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A Digression: 
Approaches to Validating Designs

• By construction
– property is inherent.

• By verification
– property is provable.

• By simulation
– check behavior for all inputs.

• By intuition
– property is true. I just know it is.

• By assertion
– property is true. Wanna make something of it?

• By intimidation
– Don’t even try to doubt whether it is true

It is generally better to be higher in this list

slide courtesy of Alberto Sangiovanni-Vincentelli (UC Berkeley)
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Outline
• Representation: Implicit Surface Functions
• Example

– The game of two identical vehicles

• Evolution: the Time Dependent Hamilton-Jacobi 
Equation
– Viscosity solutions and numerical methods

– Modification for optimal stopping time
– Alternative Eulerian schemes

• Applications of Reachability Analysis
– Softwalls

– ATC alerts

• Reducing the dimensional cost: projections
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Calculating Reach Sets
• Two primary challenges

– How to represent set of reachable states

– How to evolve set according to dynamics

• Discrete systems xxxxkkkk+1 = δδδδ(xxxxkkkk)
– Enumerate trajectories and states
– Efficient representations: Binary Decision Diagrams

• Continuous systems dxdxdxdx/dtdtdtdt = ffff(xxxx)?
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Implicit Surface Functions
• Set GGGG(tttt) is defined implicitly by an isosurface of a scalar function 

φφφφ(xxxx,tttt), with several benefits
– State space dimension does not matter conceptually

– Surfaces automatically merge and/or separate
– Geometric quantities are easy to calculate
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Game of Two Identical Vehicles
• Classical collision avoidance example

– Collision occurs if vehicles get within five units of one another
– Evader chooses turn rate |aaaa| ≤ 1 to avoid collision
– Pursuer chooses turn rate |bbbb| ≤ 1 to cause collision
– Fixed equal velocity vvvveeee = vvvvp = 5

evader aircraft (control) pursuer aircraft (disturbance)

yyyy

5

xxxx

aaaa

vvvveeee

θθθθ

bbbb

vvvvpppp

dynamics (pursuer)
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Collision Avoidance Computation
• Work in relative coordinates with evader fixed at origin

– State variables are now relative planar location (xxxx,yyyy) and relative 
heading ψψψψ

evader aircraft (control) pursuer aircraft (disturbance)

xxxx

yyyy

aaaa

vvvveeee

ψψψψ

bbbb

vvvvpppp

target set description
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Evolving Reachable Sets
• Modified Hamilton-Jacobi partial differential equation

final reachable setgrowth of reachable set
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Time-Dependent Hamilton-Jacobi Eq’n

• First order hyperbolic PDE
– Solution can form kinks (discontinuous derivatives)
– For the backwards reachable set, find the “viscosity” solution 

[Crandall, Evans, Lions, …]

• Level set methods
– Convergent numerical algorithms to compute the viscosity solution 

[Osher, Sethian, …]
– Non-oscillatory, high accuracy spatial derivative approximation
– Stable, consistent numerical Hamiltonian

– Variation diminishing, high order, explicit time integration
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Validating the Numerical Algorithm
• Analytic solution for reachable set can be found [Merz, 1972]

– Applies only to identical pursuer and evader dynamics

– Merz’s solution placed pursuer at the origin, game is not symmetric
– Analytic solution can be used to validate numerical solution
– [Mitchell, 2001]
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Solving a Differential Game
• Terminal cost differential game for trajectories ξξξξffff(····; xxxx,tttt,aaaa(····),bbbb(····))

• Value function solution φφφφ(xxxx,tttt) given by viscosity solution to basic 
Hamilton-Jacobi equation
– [Evans & Souganidis, 1984]
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Modification for Optimal Stopping Time
• How to keep trajectories from passing through G(0)?

– [Mitchell, Bayen & Tomlin IEEE TAC 2005]

– Augment disturbance input

– Augmented Hamilton-Jacobi equation solves for reachable set

– Augmented Hamiltonian is equivalent to modified Hamiltonian
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Alternative Eulerian Approaches
• Static Hamilton-Jacobi (Falcone, Sethian, …)

– Minimum time to reach
– (Dis)continuous implicit representation

– Solution provides information on optimal input choices 

• Viability kernels (Aubin, Saint-Pierre, …)
– Based on set valued analysis for very general dynamics

– Discrete implicit representation
– Overapproximation guarantee

• Time-dependent Hamilton-Jacobi (this method)
– Continuous solution

– Information on optimal input choices available throughout 
entire state space

– High order accurate approximations

• All three are theoretically equivalent
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Application: Softwalls for Aircraft Safety
• Use reachable sets to guarantee safety

• Basic Rules
– Pursuer: turn to head toward evader
– Evader: turn to head east

• Evader’s input is filtered to guarantee that pursuer does not enter the
reachable set

joint work with Edward Lee & Adam Cataldo

pursuer

safety filter’s 
input modification

pursuer’s input

evader’s desired input

evader

evader’s actual input

reachable set
(unsafe set)

collision set
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Application: Collision Alert for ATC
• Use reachable set to detect potential collisions and warn Air Traffic 

Control (ATC)
– Find aircraft pairs in ETMS database whose flight plans intersect

– Check whether either aircraft is in the other’s collision region
– If so, examine ETMS data to see if aircraft path is deviated
– One hour sample in Oakland center’s airspace—

• 1590 pairs, 1555 no conflict, 25 detected conflicts, 2 false alerts
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Projective Overapproximation
• Overapproximate reachable set of high dimensional system as 

the intersection of reachable sets for lower dimensional 
projections
– [Mitchell & Tomlin, JSC 2003]

– Example: rotation of “sphere” about z-axis
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Hamilton-Jacobi in the Projection
• Consider xxxx–zzzz projection represented by level set φφφφxzxzxzxz(xxxx,zzzz,tttt)

– Back projection into 3D yields a cylinder φφφφxzxzxzxz(xxxx,yyyy,zzzz,tttt)

• Simple HJ PDE for this cylinder

– But for cylinder parallel to yyyy-axis, pppp2 = 0

• What value to give free variable yyyy in ffffiiii(xxxx,yyyy,zzzz)?
– Treat it as a disturbance, bounded by the other projections

• Hamiltonian no longer depends on yyyy, so computation can be 
done entirely in xxxx–zzzz space on φφφφxzxzxzxz(xxxx,zzzz,tttt)
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Projective Collision Avoidance
• Work strictly in relative xxxx–yyyy plane

– Treat relative heading ψψψψ ∈∈∈∈ [ 0, 2ππππ ] as a disturbance input
– Compute time: 40 seconds in 2D vs 20 minutes in 3D
– Compare overapproximative prism (mesh) to true set (solid)
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Projection Choices
• Poorly chosen projections may lead to large overapproximations

– Projections need not be along coordinate axes

– Number of projections is not constrained by number of dimensions
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Hybrid System Reach Sets

Combining Continuous and Discrete 
Evolution
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Outline
• Hybrid System example

– Seven mode collision avoidance and results

• Hybrid Reachability
– Implementing the reach-avoid operator

• Example applications
– Discrete abstraction

– Display analysis
– Autolander
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Why Hybrid Systems?
• Computers are increasingly interacting with external world

– Flexibility of such combinations yields huge design space

– Design methods and tools targeted (mostly) at either continuous or 
discrete systems

• Example: aircraft flight control systems

seven mode collision 
avoidance protocol
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Hybrid Automata
• Discrete modes and 

transitions

• Continuous evolution within 
each mode
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unsafe set with choice
to maneuver or not?

Seven Mode Safety Analysis

unsafe set with maneuver

unsafe set without maneuver

?
unsafe

safe
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Seven Mode Safety Analysis
• Ability to choose maneuver start time further reduces unsafe set

safe without switch
unsafe to switch

safe with switch

unsafe with or 
without switch

[Tomlin, Mitchell & Ghosh, 2001]
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Computing Hybrid Reachable Sets
• Compute continuous reachable set in each mode separately

– Uncontrollable switches may introduce unsafe sets

– Controllable switches may introduce safe sets
– Forced switches introduce boundary conditions

[Tomlin, Lygeros & Sastry, 2000]
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• Compute set of states which reaches GGGG(0) without entering EEEE

• Formulated as a constrained Hamilton-Jacobi equation or 
variational inequality
– [Mitchell & Tomlin, 2000]

• Level set can represent often odd shape of reach-avoid sets

Reach-Avoid Operator

GGGG(0) EEEE

Reach-Avoid Set GGGG(tttt)
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Application: Discrete Abstractions
• It can be easier to analyze discrete automata than hybrid 

automata or continuous systems
– Use reachable set information to abstract away continuous details

q1
safe at present

will become unsafe
unsafe to σσσσ1

q5
safe at present

always safe
safe to σσσσ1

q3
safe at present

will become unsafe
safe to σσσσ1

q4
safe at present

always safe
unsafe to σσσσ1

q2
unsafe at present

will become unsafe
unsafe to σσσσ1

qs

SAFE

qu

UNSAFE

forced transition
controlled transition (σσσσ1)

q1

q5

q3

qu

q4 q2
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Application: Cockpit Display Analysis
• Controllable flight envelopes for landing and Take Off / Go 

Around (TOGA) maneuvers may not be the same

• Pilot’s cockpit display may not contain sufficient information to 
distinguish whether TOGA can be initiated

flare
flaps extended
minimum thrust

rollout
flaps extended
reverse thrust

slow TOGA
flaps extended

maximum thrust

TOGA
flaps retracted

maximum thrust

flare
flaps extended
minimum thrust

rollout
flaps extended
reverse thrust

TOGA
flaps retracted

maximum thrust

revised interface

existing interface

controllable flare envelope

controllable TOGA envelope
intersection



October 2008 Ian Mitchell (UBC Computer Science) 31

Application: Aircraft Autolander
• Airplane must stay within safe flight envelope during landing

– Bounds on velocity (V), flight path angle (γγγγ), height (z)

– Control over engine thrust (T), angle of attack (αααα), flap settings
– Model flap settings as discrete modes of hybrid automata
– Terms in continuous dynamics may depend on flap setting

– [Mitchell, Bayen & Tomlin, 2001]
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Landing Example: Discrete Model
• Flap dynamics version

– Pilot can choose one of 
three flap deflections

– Thirty seconds for zero to 
full deflection

• Implemented version
– Instant switches between 

fixed deflections

– Additional timed modes to 
remove Zeno behavior

retract

0u 25d 50d

deflect

0u

25d

50d

0t

25t

50t

controlled
forced
initial
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Landing Example: No Mode Switches
E

nv
el

op
es

S
af

e 
se

ts



October 2008 Ian Mitchell (UBC Computer Science) 34

Landing Example: Mode Switches
E

nv
el

op
es

S
af

e 
se

ts



October 2008 Ian Mitchell (UBC Computer Science) 35

Landing Example: Synthesizing Control
• For states at the boundary of the safe set, results of reach-avoid 

computation determine
– What continuous inputs (if any) maintain safety

– What discrete jumps (if any) are safe to perform
– Level set values & gradients provide all relevant data



Viability Theory

An Alternative Approach Based on 
Set Valued Analysis
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Outline
• Differential inclusions
• Constructs from viability

– Capture Basin

– Viability Kernel

• The contingent cone
• Defining the viability kernel
• Approximating the viability kernel
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Differential Inclusions
• Dynamics defined by differential inclusion

– For example

• Set-valued map F F F F (xxxx) has Lipschitz-like but less restrictive 
conditions
– For example, discontinuous ffff(xxxx,bbbb) can be represented

• Extensions exist for differential game settings
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Capture Basin
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Viability Kernel
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The Contingent Cone
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Defining the Viability Kernel
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Defining the Viability Kernel
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Approximating the Viability Kernel

Algorithm will perform systematic outer approximation of the reachable 

set at various discretization levels
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Discretization of the Constraint Set
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Discretization of the Target for Capture Basins
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Discretization of the Dynamics

Dilation factor

CFL-type condition
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Discrete Viability Algorithm
• Apply discrete viability algorithm on discretized dynamics for 

discretized constraint set

– Approximation will reach a fixed point after finite iterations
– Approximation (plus slight dilation) will contain true viability kernel
– Approximation will converge to true viability kernel as discretization

parameters go to zero

• Many algorithmic refinements to improve efficiency
– Efficient construction of next iteration
– Grid refinement without starting from scratch

• Details in [Cardaliaguet, Quincampoix & Saint-Pierre, “Set-
valued numerical analysis for optimal control and differential 
games” in Stochastic and Differential Games: Theory and 
Numerical Methods (Bardi, Raghavan & Parthasarathy, eds.), 
Birkhäuser, pp. 177–247 (1999)]


