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Reachable Sets: What and Why?

* One application: safety analysis
— What states are doomed to become unsafe?
— What states are safe given an appropriate control strategy?
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Calculating Reach Sets

e Two primary challenges

— How to represent set of reachable states

— How to evolve set according to dynamics
« Discrete systems x,,, = ()

— Enumerate trajectories and states

— Efficient representations: Binary Decision Diagrams
e Continuous systems dz/dt = f(x)?




Approaches to Continuous Reach Sets

e Lagrangian approaches
— Forward reach sets
— Restricted class of dynamics
— Restricted class of sets with compact representation
— Guarantees of overapproximation
— Examples: HyTech (Henzinger), Checkmate (Krogh), d/dt
(Dang), ellipsoidal (Kurzhanski)
e Eulerian approaches
— Backward reach sets
— General dynamics including competitive inputs
— General set shapes represented implicitly
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Continuous Backward Reachable Sets

« Set of all states from which trajectories can reach some given
target state
— For example, what states can reach G(t)?

z3(¢) T3 Continuous System Dynamics
Target Set G(0) x(t) — f(a;(t))

Backward Reachable Set G(t)

ccz(t)/\//\w62 z(t) € G(O)
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Why “Backward” Reachable Sets?

 To distinguish from forward reachable set
e To compute, run dynamics backwards in time from target set

i(t) = —f(a(t))

O0<t1 <tr<t3
N 6(0)Ca(t) C9ta) € G(ts)

/—\/—/\7
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Reachable Sets (controlled input)

* For most of our examples, target set is unsafe
« If we can control the input, choose it to avoid the target set
e Backward reachable set is unsafe no matter what we do

Continuous System Dynamics

z(t) = f(x(t),v(t))

L1

vu(-),z(t) € G(0)

L2
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Reachable Sets (uncontrolled input)

e Sometimes we have no control over input signal
— noise, actions of other agents, unknown system parameters

* |tis safest to assume the worst case

Continuous System Dynamics

z(t) = f(x(t),v(t))

(), z(t) € G(0)
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Two Competing Inputs

 For some systems there are two classes of inputs v = (u,d)
— Controllable inputs v O U
— Uncontrollable (disturbance) inputs d O D
 Equivalent to a zero sum differential game formulation
— If there is an advantage to input ordering, give it to disturbances

Continuous System Dynamics

z(t) = f(x(t),u(t),d(t))

Vu(-),3d(-),z(t) € G(0)
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Game of Two ldentical Vehicles

e Classical collision avoidance example
— Collision occurs if vehicles get within five units of one another
— Evader chooses turn rate |a| < 1 to avoid collision
— Pursuer chooses turn rate |b| < 1 to cause collision
— Fixed equal velocity v, = v, = 5
dynamics (pursuer)

d pr _'Up COS ep_
' 0p | | b
’1)1D 0
b
evader aircraft (control) pursuer aircraft (disturbance)
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Collision Avoidance Computation

 Work in relative coordinates with evader fixed at origin
— State variables are now relative planar location (z,y) and relative

heading @
d x| —ve + vp COS Y — ay
T y| = vpSIN Y — ax
() b—a
a Up Y

x<—% >y, >
target set description b
h(a:)z\/a:2+y2—5 |

evader aircraft (control) pursuer aircraft (disturbance)
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Evolving Reachable Sets

* Modified Hamilton-Jacobi partial differential equation

Di¢p(x,t) + min [0, H(z, Dz¢(x,t))] = 0O

with Hamiltonian : H(xz,p) = maxmin f(x,a,b) - p
ac A beB

and terminal conditions: ¢(x,0) = h(x)
where G(0) ={z € R" | h(z) <0}
and z = f(x,a,b)

growth of reachable set final reachable set
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Ime-Dependent Hamilton-Jacobi Eg'n

Dig(z,t) + H(z, Ded(z,t)) = O

* First order hyperbolic PDE
— Solution can form kinks (discontinuous derivatives)

— For the backwards reachable set, find the “viscosity” solution
[Crandall, Evans, Lions, ...]

e Level set methods

— Convergent numerical algorithms to compute the viscosity solution
[Osher, Sethian, ...]

— Non-oscillatory, high accuracy spatial derivative approximation
— Stable, consistent numerical Hamiltonian
— Variation diminishing, high order, explicit time integration
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Solving a Differential Game
 Terminal cost differential game for trajectories & {-; x,t,a(-),b(-))
6(x, 1) = supinfh &7 (0, t,a(-),b(-))]

(& (fiata(),b() =a
where { £¢((siz,t,a(-),b()) = f (z,a(s),b(s))

terminal payoff function h(x)

\
« Value function solution ¢(x,t) given by viscosity solution to basic
Hamilton-Jacobi equation

— [Evans & Souganidis, 1984]
H(z,p) = maxminp! f(z,a,b)
where

‘Ef (01 z2,t, CL('), b())

&y (0; zagty al), ()

h(x) >0
CLEA beBB ACEINIONIO)

¢(x,0) = h(zx)

ff (v z2,t, a’(')a b())
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Modification for Optimal Stopping Time

 How to keep trajectories from passing through G(0)?

— [Mitchell, Bayen & Tomlin 2004] %(x 1) <0
— Augment disturbance input 200 =
b= [b b} where b : [t,0] — [0, 1] L fFE=0e0
f(z,a,b) =bf(x,a,b) ETARION0)
)

— Augmented Hamilton-Jacobi equation solves for reachable set

H(x,p) = maxminp! f(z,a,b
(z,p) maxmin p f( )

¢(x,0) = h(x)

— Augmented Hamiltonian is equivalent to modified Hamiltonian

A (x,p) = maxminp’ f(z,a,b)
a€A peB

. . T
= maxmin min b x,a,b
acA beB be[0,1] bp™ S )

Dip(x,t)+H (x, Dyp(x,t)) = 0 where {

= min [0, max min I ,a,b)| = min [0, H(x,
maxmin p f(z,a,b) [0, H(z, p)]
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Alternative Eulerian Approaches

e Static Hamilton-Jacobi (Falcone, Sethian, ...)

— Minimum time to reach

— (Dis)continuous implicit representation

— Solution provides information on optimal input choices
 Viablility kernels (Aubin, Saint-Pierre, ...)

— Based on set valued analysis for very general dynamics

— Discrete implicit representation

— Overapproximation guarantee

 Time-dependent Hamilton-Jacobi (this method)
— Continuous solution

— Information on optimal input choices available throughout
entire state space

— High order accurate approximations
» All three are theoretically equivalent
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Application: Softwalls for Aircraft Safety

» Use reachable sets to guarantee safety

 Basic Rules
— Pursuer: turn to head toward evader
— Evader: turn to head east

« Evader’s input is filtered to guarantee that pursuer does not enter the
reachable set

safety.filter's
__-input modification

evader’s actual input

collision set
., reachable set

/ (unsafe set)

evader

N T——pursuer

evader’s desired input

— pursuer’s input

joint work with Edward Lee & Adam Cataldo
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Application: Collision Alert for ATC

 Use reachable set to detect potential collisions and warn Air Traffic
Control (ATC)
— Find aircraft pairs in ETMS database whose flight plans intersect
— Check whether either aircraft is in the other’s collision region
— If so, examine ETMS data to see if aircraft path is deviated

— One hour sample in Oakland center’s airspace—
» 1590 pairs, 1555 no conflict, 25 detected conflicts, 2 false alerts

s
1 | 1
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Validating the Numerical Algorithm

* Analytic solution for reachable set can be found [Merz, 1972]
— Applies only to identical pursuer and evader dynamics
— Merz’s solution placed pursuer at the origin, game is not symmetric
— Analytic solution can be used to validate numerical solution
— [Mitchell, 2001]
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