. Furthermore,
Sctrl = S∞ in this case, because δ = 0. In contrast, as δ becomes large the envelope becomes
increasingly uncontrollable.

Figures 7 and 8 show some sample trajectories generated using the policy (22) with U→ctrl and

U↗ctrl respectively. For illustrative purposes the control was chosen to drive the trajectory
back toward Sctrl for x ∈ Sfree, and was chosen for U→ctrl to keep the trajectory as deeply
within Sctrl as possible, but other choices are available. In the bottom of each plot, notice
that the value of ψS∞ may decrease along a trajectory between samples, but if the trajectory
is in Sctrl (as indicated by the blue dots) at the sample time, then the value of ψS∞ does
not decrease at the subsequent sample time.

9 Conclusions and Future Work

We have adapted the sampled data reachability algorithm from Ding and Tomlin (2010) to
a safety maintenance / viability problem, and demonstrated how the algorithm computes a
conservative estimate of the sampled data backward reach tube. We have then demonstrated
how to synthesize a permissive but safe control policy from this calculation, which may have
applications in multi-objective or collaborative control problems. In the future we plan to
apply this scheme to more complex nonlinear and hybrid systems with disturbance inputs,
taking into account model, state, and discretization uncertainty.
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