Notes on Non-Chronologic Backtracking,
Implication Graphs, and Learning

Alan J. Hu
for CpSc 513
Univ. of British Columbia

2004 February 19

These are supplementary notes on these aspects of a moderrsBfe complete SAT solver.
| think part of what makes these things hard to understanesoras is that multiple related ideas
get lumped together. In these notes, I'm going to try to Wistit the essential ideas, without
worrying about how to do everything in the best possible neantf you're impatient, jump to
Section 5

1 Exhaustive Enumeration

OK, forget for the moment everything you know about SAT, otian the basic problem: you've
got a bunch of clauses, and you're trying to find a satisfysgignment, or prove that no satisfying
assignment exists. The obvious approach is to systenlgtg=herate every possible assigment,
and test whether that assignment satisfies the clauses. ppheagh has to be systematic if we
want to be able to prove unsatisfiability — you have to guaamhat you'll try every possibility
eventually. (If you don’t care about that, you can try randomth assignments, which puts us in
the realm of stochastic local search, which is Holger’s exge)

The easiest way to systematically try all truth assignmente march through them in nu-
merical (binary) order, the way you'd do a truth table. I'mmggpto show you something slightly
messier, because that leads to the next step.

Assume you have some data structure for holding a (poss#tyap truth assignment to the
variables, and another data structure for holding the eus$lere’s some pseudo-C for an im-
plementation. You'd call this function initially with thengpty (all variables unassigned) truth
assignment:

int sat(truth_assignment t, clauses c)

{

vari abl e v;

v = pick_unassigned variable(t);

if (v==NULL) {
/* all variables assigned, check SAT */
if (evaluate(t,c)==1) return SAT,;
el se return UNSAT,;

}

assign_false(v,t); /* AssignvtoOint */
I f (sat(t,c)==SAT) return SAT,;

/* Not satisfiable when v=0, try v=1. */
unassign(v,t);

assign_true(v,t);

I f (sat(t,c)==SAT) return SAT

/* Not satisfiable regardless of what we assign to v. */
[* Therefore, this (sub-)problemisn't satisfiable. */
unassign(v,t);

return UNSAT,;

In the above code, @i ck_unassi gned_vari abl es always picks variables in the same order,
then you’ll search things in the same order as a truth tablddvélowever, the code works fine as
long as it always picks an unassigned variable. (The diftgvarts of the truth table could have its
rows ordered differently.)

The other thing to note about the code is that we are expipitia way programs work in order
to simplify our implementation. In particular, we are usthg recursive call stack to keep track of
our partial assignments, and the sequential code in thei@umio remember whether we've tried
0, 1, or both possibilities for assigning a given variable.

2 Backtracking

The above code is actually already doing backtracking jussthat we're walking all the way to
the bottom of the search tree (assigning a value to evergbla)i before we backtrack. With SAT,
as soon as we find that any clause is 0 (with a partial trutlgassnt), we know that it's useless
to continue assigning variables, so we may as well backtirackediately at that point. This is
a big efficiency improvement. To do this, let's assume we haWenctionpartial _eval uate
that returns SAT if the (possibly partial) assignment alyeaatisfies the clauses, UNSAT if the
assignment already falsifies the clauses, and UNKNOWN wiiser

int sat(truth_assignment t, clauses c)

{

vari abl e v;

int tenp;

tenp = partial _evaluate(t,c);
I f (tenp==SAT) return SAT;
I f (tenmp==UNSAT) return UNSAT,;

v = pick_unassigned variable(t);

/* Must be unassigned variables, otherw se partial _eval uate
woul d have returned SAT or UNSAT. */

assert (v!=NULL);

assign_false(v,t); /* AssignvtoOint */
if (sat(t,c)==SAT) return SAT,;

/* Not satisfiable when v=0, try v=1. */
unassign(v,t);

assign_true(v,t);

if (sat(t,c)==SAT) return SAT,;

/* Not satisfiable regardless of what we assign to v. */
/* Therefore, this (sub-)problemisn’t satisfiable. */
unassign(v,t);

return UNSAT;

As an implementation note, one could also write plaet i al _eval uat e function to return
the clauses that result from plugging in the truth assignm&his clause list is what would be
passed to the recursive callsstat . Implementing that way means the partial evaluation wotk ge
ammortized over the various partial assignments. The diolens that you'd need to either save
the old clause list on a stack, so that you can restore yourqueclause list, or have code to undo
the effect of the partial evaluation.

This is a natural and easy way to write a SAT solver, and igypnetich what everyone did for
the past 30 years or so. The main question would be how to pigk@d” unassigned variable,
and various tricks to know when you can avoid making one geeircall or the other. Practical,
complete SAT-solving largely stagnated.

3 Non-Chronologic Backtracking — Inspiration

One of the big breakthroughs was non-chronologic (aka atdlrected) backtracking. This is
normally explained along with the unit clause rule, butdégnore that for now. Doing so makes
it much easier to see the basic idea.

Suppose you ran our backtracking solver on the followingdp|em:
(a+2z)(b+c+d+---+x+Y)(2)

and suppose that the ck_unassi gned_vari abl e function happens to pick the variables in al-
phabetical order.

You'll see that the code first tries= 0, then it will spend a long time trying all’2 possible
assignments tb, ...,y, with each of these searches eventually failing becaus® impliesz=1
from the first clause, but the last clause saysO0.

You can imagine many clever tricks for avoiding this probl@nd that's what people did, and
some of these tricks are generally useful). However, whapigedidn't see for a long time, prob-
ably because the easy programming structure of the reeupsivktracking code blinded them to
this possibility, is that one way to avoid this problem is batktrack” in a weird way. Intuitively,
we get stuck trying to find an assignmenizt@and the only relevant variables aa@ndz. All the
intermediate assignments 0. ..,y were irrelevant. So rather than backtrack “chronologyéall
(backing up to the most recent untried possibility in theursive call stack), we should backtrack
“non-chronologically” or “conflict-driven” by backing umtthe most recentlevant untried pos-
sibility. So, we’d try assigning = 0, and therb = 0, etc., down to/ = 0, where we’'d backtrack
and tryy = 1 (because of the big clause), and tzen0, which fails, causing us to ty= 1. When
that fails, too, we’d like to figure out somehow that the assignts tdo, ...,y aren’t relevant, and
backtrack all the way back to tryirg= 1.

How do we determine what'’s relevant? In general, this tuuist@ be tricky. If you believe
that, jump to the next section. If you want to see why this iglheonsider:

(a+y)(b+2)(c+d—+---+x)(y+2)(a)

Again, assuming that we pick the variables in alphabetic#io we'd trya= 0,b =0, and so on,
down tox = 0, oops, backtracks = 1. At that point, we'd tryy = 0, and therz = 0, which fails
the second claus@ + z), so we'd backtrack and trg= 1, which fails the last clausg/ + z), so

we backtrack and try = 1, which fails the first clauséa+y). So, how far back to we backtrack
now? If we look at the clause that faileh + y), it's not obvious that the most recemglevant
untried possibility is actually to tryp = 1. What we're seeing is that, in general, what variable
assignments were relevant is not local to the clause thailisg at a given point in the search;
instead, it depends on the history of the backtracking. imdékampleb is relevant becaude= 0
forcedz= 1, which eliminated the possible solution fpe= 0. This sort of analysis is expensive in
general, and the research community assumes it's thenebbrfeasible.

4 Conflict and the Unit Clause Rule

It turns out there is a special case in which it's easy to telhtithe relevant variable assignments
were. If after making an assignment, the resulting claus&stithat a given variable be both true
and false at the same time, this is called “conflict”. For egbeywhen we looked at:

(a+2z)(b+c+d+---+x+Yy)(2)

4

as soon as we assignad= 0, then the(a+ z) clause would insist that = 1, but the(z) clause
insists thatz = 0, so we have a conflict. In some sense, a conflict is a one-legklhead in
our backtracking, in which we see immediately that bothgassients t@ are already guaranteed
to fail, given our assignments so far. Therefoupon seeing a conflict, we can look at only
the clauses involved in the conflict, and backtrack to the mdsrecent untried decision in
those clauses So now, in our example, as soon as we assigned, we’'d detect a conflict and
immediately backtrack to the most recent untried possjbitiamelya = 1.

In the messier example:

(a+y)(b+z)(c+d+---+x)(y+2)(a)

we’'d assigna = 0, thenb = 0, etc. down togy = 0, which produces a conflict an so then we try
y =1, which fails (but doesn’t produce a conflict), so we donfbaeously backtrack all the way
back toa, and we inefficiently backtrack only up to trying= 1, etc.

Hmm... we've seen that our conflict analysis is basicallking ahead slightly for cases where
avariable is forced to be true and false at the same time. \igheemariable forced to take a value?
When the partial assignment causes all the other literadsalause to be false, so the last literal
must be true. For example, in the clause-d +--- +x), after tryingc=d =--- =w=0, the
clause has only the unassigned litegado we are forced to hawe= 1. A clause in which only one
literal is left unassigned is called a “unit clause”, and ‘theit clause rule” says to immediately
make the satisfying assignment to that unassigned litgirade it's forced. The unit clause rule is
in some sense a generalization of the lookahead we're usidgfine conflicts.

Armed with the unit clause rule, both of our examples areesbinstantly. For the first one:

(a+2z)(b+c+d+---+x+Yy)(2)

The last clause is unit, immediately forciag- 0, which makes the first clauga+ z) unit, forcing
a= 1. Then, we proceed to pick assignmentstdahroughx, which then triggers the unit clause
rule again to makg = 1. For the messier example:

(a+y)(b+2)(c+d=+---+x)(y+2)(a)

the last clause is unit, forcirg= 0, which makes the first clause unit, forcipg- 0, which forces
z= 0, which forcedo = 1. Then, we pick an assignment fothroughx.

5 Implication Graphs

As we just saw, the unit clause rule can cause a cascade efifgeriable assignments. In order
to be able to backtrack non-chronologically, we need sometwheep track of and “see through”
these forced assignments. The data structure inventedttosiis called an “implication graph”.
An implication graph is a DAG (directed, acyclic graph). Megs are labeled with an assign-
ment to a variable. There are two kinds of vertices: decisenices, which indicate a decision
the backtracking search has decided to try, and deducedptiethvertices, whose value is forced

by the unit clause rule. An edge leads from one vevieto another vertexs if the assignment at
vy was (part of) what became the unit clause that foneedror example, returning to our messier
formula:

(a+y)(b+2)(c+d+ - +X)(y+2)(d)

the unit clauses immediately generate a bunch of implietices:.

la @ a+ly @ y+1z @ b+z @
As we start the backtracking search, we then start gengrdgénision vertices, which | will draw
with squares. Note that decision vertices have no inconlgge, since they were decisions of the
search procedure, not implications of other decisions:

_/ _J _

c=0 x=1
d=0

w=0
21
The assignment of = 1 is another implied vertex. | didn't bother labeling all tagows with
the big(c+d+---+X) clause that forced that assignment. Note that I've putlittimbers on
the nodes. These numbers are “decision levels”, which atdibow deep in the backtracking we
are. We will use these to tell how far back to backtrack noroieblogically, and what parts of the
graph to erase when we backtrack.

6 Adding Learning

We need one more wrinkle to make everything work right. Thiskte is called “learning”, and it
will magically make non-chronologic backtracking happliote that our above example has been
solved without requiring a backtrack, so we’ll need a momaglex example. Consider:

(a+x+Yy)(@a+b)(b+c+d)(d+e+ f)(X+Y) (X+y) (X+Y).

Again, assume we’ll pick the variables in alphabetical arli¢e’ll therefore start with trying= 0,
which impliesb = 1; then, we’ll tryc = 0, which forcesd = 1; then, we’ll trye = 0, which forces

6

f =1, yielding the implication graph:

a=0
1

e=0
3

The next decision ig = 0, which immediately produces conflict:

CONFLICT!

Cut gives learned clau:

x=0

a=0

N

c=0

e=0
3

The key to learning is to note that the graph shows us thaaioevariable assignments led
inexorably to the conflict. If you trace backwards from thaftiot in the implication graph, all
decision variables that are ancestors of the conflict ar¢ edwesed the problem. In our example,
the problem is the assignmerds= 0 andx = 0. Note that the decision levels 2 and 3 were
completely irrelevant, and the implication graph showshis. tLearning is the process of adding
a new clause (a “learned clause”) that tells us not to eves Aav0 andx = 0 again: we add the
clause(a-+x). In general, any cut of the implication graph between thesitee variables and the
conflict is a perfectly good learned clause.

Note that it’s not clear in general which cut(s)/clause(s should learn from a given conflict.
If we cut very close to the decision variables, this is go@tduse in the future, the learned clause
will catch us early and prevent us from going down this pathimgHowever, a learned clause near
the decision variables won’t prevent us from bypassing ¢laened clause if we end up choosing
decision variables in a different order. Learning too maayses will slow down the SAT solver,
because the set of clauses will grow too big. All in all, tlsi&h open research question.

One rule that people agree on, though, is to always learruaeldat will force the search in a
different direction, if we were to attempt to choose theafales in the same order. Such a clause is
called an “asserting clause”. You can guarantee that aelausserting by having the cut separate

I

7

the most recent decision vertex from all of its deduced esti Then, you backtrack to the most
recent relevant decision vertex before that.
7 Non-Chronologic Backtracking

Now, at last, we're ready to look at full non-chronologic kmacking. Returning to our running
example, we add the learned asserting clause to our clauses:

(a+x+y)(a+b)(b+c+d)(d+e+ f)(X+Y)(x+Y) (X+y)(a+Xx),
and then we backtrack back to decision level 1. Again, wetgy 0, but this time, the learned

clause becomes unit and forces: 1, which produces a conflict: (I've left the decision levelizla
3 stuff here, out of laziness, but in reality, those nodesliexh deleted.)

@ CONFLICT!
a=0 | _|
1
c=0 |
2
e=0 | _|
3

Now, the asserting clause is just). We add that clause, and then backtrack all the way to the
beginning, and eventually get:

which is the satisfying assignment.

