Efficiency

Narrowbanding / Local Level Set Projections

Reducing the Cost of Level Set Methods

- Solve Hamilton-Jacobi equation only in a band near interface
- Computational detail: handling stencils near edge of band
 - "Narrowbanding" uses low order accurate reconstruction whenever errors are detected
 - "Local level set" modifies Hamiltonian near edge of band
- Data structure detail: handling merging and breaking of interface

Ian Mitchell (UBC Computer Science)

Projective Overapproximation

- Overapproximate reachable set of high dimensional system as the intersection of reachable sets for lower dimensional projections
 - [Mitchell & Tomlin, 2002]
 - Example: rotation of "sphere" about z-axis

Computing with Projections

- Forward and backward reachable sets for finite automata
 - Projecting into overlapping subsets of the variables, computing with BDDs [Govindaraju, Dill, Hu, Horowitz]
- Forward reachable sets for continuous systems
 - Projecting into 2D subspaces, representation by polygons [Greenstreet & Mitchell]
- Level set algorithms for geometric optics
 - Need multiple arrival time (viscosity solution gives first arrival time), so compute in higher dimensions and project down [Osher, Cheng, Kang, Shim & Tsai]

Hamilton-Jacobi in the Projection

- Consider *x*-*z* projection represented by level set $\phi_{xz}(x,z,t)$
 - Back projection into 3D yields a cylinder $\phi_{xz}(x,y,z,t)$
- Simple HJ PDE for this cylinder

$$D_t \phi_{xz}(x, y, z, t) + \sum_{i=1}^3 p_i f_i(x, y, z) = 0 \text{ where } \begin{cases} p_1 &= D_x \phi_{xz}(x, y, z, t) \\ p_2 &= D_y \phi_{xz}(x, y, z, t) \\ p_3 &= D_z \phi_{xz}(x, y, z, t) \end{cases}$$

- But for cylinder parallel to y-axis,
$$p_2 = 0$$

$$D_t \phi_{xz}(x, y, z, t) + p_1 f_1(x, y, z) + p_3 f_3(x, y, z) = 0$$

- What value to give free variable y in $f_i(x,y,z)$?
 - Treat it as a disturbance, bounded by the other projections

 $D_t \phi_{xz}(x, y, z, t) + \min_{y} \left[p_1 f_1(x, y, z) + p_3 f_3(x, y, z) \right] = 0$

• Hamiltonian no longer depends on y, so computation can be done entirely in x-z space on $\phi_{xz}(x,z,t)$

Projective Collision Avoidance

- Work strictly in relative *x*-*y* plane
 - Treat relative heading $\psi \in [0, 2\pi]$ as a disturbance input
 - Compute time: 40 seconds in 2D vs 20 minutes in 3D
 - Compare overapproximative prism (mesh) to true set (solid)

Projection Choices

- Poorly chosen projections may lead to large overapproximations
 - Projections need not be along coordinate axes
 - Number of projections is not constrained by number of dimensions

Hybrid System Reach Sets

Combining Continuous and Discrete Evolution

Why Hybrid Systems?

- Computers are increasingly interacting with external world
 - Flexibility of such combinations yields huge design space
 - Design methods and tools targeted (mostly) at either continuous or discrete systems
- Example: aircraft flight control systems

Seven Mode Safety Analysis

24 Oct 04

Seven Mode Safety Analysis

• Ability to choose maneuver start time further reduces unsafe set

Reach-Avoid Operator

• Compute set of states which reaches G(0) without entering E

 $G(t) = \{x \in \mathbb{R}^n \mid \phi_G(x, t) \le 0\}$ $E = \{x \in \mathbb{R}^n \mid \phi_E(x) \le 0\}$

Reach-Avoid Set G(t)

- Formulated as a constrained Hamilton-Jacobi equation or variational inequality
 - [Mitchell & Tomlin, 2000]

 $D_t \phi_G(x,t) + \min \left[0, H(x, D_x \phi_G(x,t))\right] = 0$
subject to: $\phi_G(x,t) \ge \phi_E(x)$

• Level set can represent often odd shape of reach-avoid sets

Application: Discrete Abstractions

- It can be easier to analyze discrete automata than hybrid automata or continuous systems
 - Use reachable set information to abstract away continuous details

Application: Cockpit Display Analysis

- Controllable flight envelopes for landing and Take Off / Go Around (TOGA) maneuvers may not be the same
- Pilot's cockpit display may not contain sufficient information to distinguish whether TOGA can be initiated

Application: Aircraft Autolander

- Airplane must stay within safe flight envelope during landing •
 - Bounds on velocity (V), flight path angle (γ), height (z)
 - Control over engine thrust (T), angle of attack (α), flap settings
 - Model flap settings as discrete modes of hybrid automata
 - Terms in continuous dynamics may depend on flap setting
 - [Mitchell, Bayen & Tomlin, 2001]

Landing Example: Discrete Model

- Flap dynamics version
 - Pilot can choose one of three flap deflections
 - Thirty seconds for zero to full deflection

- Implemented version
 - Instant switches between fixed deflections
 - Additional timed modes to remove Zeno behavior

Landing Example: No Mode Switches

Ian Mitchell (UBC Computer Science)

Landing Example: Mode Switches

Ian Mitchell (UBC Computer Science)

Landing Example: Synthesizing Control

- For states at the boundary of the safe set, results of reach-avoid computation determine
 - What continuous inputs (if any) maintain safety
 - What discrete jumps (if any) are safe to perform
 - Level set values & gradients provide all relevant data

