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Basic Path Planning
• Find the optimal path pppp(ssss) to a target (or from a source)

• Inputs
– Cost to pass through each state in the state space

– Set of targets or sources (provides boundary conditions)
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Dynamic Programming Principle

• Value function VVVV(xxxx) is “cost to go” from xxxx to the nearest target

• VVVV(xxxx) at a point xxxx is the minimum over all points yyyy in the 
neighborhood NNNN(xxxx) of the sum of
– the cost VVVV(yyyy) at point yyyy
– the cost cccc(yyyy→→→→ xxxx) to travel from yyyy to xxxx

• Dynamic programming applies if
– Costs are additive
– Subsets of feasible paths are themselves feasible
– Concatenations of feasible paths are feasible
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Eikonal Equation

• Value function is viscosity solution of Eikonal equation 

• Dynamic Programming Principle applies to Eikonal Equation
• Fast Marching Method: a continuous Dijkstra’s algorithm

– Node update equation is consistent with continuous PDE (and 
numerically stable)

– Nodes are dynamically ordered so that each is visited a constant
number of times
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Path Generation
• Optimal path pppp(ssss) is found by gradient descent

– Value function VVVV(xxxx) has no local minima, so paths will always 
terminate at a target
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Demanding Example?  No!
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Constrained Path Planning
• Input includes multiple cost functions cccciiii(xxxx)

• Possible goals:
– Find feasible paths given bounds on each cost

– Optimize one cost subject to bounds on the others
– Given a feasible/optimal path, determine marginals of the 

constraining costs

Constant cost (eg fuel)Variable cost (eg threat level)
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Path Integrals
• To determine if path pppp(tttt) is feasible, we must determine

• If the path is generated from a value function VVVV(xxxx), then path 
integrals can be computed by solving the PDE

• The computation of the PPPPiiii(xxxx) can be integrated into the FMM 
algorithm that computes VVVV(xxxx)
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Pareto Optimality
• Consider a single point xxxx and a set of costs cccciiii(xxxx)

• Path ppppmmmm is unambiguously better than path ppppnnnn if

• Pareto optimal surface is the set of all paths for which there are 
no other paths that are unambiguously better

PPPP(xxxx)

ppppnnnnPPPP(xxxx)

ppppmmmm

Set of feasible paths 
unambiguously 
worse than ppppmmmm

Pareto
optimal
surfaceinfeasible

paths

feasible paths

feasible
paths
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Exploring the Pareto Surface
• Compute value function for a convex combination of cost 

functions
– For example, let cccc(xxxx) = λcccc(xxxx) + (1 – λ)cccc(xxxx), λ ∈ [ 0,1 ]

• Use FMM to compute corresponding VVVV(xxxx) and PPPPiiii(xxxx)

• Constructs a convex approximation of the Pareto surface for 
each point xxxx in the state space

PPPP(xxxx)

PPPP(xxxx)

λλλλ4

λλλλ3

λλλλ2

λλλλ1
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Constrained Path Planning Example
• Plan a path across Squaraguay

– From Lowerleftville to Upper Right City

– Costs are fuel (constant) and threat of a storm

Weather cost (two views)
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Weather and Fuel Constrained Paths
weather 

cost
fuel 
cost

fuel 
constraint

minimize
what?

line type

2.712.69noneweather- - - - -
3.031.581.6weather———
4.551.271.3weather———
8.811.14nonefuel- - - - -
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Pareto Optimal Approximation
• Cost depends linearly on number of sample λ values

– For 2012 grid and 401 λ samples, execution time 53 seconds
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More Constraints
• Plan a path across Squaraguay

– From Lowerleftville to Upper Right City

– There are no weather stations in northwest Squaraguay
– Third cost function is uncertainty in weather

Uncertainty cost (two views)
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Three Costs

2.843.021.60none1.6weather———
2.584.421.30none1.3weather———

5.84

8.41
2.71
8.81

weather 
cost

1.3

none
none
none

fuel 
constraint

6.0

none
none
none

weather 
constraint

1.23

1.17
5.83
1.50

uncertainty 
cost

fuel 
cost

minimize 
what?

line 
type

1.23uncertainty———

1.17uncertainty- - - - -
2.69weather- - - - -
1.14fuel- - - - -
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Pareto Surface Approximation
• Cost depends linearly on number of sample λ values

– For 2012 grid and 1012 λ samples, execution time 13 minutes
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Three Dimensions
weather 

cost
fuel 
cost

fuel 
constraint

minimize 
what?

line type

2.001.551.55weather———

1.641.64noneweather— — —

3.541.14nonefuel- - - - -
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Constrained Example
• Plan path to selected sites

– Threat cost function is maximum of individual threats

• For each target, plan 3 paths
– minimum threat, minimum fuel, minimum threat (with fuel ≤ 300)

threat cost Paths (on value function)
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Fast Enough?
• Platform details

– 2 GHz Mobile Pentium 4, 1 GB memory, Windows XP Pro

– Value function by compiled C++
– Path generation by interpreted m-file integration

Value Function

(single objective)

166.765144

94.912013

9.781013

0.905133

9.3316012

1.878012

0.434012

0.102012

0.0410122

time (s)grid sizedim

0.57

0.48

0.49

0.38

0.75

0.60

0.51

0.38

0.32

σ

Path Generation

(25 random targets)

1.625144

0.952013

0.891013

0.925133

1.0516012

0.828012

0.724012

0.622012

0.5710122

mean (s)grid sizedim
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Grid Refinement
• As resolution improves, the approximation converges to the 

analytically optimal path for almost every destination point
– little qualitative difference if cost function features are resolved
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Path Generation Times
• Platform details

– 2 GHz Mobile Pentium 4, 1 GB memory, Windows XP Pro

– Value function by compiled C++
– Path generation by interpreted m-file integration
– Total cost includes cost function generation, PDE and ODE solves

and plotting all the figures

Total cost for each example

22.30.01010123

1.00.02010132

0.50.00520122

time (m)∆λ∆λ∆λ∆λNkd

2D cost per sample

4.412.44801

4.200.55401

3.760.13201

3.240.04101

0.0151

ratiotime (s) 
per λλλλ

N

3D cost per sample

9.91125.46201

9.9912.66101

1.2751

ratiotime (s) 
per λλλλ

N


