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Abstract

We examine the convergence properties of a level set algorithm
designed to track evolving interfaces; in particular, its convergence
properies on a series of two and three dimensional backwards reach-
able sets whose flow fields involve kink formation (sharp features) and,
in some cases, rarefaction fans introduced by input parameters in the
dynamics. The chosen examples have analytic solutions to facilitate
the convergence analysis. We describe the error analysis method, the
formulation of reachability in terms of a Hamilton-Jacobi equation,
and our implementation of the level set method in some detail. In ad-
dition to the convergence analysis presented here, these techniques and
examples could be used to validate either other nonlinear reachability
algorithms or other level set implementations.
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Figure 1: Backwards and forwards reachable sets. In this report, we deal
only with the former.

1 Introduction

The backwards reachable set of a dynamic system is the set of states from
which trajectories start that can reach some given target set of states moving
under the system’s prescribed dynamics; for example, see figure 1. Calcu-
lating reachable sets for continuous dynamic systems is a challenge because
the sets involved contain an uncountable number of states. Furthermore,
existing algorithms for reachability are complex enough that their imple-
mentations must be carefully validated against known examples.

In this report we present a validation by convergence analysis of one such
algorithm—based on the Hamilton-Jacobi (HJ) partial differential equation
(PDE)—using an example in two dimensions and three examples in three di-
mensions. The first three examples involve simple constant dynamics while
the fourth is nonlinear. All the examples involve free input parameters that
give rise to kinks and, in the last two cases, rarefactions in the underlying
dynamics. Kinks are locations where characteristics (trajectories) of the
underlying dynamics collide; topologically they will appear as sharp edges
or points on the boundary of the reachable set, and from a PDE perspective
the derivative of the implicit surface function (which represents the reach-
able set) is discontinuous and so this function cannot solve the HJ PDE in
the classical sense. Rarefactions occur where characteristics are diverging.
Both features can pose serious challenges to Lagrangian front evolution algo-
rithms; for example, those that follow specific system trajectories. Level set
algorithms are designed to overcome these problems using an Eulerian (fixed
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grid) computation, and in this report we experimentally examine their effec-
tiveness. For more details on the connection between level sets and reachable
sets, see [17, 15, 16].

The reader should note, however, that the tests included here could be used
to assess the accuracy of any algorithm designed either to solve general
Hamilton-Jacobi partial differential equations, or to solve reachability prob-
lems for systems with both control and disturbance inputs. To help with this
process, two types of formulations are provided for each example: a reacha-
bility problem with nonlinear dynamics and a Hamilton-Jacobi formulation.
We also briefly explain how to convert between the two.

The second section explains our error analysis technique. The third and
fourth describe the theory and implementation respectively of a level set
algorithm for backwards reachability. The remaining sections describe the
examples and provide convergence results.

2 Error Analysis Method

The level set method [19] is used to compute the evolution of dynamic
surfaces by solving an HJ PDE over some full dimensional subset of the state
space near the evolving interface. The zero level set of the HJ PDE’s solution
is an implicit description of the dynamic surface’s boundary. Therefore, to
determine the effectiveness of the level set method in tracking a dynamic
surface, we are not interested in how accurately the HJ PDE is solved, but
rather in the accuracy of the location of the zero level set.

To measure how accurately a level set function represents a surface, we need
to have some “correct” representation of that surface. Many representations
are possible; for example, in much of the level set literature (such as [24, 21,
20]), error analysis proceeds by comparing the numerical HJ PDE solution
to an analytically determined implicit surface function (often the initial
conditions provide an appropriate analytic function if periodic dynamics are
used). Unfortunately, comparing two implicit surface functions is a rather
indirect way of analyzing the error in dynamic surface calculations, even if
one of those functions is known analytically.

Instead, we have chosen to represent the analytic solution of our examples
as marker particles lying on the surface of the reachable sets. Marker par-
ticles have a long history of use in surface representation problems (see, for
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example, [28, 22]), and their primary disadvantage—the difficulty of com-
puting and maintaining connectivity information—is irrelevant when they
are used for error analysis. We mention in passing that it is straightforward
to determine analytic implicit surface functions for the reachable sets of the
first three of our examples, but for the final example (collision avoidance)
we know of no analytic solutions other than the marker particle solutions
described in [13, 11].

Let us now turn to a mathematical description of our error analysis pro-
cedure for an implicit surface function v(x) : Rn → R which describes a
surface S = {x ∈ Rn | v(x) = 0}. We assume that in the neighborhood
of S, ‖Dxv(x)‖ > 0 so that there are no flat regions of v(x) near the sur-
face; ideally, |v(x)| should increase monotonically as we get further from the
surface. Most level set algorithms advocate regular reinitialization to keep
‖Dxv(x)‖ ≈ 1 [18, 24], and therefore the (ideal) assumption will hold.

The true surface is given as a collection of points C = {yi}M
i=1 where each

yi ∈ Rn. These points should be chosen to cover the surface evenly. To
assess the ability of the implicit surface to resolve sharp edges and corners
in the interface, we should make sure to include points in C that lie exactly
along these features. While the dimensionality of these features will mean
that the number of such points will be small compared with the total number
of points M and therefore their contribution to the average error may be
insignificant, they often identify the locations where the maximum error
occurs.

If the implicit surface function v(x) is correct, then v(yi) = 0 for all i. To
quantify the error, we simply evaluate |v(yi)|, and collect statistics on its
value over all the points in C; in particular, the maximum, average and root
mean square size of the values in the set {|v(yi)|}M

i=1. If v(x) is only known
numerically on a discrete grid, we interpolate the value v(yi). We use the
same set C for every grid size on a particular example, and try to choose M
large enough that even on the finest grid there are several points in C for
every grid cell near the interface.

Before proceeding to the next section, we briefly comment on the potential
error due to interpolation. In general, any numerically demonstrated con-
vergence rate will be limited to the smaller of the orders of accuracy of the
integration scheme and of the interpolation scheme. In the analysis that
follows, we use Matlab’s interpn command with a cubic interpolant, and
hence might expect to be able to show up to third order accuracy. However,
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third order accuracy for this interpolation scheme theoretically requires that
the function to be interpolated have continuous derivatives up to the third,
and a bounded fourth derivative. Unfortunately, in the neighborhood of
kinks, v(x) will have discontinuities in its first derivative, and therefore does
not meet this requirement. These discontinuities could cause large inter-
polation errors near the kinks. Backing off to linear interpolation would
reduce the chances of such large errors near the kinks, but would be unable
to show a convergence rate greater than first order. We have therefore cho-
sen to stick with Matlab’s cubic interpolation scheme so that we can at least
demonstrate superlinear convergence. We are not sure whether the failure
to show second order or higher convergence rates in many of the examples
is due to interpolation or integration error, but we are investigating alter-
native interpolation schemes that might be able to distinguish the two error
sources.

3 A Level Set Formulation for Backwards Reach-
able Sets

In this section we formally define the reachable set for a system and formu-
late a terminal value HJ PDE whose solution describes it. For more details,
see [14, 17].

We model our system with the ordinary differential equation

dx

dt
= ẋ = f(x, a, b), (1)

where x ∈ Rn is our state, a(·) is the input for player I and b(·) is the input
for player II.

Assumption 1. The input signals are drawn from the following sets

a(·) ∈ A(t) , {φ : [t, 0] → A|φ(·) is measurable}
b(·) ∈ B(t) , {φ : [t, 0] → B|φ(·) is measurable}

where A ⊂ Rna and B ⊂ Rnb are compact and t ∈ [−T, 0] for some T > 0.
We will consider input signals which agree almost everywhere to be identical.
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Assumption 2. The flow field f : Rn×A×B → Rn is uniformly continuous,
bounded, and Lipschitz continuous in x for fixed a and b. Consequently,
given a fixed a(·) ∈ A(t), b(·) ∈ B(t) and initial point, there exists a unique
trajectory solving (1).

Assumption 3. The target set G0 ⊂ Rn for our reachability problem is
closed and can be represented as the zero sublevel set of a bounded and
Lipschitz continuous function g : Rn → R

G0 = {x ∈ Rn | g(x) ≤ 0}. (2)

We assume that player I will try to steer the system away from the target
with her input a(·), and player II will try to steer the system towards the
target with her input b(·). For readers who prefer a more intuitive under-
standing of the inputs, consider that in our examples the target set will
represent the capture set in a pursuit-evasion game. Our control or evader
will then be player I and the pursuer or adversarial disturbance will be player
II.

In a general differential game setting, the information that each player knows
about the other’s decisions can play a major role in the game’s outcome. To
simplify the exposition in this report, we make an additional assumption
about the dynamics.

Assumption 4. The order of play in the differential game makes no differ-
ence in its outcome. Mathematically,

max
a∈A

min
b∈B

f(x, a, b) = min
b∈B

max
a∈A

f(x, a, b) (3)

for all x ∈ Rn.

Under this assumption, we need not delve too deeply into information pat-
terns; for readers interested in more details, see [17, 3, 2]. Important classes
of systems that satisfy (3) are those whose dynamics take any of the forms

ẋ = f(x, a),
ẋ = f(x, b),
ẋ = f1(x, a) + f2(x, b).

The first two are not games at all, and the final case is called separable.
The examples in sections 5 and 6 correspond to the first case, while those
in sections 7 and 8 are separable.
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Note that in our formulation of the problem, a trajectory starts at some
initial time t < 0 and we would like to know if it has passed into or through
the target set by time zero. We will sometimes want to discuss the length
of time that a trajectory has had to evolve; we adopt the differential game
notation τ = −t to denote this positive quantity.

To solve the backwards reachability problem, we want to determine the
backwards reachable set G(τ) for τ ∈ [0, T ]. Informally, G(τ) is the set of
states from which there exists input signals for player II that for all input
signals of player I will generate trajectories which lead to the target set
within time τ . Unfortunately, a formal definition of the backwards reachable
set in a two player differential game setting requires introducing a formal
concept of strategies, since both players should be allowed to respond to the
evolution of the system. Such details are beyond the scope of this report,
since they are tangential to the goal of analyzing the accuracy of numerical
approximations of the reachable set. Readers interested in the details are
referred to [14, 17].

The reachable set can be determined by solving for the viscosity solution of
a time-dependent Hamilton-Jacobi equation.

Theorem 1. Let v : Rn × [−T, 0] → R be the viscosity solution of the
terminal value HJ PDE

Dtv(x, t) + min[0,H(x,Dxv(x, t))] = 0, for t ∈ [−T, 0], x ∈ Rn;
v(x, 0) = g(x), for x ∈ Rn;

(4)

where
H(x, p) = max

a∈A
min
b∈B

pT f(x, a, b). (5)

The zero sublevel set of v describes G(τ)

G(τ) = {x ∈ Rn | v(x, t) ≤ 0}.

The significance of this theorem is that we can harness well developed nu-
merical schemes from the level set literature to compute accurate approxi-
mations of v(x, t), and therefore accurate approximations of G(τ), for even
complicated nonlinear dynamics. For a proof of this theorem, see [14]. A
completely different proof of the single player version of this theorem was
developed in [10]. We also note that this theorem works for systems which
do not satisfy assumption 4, although the definition of reachable set must

7



suitably reflect the information pattern in those games where the pattern
matters.

In previous papers we have presented alternative HJ PDE formulations for
computing the backwards reachable set. In [27], the Hamiltonian was re-
stricted to negative values only within the target set; unfortunately, the
resulting potential for discontinuities in the solution makes accurate nu-
merical implementation difficult. In [16], minimization was performed as a
separate, postprocessing step. While this formulation is more efficient, it is
more difficult to reason about and may produce incorrect results when the
Hamiltonian and/or target set are nonconvex. Consequently, we advocate
using the formulation in Theorem 1 for determining reachable sets.

4 Implementing a Level Set Algorithm

Nonlinear PDEs such as the HJ PDE (4) exhibit a number of properties
that make their solutions difficult to determine either analytically or nu-
merically; for example, even with smooth initial conditions g(x) and flow
field f(x, a, b), the solution of (4) can develop kinks—locations where the
derivatives become discontinuous—in finite time. However, since HJ PDEs
describe a number of important physical processes, techniques have been
developed to find numeric approximations of their solutions. In this section,
we review those techniques. Readers familiar with level set algorithms may
wish to skip directly to the examples.

Because of the presence of kinks, (4) usually does not have a solution in the
classical sense. Instead, we seek the unique, continuous viscosity solution
as defined in [6]. A family of algorithms called level set methods have been
designed specifically to compute approximations to the viscosity solution for
time-dependent HJ PDEs with continuous initial conditions and Hamilto-
nians such as (4). In this section we examine the details of adapting level
set methods to the approximation of reachable sets. We assume through-
out that the human modeler provides a way of computing the optimization
over inputs a and b necessary to compute H(x, p) in (5), and therefore we
concentrate on numerically determining the zero level set of the solution v
to (4).
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4.1 The Numerical Scheme

The goal of our implementation is to compute with as much accuracy as
possible an implicit surface function for the boundary of the reachable set.
The accuracy of the derivative approximations described below is measured
in terms of the order of their local truncation errors: on a grid with spacing
∆x, an order r method for approximating a function u with a numerically
computed û has error ‖u− û‖ = O(∆xr). In general, we will call any scheme
with order two or greater (r ≥ 2) a high order scheme.

Because our state space is Rn, we compute an approximation of the value of
v(x, t) at the nodes of a fixed Cartesian grid in Rn× [T, 0]. Within (4), there
are three terms that must be evaluated: the spatial derivative Dxv(x, t), the
Hamiltonian H(x, p) and the time derivative Dtv(x, t). One of the appealing
properties of level set methods is that we can separately choose techniques
for approximating each of these terms at each node using values of v at the
node and its neighbors.

Spatial Derivative: Traditional finite difference approximations of order r
for the spatial derivative of a function represented on a grid assume that the
function and at least its first r − 1 derivatives are continuous. Clearly this
property will not hold in the presence of the kinks in v(x, t). Nevertheless,
convergent numerical approximations of Dxv(x, t) were developed shortly
after viscosity solutions were first proposed [7]. In our code, we use either
a basic first order accurate scheme [19, 24] or a weighted, essentially non-
oscillatory fifth order accurate approximation [20, 18].

A key feature of all of these schemes is their use of directional approxima-
tions. Consider approximating Dxv(x, t) for x ∈ R (so n = 1). At a grid
point xi, there exists a left approximation D−

x v and a right approximation
D+

x v; the usual first order accurate version would be

D−
x v(xi, t) =

v(xi, t)− v(xi−1, t)
xi − xi−1

,

D+
x v(xi, t) =

v(xi+1, t)− v(xi, t)
xi+1 − xi

.

Achieving higher order accuracy requires the use of values from more than
a grid point’s immediate neighbors and, as mentioned above, assumes con-
tinuity of higher derivatives. The assumption will fail near kinks, and as a
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result the solution will become oscillatory and unstable. Essentially non-
oscillatory (ENO) schemes compute several different approximations to the
left and right, and then choose to use only the least oscillatory. A weighted
essentially non-oscillatory (WENO) scheme takes advantage of all the ap-
proximations in smooth regions of the solution to increase the order of ac-
curacy, but reverts to ENO near kinks. Our fifth order accurate WENO
scheme uses three neighbors on each side to compute a node’s left and right
approximations to Dxv(x, t). Extension to multidimensional spaces (n > 1)
is conceptually trivial, since the approximation ofDxv(x, t) can be computed
separately for each dimension.

It should be noted that none of these finite difference schemes is likely to
achieve better than first order accuracy in the immediate vicinity of a kink,
because the first derivative does not exist at such a point. The added com-
plexity of the schemes adds accuracy only away from these points; a property
which is sometimes called high resolution to distinguish it from true high
order accuracy. In the examples that follow, we will see that high resolution
methods like WENO are worth the added complexity because the fully first
order accurate schemes show significant failures on reachable sets with sharp
features.

Hamiltonian: In general, we use the well studied Lax-Friedrichs (LF)
approximation

Ĥ(x, p+, p−) , H
(
x, p−+p+

2

)
− 1

2α
T (p+ − p−), (6)

where p+ and p− are respectively the right and left approximations of p
and H(x, p) is given by (5). The second term in this approximation is a
high order numerical dissipation added to damp out spurious oscillations in
the solution. The components of the vector α ∈ Rn depend on the partial
derivatives of H with respect to its second argument

αi = max
p∈I

∣∣∣∣∂H∂pi

∣∣∣∣ (7)

where I is a hypercube containing all the values that the vector p takes on
over the computational domain (see [20] for details). We can understand
this dissipative term as being analogous to the Laplacian term ε∆v in the
vanishing viscosity versionDtv+H(x,Dxv) = ε∆v of the HJ PDE. Too much
dissipation will excessively smooth the approximate solution (rounding off
what should be sharp corners in the reachable set), while too little will lead
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to numerical instability. The amount chosen by (7) is sufficient to guarantee
stability and experimentally appears not to be overly dissipative.

For some of the examples studied below, it is possible to determine from the
dynamics f(x, a, b) and the terminal conditions g(x) optimal input feedback
policies a(x) : Rn → A and b(x) : Rn → B∗ before beginning computations,
and hence derive a constant convective flow field ẋ = f(x) = f(x, a(x), b(x)).
For purely convective systems, a less dissipative approximation of the Hamil-
tonian uses only upwind derivatives [18]

Ĥ(x, p+, p−) , H(x, p∗), (8)

where the upwind costate vector p∗ ∈ Rn is defined componentwise

p∗i =


p+

i , if fi(x) < 0;
p−i , if fi(x) > 0;
0, otherwise.

Because (8) contains no dissipative term like the α term in (6), we are
more likely to be able to resolve sharp features of reachable sets using the
upwind Hamiltonian. Unfortunately, we can only use (8) when the upwind
direction is well defined, as is the case in purely convective flows. We are
currently investigating other numerical Hamiltonians—such as Local Lax-
Friedrichs and Roe with entropy fix [20]—whose generality and dissipation
fall somewhere between those of (6) and (8).

Time Derivative: We appeal to the method of lines to treat the time
derivative of (4). From (6) or (8) we can determine Ĥ at any node, and so
we can treat the value of v at that node as the solution to the Ordinary Dif-
ferential Equation (ODE) Dtv+min[0, Ĥ] = 0. Among the many numerical
ODE solvers that exist, the explict Runge-Kutta (RK) schemes are particu-
larly easy to implement. Like any explicit solver for time-dependent PDEs,
the timestep ∆t that can be taken by our RK integrator is restricted by the
Courant-Friedrichs-Lewy (CFL) condition to be some flow speed dependent
multiple of the spatial grid size ∆x. In fact, applying standard RK schemes
to the solution of HJ PDEs will lead to instability unless ∆t is proportional
to ∆x2, a restriction that would greatly increase computational cost for a

∗Such feedback policies cannot be determined in advance for most systems, because
the optimal inputs in (5) depend on the costate p. In these isolated examples, the costate
evolves in predictable ways from the terminal conditions and we can thus find feedback
policies that satisfy the assumptions placed on the inputs.
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fixed time interval [−T, 0]. Therefore, we use Total Variation Diminishing
(TVD) RK schemes [25, 18], which will not introduce oscillations into the
solution when ∆t is proportional to ∆x. We have implemented first (which
is just forward Euler), second and third order accurate TVD RK schemes.
Because of the CFL condition, the timestep is usually much smaller than
the grid spacing; consequently, it is possible to use less accurate methods in
time than in space without a noticable degradation in solution quality.

4.2 Practical Details

After the numerical scheme is chosen, a number of practical details must
be determined in order to produce reasonable approximations to reachable
sets.

Initial Conditions: We assume that the modeler can provide a signed
distance function representation g(x) for G0. For many basic geometric
shapes, such a function can be constructed manually. A sphere of radius r
is given by g(x) = ‖x‖2 − r. The halfspace defined by a plane with outward
normal n̂ passing through point q is g(x) = n̂T (x − q). Signed distance
functions for a torus (section 6.1) and a cylinder (section 8.1) are given in
the examples below.

To progress from basic to constructive geometry, we use the negation, min-
imum and maximum operators to create approximate signed distance func-
tions for complements, unions and intersections respectively. For example, if
sets G1 and G2 are represented by signed distance functions g1(x) and g2(x)
then

G3 = G{
1 is represented by g3(x) = −g1(x),

G4 = G1 ∪ G2 is represented by g4(x) = min[g1(x), g2(x)],
G5 = G1 ∩ G2 is represented by g5(x) = max[g1(x), g2(x)],
G6 = G1\G2 is represented by g6(x) = max[g1(x),−g2(x)].

While the resulting functions are only approximately signed distance, they
can be turned into true signed distance functions by applying reinitialization
to them (see below).

Boundary Conditions: The HJ PDE (4) that we are trying to solve is
defined over all of Rn, and hence has no physical boundary. Unfortunately,
we can numerically approximate the solution only on a finite domain, so we
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must introduce boundaries and enforce some form of boundary conditions.
For periodic dimensions we choose our computational domain to include one
complete period and enforce periodic boundary conditions; for example, the
relative heading x3 in section 8.

For nonperiodic dimensions, our goal is to keep any artificially enforced
boundary conditions from degrading the accuracy of our reachable set ap-
proximation. The first step in achieving this goal is to keep the reachable
set’s boundary away from the boundary of the computational domain. Un-
fortunately, unless the boundary conditions are chosen carefully, they can
introduce oscillations that destroy accuracy everywhere. To avoid this prob-
lem, we implement linear extrapolation away from zero along the boundary
of our computational domain [18]. The simple idea is to linearly extrapolate
the values of the level set function at grid cells beyond the computational
domain. However, we do not want this extrapolation to imply a nonexistant
zero level set interface lying somewhere beyond the domain. Consequently,
we make sure that the slope of the linear extrapolation always points away
from the zero level set. Consider the case in one dimension where we wish
to determine a value for a node x0 lying outside the computational domain
next to real nodes x1 and x2. The extrapolation is then

v(x0) = v(x1) + sign(v(x1))|v(x1)− v(x2)|.

The combination of signum and absolute value functions guarantees that
if the computational domain’s boundary is outside the reachable set, then
the level set function will increase in value in directions leading outside the
domain. The converse would be true if the domain’s boundary was inside
the reachable set, although this case does not occur in the examples below.
In the case v(x1) > 0, this choice is mathematically equivalent to

v(x0) = max(2v(x1)− v(x2), v(x2)),

which gives some intuition about why this scheme does not introduce spu-
rious oscillations (use min instead of max if v(x1) < 0). Experimentally we
have determined that this choice of boundary condition remains stable even
on inflow boundaries, whereas regular linear extrapolation frequently does
not.

Reinitialization: Level set authorities often discuss the advantages of
having a signed distance function (‖Dxv‖ = 1) instead of merely an implicit
surface function representation of the interface being tracked [18, 24]. How-
ever, even if the modeler provides a signed distance function for the terminal
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conditions g(x), evolution according to (4) can quickly distort the level set
function by causing its gradient to become steep in some regions and shal-
low in others. When the gradient becomes very steep or very shallow, the
quality of gradient approximations can degrade, which in turn reduces the
accuracy of the level set scheme. In order to avoid this outcome, we can
periodically halt the regular computation in our algorithm and reconstruct
a proper signed distance respresentation of the level set function, a process
called reinitialization.

When computing the evolution of an interface with a level set method, reini-
tialization is justified because we are only interested in the location of the
zero level set of the level set function v. Therefore, we can modify its value
away from this level set as much as necessary to ensure that ‖Dxv‖ = 1.
The two most commonly quoted disadvantages of reinitialization are its
added computational cost and the fact that in practice it will inevitably
cause slight perturbations of the zero level set. An additional disadvantage
arises in reachability applications if the value of the implicit surface function
has meaning away from the zero level set. For example, in the soft walls
project [9], we are designing controllers to keep systems from entering the
backwards reachable set [4]. These controllers make use of gradient and
value information from the true solution to (4); information that would be
corrupted by reinitialization.

Consequently, the decision whether to reinitialize or not will depend on the
level set algorithm used, the complexity of the system dynamics and the goal
of the reachability analysis. For the examples discussed in the remainder
of this report, we found that reinitialization was unnecessary when running
our dense level set algorithm in Matlab. On the other hand, the localized
algorithm discussed below and running in our C++ implementation requires
regular reinitialization. Since it may be useful for some problems, we briefly
discuss reinitialization procedures.

Because of its wide use in level set methods, several different techniques
for reinitialization have been developed (see, for example, [5, 24, 18]). At
various times, we have used two distinct methods. For low order accurate
but fast reinitialization, we use fast marching methods (FMM) [29, 23].
These schemes are first order accurate, but need to visit each reinitialized
grid point only once when building the signed distance function. However,
starting an FMM sweep can be a challenge, because nodes adjacent to the
interface must have known values (often requiring explicit construction of
the interface).
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The second reinitialization method executes a few discrete timesteps of a
solver for the PDE [26, 8]

Dt̃ṽ(x, t̃) = sign(ṽ(x, t̃))(1− ‖Dxṽ(x, t̃)‖),
ṽ(x, 0) = v(x, t).

(9)

Note that this PDE is run in an auxiliary timeframe t̃. If it were run to
convergence, then ‖Dxṽ‖ = 1, but in practice we run one to ten discrete
timesteps to some t̃f , and then reset v(x, t) = ṽ(x, t̃f ) to get ‖Dxv‖ ≈ 1.
Analytically, sign(ṽ) = 0 on the zero level set of v, and so that level set
should never move. In practice, we need to use a smoothed sign function,
such as

sign(v) =
v√

v2 + ∆x2
,

to avoid moving the zero level set too much. The advantages of this scheme
are that it can be started directly from the current implicit surface function
v, and that we can use high resolution techniques to approximate the gradi-
ent and time derivative and thereby achieve increased accuracy. A fast but
accurate Gudonov solver for (9) is available [8, section A.3], so there is no
need to use a dissipative Lax-Friedrichs approximation. The disadvantage
of this scheme is its speed, which can be considerably slower than an FMM
when high resolution approximations are employed.
Localizing Computation: The HJ PDE (4) describes the evolution of v
in all of Rn; however, in some cases we are only interested in its zero level
set. Consequently, we can restrict our effort to grid nodes near the boundary
between positive and negative values of v. In the level set literature this idea
has been variously called local level set [21] or narrowbanding [5, 1]. We have
implemented a new variant of this method in the C++ version of our code,
and typically restrict our effort to within three to six nodes on each side of
the interface.
Because the boundary of the reachable set is of one dimension less than the
state space, considerable savings are available for two and three dimensional
problems. If the number of nodes in each dimension is n (proportional to
∆x−1) and the dimension d, the total number of nodes is O(nd); the CFL
condition on timestep means that total computational cost for a fixed time
interval [T, 0] is O(nd+1). With local level sets, we reduce computational
costs back down to O(nd), and we have seen this cost behavior experimen-
tally. The disadvantages to this scheme include the need for reinitialization
(typically 25%–50% of execution time) and the lack of values for the level
set function away from the interface; values which could be useful in some
applications.
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4.3 Example Run Details

The computations performed to calculate the reachable sets in the exam-
ples below share some common features. The “high order” algorithm uses
the WENO spatial derivative approximation and third order TVD RK in
time, while the “low order” algorithm uses first order spatial and time ap-
proximations. When choosing timestep size, we conservatively took a CFL
number of 0.5, meaning that we took steps half as large as the CFL restric-
tion suggests would be stable. The results section of each example specifies
whether the Lax-Friedrichs (6) or upwinded (8) numerical Hamiltonian was
used. The initial conditions in every example can be determined analyti-
cally. The computational domain is chosen to contain the final backwards
reachable set (as given by the analytically determined C) plus some buffer
space, and linear extrapolation away from zero is used to enforce boundary
conditions in every nonperiodic dimension. Since the time to convergence
of the reachable set τmax is known for every example, we solve the HJ PDE
out to some small multiple (typically 1.1) of τmax rather than rely on a nu-
merical convergence test which might produce different stopping times for
different grid resolutions. We solve the PDE over the entire computational
domain at each timestep, and perform no reinitializations during the run.

The previous comments apply to our Matlab implementation, which was
used for all of the examples except where noted. Our C++ implementation
currently features a WENO spatial derivative approximation, second order
accurate TVD RK, a CFL number of 0.9, localized computation and exten-
sive reinitialization after every timestep. We are in the process of rebuilding
this version to increase its flexibility.

5 The Ice-Cream Cone in Two Dimensions

We start with a two dimensional example featuring a single kink in order to
demonstrate the technique in a simple setting.
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Figure 2: The ice-cream cone. The dashed portion of the circle is that part
of the target which is not on the boundary of the reachable set

5.1 The Problem

The dynamics are
d

dt

[
x1

x2

]
= f(x, a) =

[
a
−γ

]
,

where γ ≥ 0 is a constant and scalar input a ∈ A = [−α,+α] is used to
steer the system away from the target set

G0 = {x ∈ R2 | ‖x‖2 ≤ r},

which is a circle of radius r centered at the origin. Converting into Hamilton-
Jacobi form, the terminal condition function is

g(x) =
√
x2

1 + x2
2 − r,

and the Hamiltonian is

H(x, p) = max
a∈A

[
pT f(x, a)

]
,

= max
a∈[−α,+α]

[p1a+ p2(−γ)] ,

= α|p1| − γp2.

(10)

The resulting reachable set, shown in figure 2 is an inverted ice-cream cone,
with the target set at the bottom and an inverted cone on the top. Defining
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η1, η2, q(1) and q(2) as in figure 2, we can trigonometrically determine

tan η1 =
α

γ
, η2 =

π

2
− η1,

q(1) =
[

0
r

sin η1

]
=
r
√
α2 + γ2

α

[
0
1

]
,

q(2) =
[
r sin(π/2− η2)
r cos(π/2− η2)

]
=

r√
α2 + γ2

[
α
γ

]
,

From r, q(1), q(2) and the point symmetric to q2 on the other side of the
circle, it is straightforward to generate a collection of points lying on the
surface of the reachable set. It is also easy to show that the reachable set
converges in the time it takes a trajectory to go from a point at the top
of the target circle to the tip of the cone q1. Letting τmax be the time to
convergence

τmax = q
(1)
2 − r = r

(√
1 + γ2

α2 − 1
)
. (11)

For these dynamics and this particular terminal condition, we can generate
an equivalent constant flow field. Let ẋi = fi(x) where

f1(x) =


+α, x1 > 0 and x2 > q

(2)
2 ;

−α, x1 < 0 and x2 > q
(2)
2 ;

0, x1 = 0 or x2 ≤ q
(2)
2 .

f2(x) =

{
−1, x2 > q

(2)
2 ;

0, x2 ≤ q
(2)
2 .

(12)

The problem as described contains an obvious directional bias, since the kink
in the horizontal direction lines up with the x2 axis. This alignment leads
to a suspicious level of accuracy for the algorithm, especially in maximum
error. To make the results more general, we solve the system in a coordinate
frame z ∈ R2 rotated counterclockwise by angle µ

z = R(µ)x,

R(µ) =
[

cosµ sinµ
− sinµ cosµ

]
.
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Figure 3: Level set solution (solid line) and M = 76 points in C (stars).
The level set was calculated on the coarsest grid N = 50 (shown as gray
dots). Left: entire grid. Right: zoomed view of kink point in reachable set,
showing the location of greatest error.

5.2 The Results

We solve the ice-cream cone example in rotated coordinates for µ = −π/3
on an uniform Euclidean grid covering the domain [−0.75,+1.25]2. Figure 3
shows the results on the coarsest grid in comparison with a very sparse
C. The error analyses below are performed with a C of size M = 4030
(corresponding to an approximate point spacing of 0.001 along the boundary
of the reachable set).

Because it is easier to code and quicker to run, we calculate the backwards
reachable set using an appropriately rotated version of the constant flow
field (12) rather than the equivalent Hamiltonian (10). In later versions of
this report, we intend to analyze the effect of this choice.

Figure 4 shows the results for grid sizes ranging from N = 50 to N = 800.
Both the low order accurate and high order accurate schemes were tested.
To get a qualitative feel for convergence rate, lines equivalent to first and
second order accuracy are shown. Since only the slopes of these lines matter,
they were arbitrarily aligned vertically with the average error of the high
order scheme on the coarsest grid.

From this plot we can see that for this example the algorithm is somewhere
between first and second order accurate in average and root mean square
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Figure 4: Experimental convergence rates for the two dimensional ice-cream
cone example. Average (2), root mean square (O) and maximum (×) errors
for the high order accurate algorithm (solid lines) and low order accurate
algorithm (dashed lines) are shown. For comparison the grid cell spacing
∆x (◦) is included, as are lines equivalent to first order (upper dotted line)
and second order (lower dotted line) convergence rates.
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Grid Size N
norm type scale 50 100 200 400 800

1 error 10−4 3.267 0.867 0.221 0.067 0.023
ratio 1 3.77 3.92 3.28 2.94
/ ∆x 10−2 0.817 0.433 0.221 0.135 0.092

2 error 10−4 8.602 3.184 0.882 0.395 0.163
ratio 1 2.70 3.61 2.23 2.43
/ ∆x 10−2 2.151 1.592 0.882 0.789 0.651

∞ error 10−3 9.034 6.043 2.014 1.201 0.760
ratio 1 1.50 3.00 1.68 1.58
/ ∆x 1 0.226 0.302 0.201 0.240 0.304

Table 1: Quantitative error for various grid sizes on the ice-cream cone
example, using the high order accurate algorithm. The “ratio” rows show
the convergence rate (first order would have ratio 2, second order would
have ratio 4). The “/∆x” rows show error size as a fraction of grid cell size.

error, and nearly first order accurate in maximum error. Equally important,
the maximum error is significantly smaller than a grid cell, and the average
error is less than 1% of a grid cell. There is little difference between the high
order and low order algorithms, so in this case the much faster low order
algorithm would be sufficient. We shall see that this fact is not true for more
challenging examples in three dimensions. Table 1 shows the error numbers
quantitatively for the high order accurate algorithm on selected grid sizes.
Notice that the grid size doubles between columns, so a first order accurate
algorithm would have ratio 2 and a second order accurate algorithm would
have ratio 4.

All error interpolation in this report is performed using Matlab’s interpn
command, generally with the cubic option. Figure 5 compares the difference
in error for the high order accurate level set scheme using either the cubic
option (solid lines) or the linear option (dashed lines). If it is operating
properly, the cubic scheme should show a significantly different convergence
rate that the linear scheme. The fact that the two schemes show nearly
the same convergence rate leads us to believe that the cubic interpolation
scheme is having trouble with the kinked solution. Although we omit this
interpolation comparison for the remaining examples, the results are similar.
Hence, we are seeking a more suitable interpolation scheme in the hopes of
showing higher order accuracy.
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Figure 5: Comparing error for cubic error interpolation (solid lines) and
linear error interpolation (dashed lines) for the ice-cream cone example.

6 The Ice-Cream Cone Torus in Three Dimensions

We extend the two dimensional ice-cream cone into three dimensions. The
boundary of the two dimensional version already features curves, straight
lines, and sharp points to challenge the accuracy of a level set implemen-
tation. In our extension to three dimensions we add a hole and a two
dimensional kink curve (which is not grid aligned). Although this example
does not include a sharp point, the next does.

6.1 The Problem

To define the dynamics, we transform the coordinates x ∈ R3 into cylindrical
coordinates

z =

zρzθ
z3

 =

 √(x2
1 + x2

2)
tan−1(x2/x1)

x3

 ∈ R+ × [0, 2π[×R , S.
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We then apply a cylindrically symmetric version of the ice-cream cone ex-
ample

d

dt

zρzθ
z3

 = f(z, a) =

 a
0
−γ

 ,
where γ ≥ 0 is a constant and scalar input a ∈ A = [−α,+α] is used to
steer the system away from the target set

G0 =
{
z ∈ S

∣∣∣∣ √(zρ − d)2 + z2
3 ≤ r

}
,

which is a torus with radius d and cross sectional radius r, centered at the
origin and lying in the x3 = 0 plane. Converting into Hamilton-Jacobi form,
the terminal condition function is

g(z) =
√

(zρ − d)2 + z2
3 − r,

and the Hamiltonian is

H(z, p) = max
a∈A

[
pT f(z, a)

]
,

= max
z∈[−α,+α]

[pρa+ p3(−γ)] ,

= α|pρ| − γp3.

To visualize the resulting reachable set, shift the two dimensional ice-cream
cone d units to the right horizontally, and then rotate it about the vertical
axis to form a three dimensional shape. The point kink at the top of the two
dimensional reachable set becomes a circular kink in the three dimensional
set.

In a manner similar to the previous example, we can generate an equivalent
constant flow field for these dynamics and this particular terminal condition.

fρ =


+α, zρ > d and z3 > q

(2)
3 ;

−α, zρ < d and z3 > q
(2)
3 ;

0, zρ = d or z3 ≤ q
(2)
3 .

fθ = 0.

f3 =

{
−1, z3 > q

(2)
3 ;

0, z3 ≤ q
(2)
3 .

(13)
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Figure 6: Left: target set (solid donut) and backwards reachable set (trans-
parent) for the ice-cream cone torus in three dimensions on the N = 159
grid. Right: backwards reachable set (solid) and M = 1020 points in C
(dots).

where the point q(2)
3 is the vertical coordinate of the point q(2) defined as in

the previous section (adjusted for the cylindrical coordinate system)

q(2) =

d0
0

+
r√

α2 + γ2

α0
γ

 .
The time of convergence τmax is exactly that given in (11).

Because the kink of this example is already a circle and hence cannot be
aligned with the computational Euclidean grid, we do not bother to rotate
the dynamics.

6.2 The Results

We solve the ice-cream torus example on a uniform Euclidean grid covering
the domain [−1,+1]2 × [−0.75,+1.25]. Figure 6 shows the target set and
backwards reachable set on the finest grid, in comparison with a very sparse
C. The error analyses below are performed with a C of size M = 482880
(corresponding to an approximate point spacing of 0.005 along the boundary
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Figure 7: Experimental convergence rates for the three dimensional ice-
cream torus example. Average (2), root mean square (O) and maximum
(×) errors for the high order accurate algorithm (solid lines) and low order
accurate algorithm (dashed lines) are shown. For comparison the grid cell
spacing ∆x (◦) is included, as are lines equivalent to first order (upper dotted
line) and second order (lower dotted line) convergence rates.
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Grid Size N
norm type scale 50 63 79 100 126 159

1 error 10−4 4.975 3.016 1.957 1.276 0.827 0.518
ratio 1 1.65 1.54 1.53 1.54 1.60
/ ∆x 10−2 1.244 0.950 0.773 0.638 0.521 0.412

2 error 10−4 10.940 6.750 4.774 3.525 2.608 1.718
ratio 1 1.62 1.41 1.35 1.35 1.52
/ ∆x 10−2 2.735 2.126 1.886 1.763 1.643 1.366

∞ error 10−3 12.818 9.634 7.908 6.410 5.220 4.070
ratio 1 1.33 1.22 1.23 1.23 1.28
/ ∆x 1 0.320 0.303 0.312 0.321 0.329 0.324

Table 2: Quantitative error for various grid sizes on the ice-cream torus
example, using the high order accurate algorithm. The “ratio” rows show
the convergence rate (first order would have ratio 1.26, second order would
have ratio 1.59). The “/∆x” rows show error size as a fraction of grid cell
size.

of the reachable set). We calculate the backwards reachable set using the
constant flow field (13).

Figure 7 shows the results for grid sizes ranging from N = 50 to N =
200. The physical memory of our machine (1 MB) was unable to solve this
problem with the high order accurate scheme for grids larger than 1593, and
with the low order accurate scheme for grids larger than 2003.

From this plot we can see that for this example the algorithm is second order
accurate in average error, somewhere between first and second order accurate
in root mean square error, and slightly better than first order accurate in
maximum error. The maximum error is significantly smaller than a grid
cell, and the average error is 1% or less of a grid cell. The main difference
between the results of this example and those of the last is the noticeably
degraded accuracy of the low order scheme in average and root mean square
error; however, the maximum errors of the two schemes are similar. Since
the low order scheme is much faster, the choice of scheme would depend on
which type of error is more significant to the application. Table 2 shows the
error numbers quantitatively for the high order accurate algorithm.
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7 The Axe

The previous two examples contained kink formation, but no rarefaction
regions. In this section, we consider a backwards reachable set which looks
like an axe head† and is formed by a flow field that is converging in one
dimension while diverging in another. The resulting reachable set contains
not only a kink line (the axe’s edge), but also two sharp points (the top and
bottom of the axe’s edge) to confound our interface algorithm.

7.1 The Problem

The dynamics are straightforward

d

dt

x1

x2

x3

 = f(x, a) =

−1
a
b

 ,
where scalar input a ∈ A = [−α,+α] is used to steer the system away
from the target set G0 and scalar input b ∈ B = [−β,+β] is used to steer
the system towards G0. In order to make it easy to compute points on the
surface of the reachable set, G0 is chosen to be a six sided polyhedron with
a trapezoidal projection into the x1–x3 plane and a rectangular projection
into the x1–x2 plane. The eight corners of G0 are given by

q(1) =

x1

x2

x3

 q(2) =

x1

x2

x3

 q(3) =

x1

x2

x3

 q(4) =

x1

x2

x3


q(5) =

x1

x2

x
3

 q(6) =

x1

x2

x
3

 q(7) =

x1

x2

x3

 q(8) =

x1

x2

x3


where xi and xi are problem parameters specifying the size of the target set
and

x
3

= x3 − β(x1 − x1) x3 = x3 + β(x1 − x2)

are chosen to make C easy to find. From {q(i)}8
i=1, it is easy to find planes

describing the six faces of G0. Since G0 is the intersection of the six halfs-
paces defined by these planes, the terminal condition function g(x) can be

†In the spirit of the now century old Stanford-Berkeley cross bay rivalry.
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constructed by taking the maximum of the (simple to evaluate) implicit sur-
face functions for each of these halfspaces. We omit the algebraic details of
this process. The Hamiltonian is

H(x, p) = max
a∈A

min
b∈B

[
pT f(x, a)

]
,

= max
a∈[−α,+α]

min
b∈[−β,+β]

[p1(−1) + p2a+ p3b] ,

= −p1 + α|p2| − β|p3|.

(14)

There is a constant flow field equivalent to this target set and Hamiltonian
combination, but we do not derive its rather complicated form here.

To visualize the resulting reachable set, take the target polygon G0 and
attach a four sided polygon to its largest rectangular face (the face whose
corners are {q(i)}8

i=5). The initial polygon forms the back side of the axe,
while the second polygon is the blade and edge. This second polygon has
two trapezoidal faces which form the sides of the blade and meet at the axe’s
edge. The other two faces of this polygon are triangular, with bases running
along G0 and the tips forming the sharp points at the top and bottom of the
axe’s edge. These triangular faces have the same normal as the sloped faces
of G0.

In forming C, it is easy to find points on the five faces of G0 that are also part
of the reachable set. To find points on the blade portion of the reachable
set, it suffices to know {q(i)}8

i=5 and the additional two points at the top
and bottom of the axe’s edge

q(9) =

x1 + 1
2α(x2 − x2)

1
2(x2 + x2)

x
3
− β

2α(x2 − x2)

 q(10) =

x1 + 1
2α(x2 − x2)

1
2(x2 + x2)

x3 + β
2α(x2 − x2)


It is also straightforward to determine that the convergence time τmax =
1
2α(x2 − x2).

The backwards reachable set as described above contains many axis aligned
features. To make our convergence analysis more general, we solve the
problem in the rotated coordinate frame z = R2(µ2)R3(µ3)x ∈ R3, where
Ri(µi) rotates by angle µi counterclockwise about the ith coordinate axis
with the linear transforms

R2(µ2) =

 cosµ2 0 sinµ2

0 1 0
− sinµ2 0 cosµ2

 , R3(µ3) =

 cosµ3 sinµ3 0
− sinµ3 cosµ3 0

0 0 1

 .
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Figure 8: Left: target set (solid polygon) and backwards reachable set
(transparent) for the axe example on the N = 159 grid. Right: backwards
reachable set (solid) and M = 912 points in C (dots).

7.2 The Results

We solve the axe example on a Euclidean grid covering the domain

[−1.20,+1.50]× [−1.45,+1.15]× [−1.15,+1.65].

For grid size N , there are d(2.7/2.8)(N+1)e grid points in the z1 dimension,
d(2.6/2.8)(N + 1)e grid points in the z2 dimension, and (N + 1) grid points
in the z3 dimension (to get approximately equal ∆z in all three dimensions).
The parameters for the example were chosen as

x =

−0.5
−0.8
−0.3

 α = 1.0 ρ2 = +
π

6

x =

+0.5
+0.8
+0.3

 β = 0.5 ρ3 = −π
3

Figure 8 shows the target set and backwards reachable set on the finest
grid, in comparison with a very sparse C. The error analyses below are
performed with a C of size M = 430046 (corresponding to an approximate
point spacing of 0.005 along the boundary of the reachable set). We calculate
the backwards reachable set from the general Hamiltonian (14).
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Figure 9: Experimental convergence rates for the axe example. Average (2),
root mean square (O) and maximum (×) errors for the high order accurate
algorithm (solid lines) and low order accurate algorithm (dashed lines) are
shown. For comparison the grid cell spacing ∆x (◦) is included, as are lines
equivalent to first order (upper dotted line) and second order (lower dotted
line) convergence rates.
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Grid Size N
norm type scale 50 63 79 100 126 159

1 error 10−3 1.835 1.394 0.973 0.657 0.477 0.335
ratio 1 1.32 1.43 1.48 1.38 1.42
/ ∆x 10−2 3.263 3.109 2.739 2.335 2.137 1.897

2 error 10−3 4.896 4.005 2.984 2.237 1.721 1.295
ratio 1 1.22 1.34 1.33 1.30 1.33
/ ∆x 10−2 8.704 8.935 8.398 7.955 7.711 7.336

∞ error 10−2 4.314 3.442 2.850 2.435 1.983 1.590
ratio 1 1.25 1.21 1.17 1.23 1.25
/ ∆x 1 0.767 0.768 0.802 0.866 0.889 0.901

Table 3: Quantitative error for various grid sizes on the axe example, using
the high order accurate algorithm. The “ratio” rows show the convergence
rate (first order would have ratio 1.26, second order would have ratio 1.59).
The “/∆x” rows show error size as a fraction of grid cell size.

Figure 9 shows the results for grid sizes ranging from N = 50 to N = 159.
The physical memory of our machine was unable to solve this problem for
grids larger than N = 159 using either scheme.

From this plot we can see that for this example the high order accurate
algorithm is somewhere between first and second order accurate in average
and root mean square error, and slightly worse than first order accurate in
maximum error. The maximum error is smaller than a grid cell, and the
average error is 4% or less of a grid cell. Table 3 shows the error numbers
quantitatively for the high order accurate algorithm.

The low order accurate algorithm fares much worse, achieving at most first
order accuracy and giving errors that are many times those produced by
the high order accurate method. The major problem is that the low order
scheme cannot resolve the sharp edges and especially the sharp points of
this reachable set, as shown in figure 10. Only if rough results were sought
could the low order accurate algorithm be justified for computing sets with
such sharp features.
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Figure 10: Comparing the low order accurate solution to the high order ac-
curate solution on the N = 159 grid. Notice that the error is concentrated
around the sharp edge and points of the axe. Right: low order accurate
solution (solid) and high order accurate solution (transparent). Left: Dif-
ference between the low and high order accurate solutions (solid) and high
order accurate solution (transparent).

8 A Collision Avoidance Example

This example features complex three dimensional dynamics with kink forma-
tion and rarefaction fronts. From a control perspective, we wish to determine
reachability for a three dimensional kinematic model of two adversarial ve-
hicles: the pursuer wants to get within a certain distance of the evader. In
the dynamic game literature this problem is called the game of two identical
cars [11], and the reachable set corresponds to the set in which the pursuer
can capture the evader. Our previous publications [27, 16, 15] have called
this problem the three dimensional aircraft collision avoidance example.

8.1 The Problem

We model our two vehicles with a commonly used, very simple kinematic
system. The state z of each vehicle is represented by a location in the plane
and a heading, so z ∈ R2× [0, 2π[. The evolution of these states is governed
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Figure 11: Relative coordinate system for collision example.

by the vehicle’s forward velocity v and rotational velocity ω

d

dt

z1z2
z3

 =

v cosψ
v sinψ
ω

 .
For the purposes of this example, we fix the linear velocities of the vehicles
and use the angular velocities as the inputs, so v will be a constant while a
and b will correspond to ω.

We say that a collision has occurred if the two vehicles come within distance
r of one another. Our goal is to determine the set of states from which
the pursuer can cause a collision to occur. Translating into reachability
terms, G0 is the set of all states where the two vehicles are within r units
of one another, the evader is player I (input a), the pursuer is player II
(input b), and the capture set is G(τ). Because G0 depends only on the
relative positions of the vehicles, we can simplify the system down to three
dimensions by working in relative coordinates x ∈ R2 × [0, 2π[. As shown
in figure 11, we fix the evader at the origin and facing along the positive x1

axis. Then the pursuer’s relative location and heading are described by the
flow field

ẋ =
d

dt

x1

x2

x3

 =

−va + vb cosx3 + ax2

va sinx3 − ax1

b− a

 = f(x, a, b).
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We can find the resulting Hamiltonian

H(x, p) = max
a∈A

min
b∈B

[
pT f(x, a, b)

]
,

= max
a∈[−α,+α]

min
b∈[−β,+β]

[
−p1va + p1vb cosx3 + p2va sinx3

+ a(p1x2 − p2x1 − p3) + bp3

]
,

=

(
−p1va + p1vb cosx3 + p2va sinx3

+ α|p1x2 − p2x1 − p3| − β|p3|

)
,

(15)

where the bounds on inputs are a ∈ [−α,+α] and b ∈ [−β,+β].

Since a collision can occur at any relative heading, the target set G0 depends
only on x1 and x2 and includes any state within distance r of the planar
origin

G0 = {x ∈ R3|x2
1 + x2

2 < r2},

which can be converted into signed distance function

g(x) =
√
x2

1 + x2
2 − r, (16)

for our HJ PDE’s terminal conditions.

The reachability algorithm we have presented can solve this problem for
any choices of parameters. However, if we focus on the case in which the
two vehicles’ control authority and speed are identical, we can analytically
determine points C on the surface of the backwards reachable set. Our
method is based on work in [11], which solves this example with the pursuer
at the origin. We have recently recreated these results in Matlab, and then
modified them to solve the game with the evader at the origin (it turns out
that the two cases are not symmetric). For reasons of space, we will not
reiterate the complex procedure involved with computing these points, but
rather refer the reader to [13] for details or to [12] for the Matlab code that
was used to generate C. In what follows, we choose the parameters

r = 5,
va = vb = 5,
α = β = +1.

(17)

During the computation of C from these parameters, it can be determined
that the convergence time τmax ≈ 2.6.
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Figure 12: Top: target set (solid cylinder) and backwards reachable set
(transparent) for the collision avoidance example in three dimensions on
the N = 126 grid. Bottom: backwards reachable set (solid) and M =
2612 points in C (dots). Because the backwards reachable set is vertically
symmetric about x3 = π, we analyze the accuracy of only the top half of
the set.

35



8.2 The Results

We solve the collision avoidance example on a Euclidean grid covering the
domain [−6,+20]× [−10,+10]× [0, 2π[, with periodic boundary conditions
in the third dimension. For grid size N , there are N + 1 grid points in
the x1 dimension, d(20/26)(N + 1)e grid points in the x2 dimension (to
get approximately equal ∆x in these two dimensions) and N grid points in
the periodic x3 dimension. Figure 12 shows the target set and backwards
reachable set, in comparison with a very sparse C. Animations showing this
set growing and spinning are available at [12]. The error analyses below
are performed with a C of size M = 238597, and the computation is done
directly from the Hamiltonian (15).

Figure 13 shows the results for grid sizes ranging from N = 50 to N = 200
(at the time of writing, the high order accurate computation had not yet
been performed on the finest grid). From this plot we can see that for this
example the high order accurate algorithm is nearly second order accurate
in average error, first order accurate in root mean square error, and slightly
worse than first order accurate in maximum error. The maximum error is
approximately a grid cell, and the average error is less than 3% of a grid
cell, as shown in table 4.

The low order accurate algorithm fares much worse; it is at best first order
accurate in all norms, the average and root mean square error are nearly
a grid cell in size, and the maximum error is more than two grid cells.
Figure 14 shows clearly that the difference between the low and high order
accurate schemes lies in how precisely they capture the sharp features on
the front of the bulge in the reachable set.

We have also implemented this example in our C++ version of the level
set code. The same parameters (17) and point cloud C were used for these
C++ runs, although they used a slightly different domain and hence grid
cell spacing. Figure 15 shows the results for grid sizes ranging from N = 50
to N = 200. The convergence rate conclusions are similar.

9 Conclusions and Future Work

In this report we have demonstrated that level set algorithms can be used
to compute accurate approximations to backwards reachable sets in two and
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Figure 13: Experimental convergence rates for the collision avoidance ex-
ample. Average (2), root mean square (O) and maximum (×) errors for the
high order accurate algorithm (solid lines) and low order accurate algorithm
(dashed lines) are shown. For comparison the grid cell spacing ∆x (◦) is
included, as are lines equivalent to first order (upper dotted line) and second
order (lower dotted line) convergence rates.
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Figure 14: Comparing the low order accurate solution to the high order ac-
curate solution on the N = 126 grid. Notice that the error is concentrated
around the edge of the bulge in the reachable set. Right: low order accurate
solution (solid) and high order accurate solution (transparent). Left: Dif-
ference between the low and high order accurate solutions (solid) and high
order accurate solution (transparent).

Grid Size N
norm type scale 50 63 79 100 126 159

1 error 10−2 1.290 0.867 0.585 0.400 0.272 0.186
ratio 1 1.49 1.48 1.46 1.47 1.47
/ ∆x 10−2 2.515 2.125 1.783 1.538 1.320 1.14

2 error 10−2 2.984 2.323 1.804 1.420 1.120 0.883
ratio 1 1.28 1.29 1.27 1.27 1.27
/ ∆x 10−2 5.819 5.692 5.503 5.465 5.434 5.432

∞ error 1 0.450 0.387 0.339 0.282 0.244 0.206
ratio 1 1.16 1.14 1.20 1.15 1.18
/ ∆x 1 0.878 0.947 1.033 1.084 1.183 1.270

Table 4: Quantitative error for various grid sizes on the collision avoidance
example, using the high order accurate algorithm. The “ratio” rows show
the convergence rate (first order would have ratio 1.26, second order would
have ratio 1.59). The “/∆x” rows show error size as a fraction of grid cell
size.
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Figure 15: Experimental convergence rates for the collision avoidance ex-
ample using the C++ implementation. Average (2), root mean square (O)
and maximum (×) errors for only the high order accurate algorithm (solid
lines) is shown. For comparison the grid cell spacing ∆x (◦) is included,
as are lines equivalent to first order (upper dotted line) and second order
(lower dotted line) convergence rates.
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three dimensions for systems with nonlinear dynamics and multiple inputs.
Even for reachable sets displaying sharp features (edges and corners), the al-
gorithms were capable of significantly subgrid accuracy on average, and near
grid level accuracy in worst case. An algorithm displaying subgrid accuracy
can use a considerably coarser grid to achieve a fixed level of accuracy than
would be needed by a grid level accurate algorithm. Because the cost of
computation grows so fast as the grid is refined, even a grid twice as coarse
can be computed eight to sixteen times faster.

The error analysis technique used here is general, in the sense that it can
evaluate the accuracy of any algorithms designed to track interfaces featuring
kinks or to solve Hamilton-Jacobi PDEs.

In addition to generalizing our C++ implementation and constructing user
interfaces for both the C++ and Matlab versions, we intend to investigate
adaptive mesh refinement and particle level set methods to improve accu-
racy, and to examine the effectiveness of these techniques in higher dimen-
sions.
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