Value Function

Approximation

Mark Schmidt
March 10, 2007

Outline

Context
Linear Models
Neural Networks

Kernel Machines

Advanced Probabilistic Methods

Notation for ADP

time: T
state: Lt
noise: Wt
decision: Ut

probability of transitioning to state Y if decision U is made in state X :

Py (u)

policy: m = {ul,u2, ,un}
cost: g(azt,ut(aﬁt), wt)

goal: mﬁin Ey [Z Vg (T, ue (), we)]

¢ ©.@)
state value/cost-to-go: J.(xg) = Ey, [Z Y ge (e, ue (), wy)]

, t=0
state-action value/cost-to-go function:

Qn (0, u(w0)) = Ewl) 7 ge(ws, ue(w4),00)]

t=0

Where we are now...

{Pg} Known: {Pg} Unknown:

Prediction: W20 PR - D

On-Policy: Off-Policy:
Control:

- {Pg} Unknown methods can be applied in {Pg} Known cases

- Q only needed in P-Unknown/Control scenarios (unless can’t compute expectation)

- TD: Evaluation of Fixed Policy (can later run TD w/ revised policy)

- Sarsa: On-Policy but NOT fixed (depends on Q)

- Sarsa vs. Q: When updating Q, Sarsa computes TD w/ action from new state under current
policy, Q maximizes over next action

- TD(lambda), Sarsa(lambda), Q(lambda): used to update past few states/state-actions

Motivating Function Approximation

In many applications, space of states for JJ;(x) or state-
action pairs for Qr (xv u(x)) is too large (curse of
dimensionality)

In this case, make use an approximate value/Q function
parametrized in terms of a (smaller) vector 7

j(az,r) ~ J*(x)

Q(z,u(z),r) = Q" (z, u(x))

Example:

o J(z,7)= r!'2 (approximate value function is
bilinear in state representation x and parameters r)

e Approximate value .J(x, ') generated only when
needed

FA for ADP

® Two lIssues:

® (l|) Decide general structure of j(az, T)(approximation
architecture)

® (2) Calculate r so as to minimize some measure of error
between J* () and J(g; r) (parameter estimation)

® This talk will focus on issue (I), next slide sketches how to
address (2).

® One possible error function is the (weighted) squared error:

o ZP@S)[J*(:US) — j(xsvr)]Q

sES
° p(xs) might be ‘on-policy’ distribution

® Problem |:we may be going through data set sequentially:

® First-Order Update for differentiable j(ﬂis,)

~

8
® Tip1 =T — EVT[J*(%S) — J(xtvrt)]2

=T — (X[J*(I’t) — j(ZEt,Tt)]vrj(CUt,Tt)
® Problem 2:we don’t have ,J* (xs) :

® Approximate update:

J— ~

Q
Ti41 = Tt — §VT[J(37t) - J(ajt’”)P

® Examples of j(xt) :
o DP: Ey|g(xe, ur(xe), wr) + vJep1 (fe(xe, ue (1), we))]
o TDO): g(¢, ur(xy), we) + yJer1 (fe(xe, ur (), wy))

® Monte Carlo: G(x;)(average cost of following policy after x_t)

Biased vs. Unbiased

® Unbiased (Monte Carlo):
® can find local optimum of MSE
® Biased, on-policy (TD, Sarsa):

® in some cases, can bound distance to MSE,
and decrease to 0

® Biased, off-policy (DP, Q):

® may diverge

Outline

Context

Linear Models

Neural Networks

Kernel Machines

Advanced Probabilistic Methods

Least Squares

® We are now able to formulate the MSE problem as:
. mm Z J(xe,7))°

e with b|||near model J(x;,7) := rT x;, we can turn this into a standard
Least Squares problem:

o yi = J(xy)
o W =T
® Ut :— Xt

® Least Squares:

min Z(wat — y;)?
t
® Weighted Least Squares:

° ngﬂzp(xt)(waUt —y1)?
t

Least Squares
Regression

Least Squares fit to data

Standard Least Squares Solution

® Re-write in matrix notation:
flz,w,y) = (Xw—y)! (Xw —y) =w" X" Xw - 20" X"y + 4Ty

® Use first optimality conditions: V,, f(X,w,y) =0
0=2X"Xw-2X"y

Xt Xw = XTy (Normal equations)
® Show that this is min using second order condition:

V2 (X, w,y) =2XTX >0
® (adding weights is is easy)
® Nice theoretical properties (CLT, consistent, CR-b, MVUE, etc.)

® In many scenarios we will NOT be using the Normal equations

Stochastic Gradient Descent

® We may be accessing the pairs (2, ¥t) sequentially, we may have

an immense/infinite amount of data, or dynamics may change over
time

® [n these cases, we may want to build FA as we go:
® Stochastic Gradient Update:
w = w — aVyF(xe, w, y;)
® For convergence, need SA conditions:
iai = 00 f: a? < 00
1=1 =1

® in practice, alpha chosen by heuristically (one method: test an
alpha out for a while and see how well it works)

® steepest descent, but different behaviour from on-line updates

Basis Functions

What if relation (x + €) Ry is non-linear?

Model non-linear effects in a linear model using
change of basis (‘basis functions’)

Example: instead of Tt,use [1 z; z7]*
Still linear in w and nothing changes in solving for w

Basically the same as having a different
representation for the state

Some common basis functions: polynomials, radial
basis functions, splines, wavelets, etc.

Basis Functions

Least Squares on original basis Least Squares on expanded basis
oy 1z, z2]*

Regularization

If we use a sufficiently expressive basis, we can approximate any function

If we have a basis that is too expressive (relative to amount of data), we
can fit not only the desired function but noise in process

Regularization: assign a penalty function R(w) to each w:
min F'(X,w,y) + R(w)
w

Example of Regularization: penalizes weights by squared Euclidean
distance from 0: R(w) .=)‘sz‘z
=1

forces minimization to find balance between growing weights and fitting
data

various strategies to choose lambda (independent data samples, degrees
of freedom, VF vs. VR ,etc.)

Regularizaiton

Original Basis Degree 2 Degree 4 (correct)

Degree 8 Degree 8 (regularized)

Probabilistic View

Add a constant %to all terms and an additional constant Z:
20

E : 1 T 2
Z + ZT‘_Q(’(U Tt — yt)
Take negation and exponentfate'

1
—Hexp 5 Q(wTa;t i)?)

Least Squares w corresponds to max likelihood of model:
P(y| X, w) HN ye|lw! @y, o)

With regularizer, corresponds to MAP estimate:

P(y| X, w) = P(y, X|w)P(w) = | [[N(yelw" @, o®)] | [[V(w]0,2%)

i t 7
Dual View:

® min (Loss Function) + Regularizer
® max (Likelihood)(Prior)

® (exists third view based on maximum entropy)

Other Losses/Regularizers

® The combination of a Least Squares error and Tikhonov
regularization is not the only possiblity.

® Can mix and match various loss-regularizer/likelihood-prior
combinations:

T
® [1(sparse, robust to outliers): Z W @ — 1] Z Jw;]
t i

® [.00 (worse-case): mhax ’wat ~ Vil max |w;|

1
e StudentT (robust to outliers): > —log(T(w" e, ~y.m) p_ ~log(T(wi,n)

® Min/Max Entropy methods, etc.

Discrete Output

Suppose target is binary: y: € {0,1}

Rather than having 4 € (00, 00) , we can
use a sigmoid function to force output to be

in range (0, 1) T %
Logistic function is one example: < I
1
p(yt — 1’3775,?1])

Rt exp(—w!'z;)

p(yt — O|Zl7t,w> =1 _p(yt — 1|$taw)
Logistic Regression: maximum likelihood w,
or MAP w with a regularizer on w

Outline

Context
Linear Models

Neural Networks

Kernel Machines

Advanced Probabilistic Methods

Learning the Basis

® We have assumed that output can be
modeled as linear combination of basis

® What if it can’t? What if we don’t know the
right basis? What if we do know the right
basis but we can’t compute/store it!

® Basic Idea behind Neural Networks:
® T[ry to estimate a good basis!

® Do this by composing linear models

Composing Linear Models
e Composing | function:

f(g(x, 7qg)ﬁ rf)

e f gare both parameterized linear models, where g has output
in a fixed range (such as a sigmoid function)

e Example:

o f(z,wy):=wsx
1
1 +exp(—wlm)

o g(w,wy): =

)

® flg(@,wg),wy) = wy(q— exp(—wg)

e Graphically:

@) @

° Welghts wf optimized jointly

Neural Networks

In some sense,‘H’ compresses what the linear model g knows
about the function into a scalar feature

In Neural Networks, we seek to jointly learn multiple h values,
that might form a better basis for representing our function than
the original basis:

f(gl(xv w91)7 92(337 wg2)7 e gn(CIJ, wgn)7 wf)
Jointly optimize [wf wg*]
Early work motivated by ideas from neuroscience
Also known as ‘multi-layer perceptron’ (perceptron: linear model)
Specific instance of a model known in Stats as a ‘mixture model’

If g, f both give probabilistic output, then forms a (Sigmoid) ‘Belief
Networlk’

Neural Networks

Neural Networks

Optimize parameters jointly using SGD, as before
Optimization is now non-convex (and h unidentifiable)
Computing composition called ‘forward-propagation’

Using chain rule to compute gradient called ‘back-
propagation’

Applying a regularizer to weights called ‘weight decay’
Alternative form of regularization: early stopping

Can make multiple layers of composition (often difficult
to get working, with some exceptions like ‘convolutional
neural networks’)

Neural Networks

Recent VWork

® ‘Deep Belief Networks’

® use undirected models and stochastic
approximations to build one layer of
hidden units at a time, training each layer
to generate outputs produced by previous
layer

Outline

Context
Linear Models
Neural Networks

Kernel Machines

Advanced Probabilistic Methods

Kernel Methods

® Basic Idea:
® Use a large basis and regularize
® Kernel ‘trick’

® |ets us use a large set of basis functions without
storing them

® |f we can define an appropriate similarity metric,
we may not even need to know the basis

® Nice theory behind SVMs. | don’t have time to go
over this (previous talk: 1.5 hours) and will just give
an overview of a Support Vector regression model

Support Vector
Regression

® | east Squares Loss:

Z(wT% — yt)2

t
® | east Absolute Deviation Loss:

Z wth — Z/t‘

t
® SVR ‘eps-Insensitive’ Loss:

ZH?UTSLH: — Y| — €]+

t

Support Vector
Regression

- ':f‘.',,'.:l" '.:'-' L
. :1'5?‘ "-'#.Ip-l’ f "ﬁ-‘ :."' 0
-;:'E.l: '}. 'g.“'l.‘;. }I‘h -:
. .'f-- 1:.! . I'"-I :- %
L

-]
3 @

Support Vector Regression

® We will consider the eps-Insensitive loss with
the Quadratic Regularizer:

Z[H’w re— Y| — €]+ S Zw

t
® Optimal parameters can be found by solving a

Quadratic Program with the same minimum

min Zthrzt + — Zw

w,b,z,2

St\V/tZt>O Zt>0
Vizy > wTa:t Yt — e,zt > Yp — wat — €
® ‘SupportVectors’ are points where either of the
slacks z is non-zero, all other points are within
the ‘eps-tube’ and are ‘good enough’

Dual Problem

® After introducing Lagrange multipliers and
some algebra, we obtain the following dual
minimization:

— Zyt@t + EZ |Oét| + — L LOétOét/Q?t oy

s.t. Zozt—()vt)\<ozt<x

® Predictions made using: f(zs) Zativt Ts

® Note: Only inner product between features
is relevant

Kernel-Defined Basis

i) T : ,
Kernel ‘trick’: replace &, I+ with kernel function k(zs,)

Example:
(xTZ)Q — 37121 + X Z% + 221212929
http://www.youtube.com/watch?v=3liCbRZPrZA
Kernel Functions: :)

e polynomial kernel: ($TZ -+ 1)d

® rbf kernel: emp(—vHI — ZHQ)

® more generally: some similarity metric between vectors/graphs/
text/images/etc.

Restriction:‘Gram Matrix’ k(XTX) > ()

Related to Covariance functions in GMRFs/Kriging, and optimization
in Reproducing Kernel Hilbert Spaces

General Advantages of
SV Methods

® convexity

® regularization

® sparsity

® kernels

e efficient and large-scale training

® computational learning theory
(none of these is unique to SV methods)

Recent VWork

® | earning the kernel:

® Linear combination of kernels

® Semi-definite programming

Outline

Context
Linear Models
Neural Networks

Kernel Machines

Advanced Probabilistic Methods

Advanced Probabilistic Methods

® Hierarchical Bayesian:

® eg. Gaussian Process: regularized kernel linear regression, where we integrate
over w and optimize parameters of kernel based on marginal likelihood (or
approximate integral over kernel parameters)

® Non-Parametric Bayesian:

® eg. Dirichlet Process on mixture coefficients in mixture model: integrates over
all possible values of the number of mixture components

® Structured Output:

® eg. Conditional Random Field: models multiple targets y, including individual
costs and costs based on joint configurations, conditioned on a set of features

® Sequential Monte Carlo:

® eg. Particle Filter: model-free filtering for (non-linear) dynamic systems

