
Designing an Introductory Programming Course to
Improve Non-Majors’ Experiences

Jessica Q. Dawson
University of British Columbia

jqdawson@cs.ubc.ca

Meghan Allen
University of British Columbia

meghana@cs.ubc.ca

Alice Campbell
University of British Columbia

alicecam@cs.ubc.ca

Anasazi Valair
University of British Columbia

sazi.valair@ubc.ca

ABSTRACT
Demand for computing courses from students in disciplines outside
of Computer Science is growing. This growth has created increas-
ing challenges in offering one-size-fits-all CS1 courses. We found
that non-CS majors’ experiences and outcomes in our existing CS1
course were worse than those of intended CS majors. In response,
we developed an introductory programming course, CS0.5, aimed
at meeting the needs of the diverse population of non-CS major
students interested in our courses. In this paper, we present the
motivation, curriculum design, and evidence of effectiveness for
this new course. We describe the specific design decisions we made
in response to the experiences of non-CS majors in CS1. We also
demonstrate that students’ outcomes in CS0.5–measured in terms
of students’ pass rates, satisfaction, and attitudes–all not only im-
prove compared to non-CS majors in CS1, but also largely match
those of CS majors in CS1. Finally, we present student feedback,
gathered through surveys and Appreciative Inquiry focus groups,
that illustrates how our curriculum design choices better meet our
non-major students’ needs. The most-valued course design ele-
ments, as identified by focus group participants, provide insight for
other CS educators who are designing similar courses.

CCS CONCEPTS
• Social and professional topics→ Computer science educa-
tion;

KEYWORDS
CS for all; non-majors; curriculum design; CS1; blended-learning;
evaluation; appreciative inquiry
ACM Reference Format:
Jessica Q. Dawson, Meghan Allen, Alice Campbell, and Anasazi Valair. 2018.
Designing an Introductory Programming Course to Improve Non-Majors’
Experiences. In SIGCSE ’18: The 49th ACM Technical Symposium on Computer
Science Education, Feb. 21–24, 2018, Baltimore, MD, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3159450.3159548

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCSE ’18, Feb. 21–24, 2018, Baltimore, MD, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5103-4/18/02. . . $15.00
https://doi.org/10.1145/3159450.3159548

1 INTRODUCTION
Computer Science departments have seen dramatic increases in
enrollments. This growth has been driven by increasing numbers
of CS major enrollments, but also by increasing demand for com-
puting courses from non-CS majors who recognize the mounting
importance and relevance of computing in their own fields [4, 17].
At our institution, this growth has created new challenges to provid-
ing introductory programming courses that fit the needs of all our
students. As our student population expands, we want to ensure
we offer courses that support diversity in computer science and
that students have positive experiences in our courses regardless
of their academic area of interest.

Prior to 2016, our university offered only one first-year, intro-
ductory programming course (CS1). It is 4-credits, and serves ap-
proximately 1500 students per year, including students who intend
to be CS majors, students who are required to take the course for
their major, and students who are taking the course as an elective.
In our CS1 course, which is based on the How to Design Programs
curriculum [9], students learn to systematically design readable,
well-structured, and well-tested programs using functional teach-
ing languages. While the course has been effective and student
feedback has been largely positive, anecdotally, course instructors
reported that non-CS majors had worse outcomes, and were more
likely to say that they did not enjoy the course, that the pace was
too fast, and that the workload was too high.

To serve these students, we proposed a new, first-year, computer
science class (CS0.5) about systematic program design for non-
major students. Our approach to the CS0.5 curriculum design was
driven by the assertion that different disciplines see the world
differently [14]. In CS1, we emphasize the core programming and
software design skills and concepts that are necessary for computer
scientists, but for non-majors we decided that it was more useful
to focus on how programming can be used in their own academic
discipline. We aimed to shift the emphasis without compromising
the integrity of the authentic programming and software design
skills that students learn in CS1, particularly as non-majors may
only take one computing course.

CS0.5, launched in September 2016, is a 3-credit course that uses
a blended-learning approach and is taught in Python. It covers
about 40% of the learning outcomes of CS1 over six modules, CS0.5-
specific learning outcomes over two modules, and a CS0.5-specific
project that is designed so that each student can apply their program
design skills to their own area of interest.

Paper Session: Courses for Non-Majors SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

26

https://doi.org/10.1145/3159450.3159548
https://doi.org/10.1145/3159450.3159548

In this paper, we report on our experience designing, launching,
and evaluating the first two semesters of CS0.5. First, we report on
an investigation that examined the differences between CS and non-
CS major students’ pass rates in and satisfaction with CS1. We also
report differences in CS1 students’ attitudes towards computing
that we gathered using a validated survey tool [7]. In the context
of related work, we describe the CS0.5 curriculum and the design
decisions we made in response to the experiences of non-CS majors
in CS1.We demonstrate that students’ outcomes–measured in terms
of pass rates, satisfaction, and attitudes–all improve with CS0.5
when compared with non-CS majors in CS1. We present student
feedback, gathered through surveys and Appreciative Inquiry [19]
focus groups, that illustrates how our curriculum design choices
effectively target non-major students’ needs. Finally, we discuss
student-identified areas of improvement for CS0.5.

2 MAJORS AND NON-MAJORS IN CS1
In 2015/2016, we conducted an evaluation of CS1 to help us better
understand the non-CSmajor population of the course1. We wanted
to identify similarities and differences between the non-major stu-
dents’ experiences and course outcomes, and those of intended CS
majors, in order to guide our development of CS0.5.

2.1 Pass, fail and withdrawal rates
Weexamined the proportion of studentswho passed CS1 in 2015/2016
Term 1 and Term 2 (n = 1225; 39% female2). We included in the
enrollment total all undergraduate students who withdrew within
the first two weeks, which is the normal deadline to drop a course
without it appearing on their transcript. Overall, 74% of all students
passed the course, with 19% failing and 7% withdrawing.

At our institution, most students don’t declare their major until
after first year, and so we are unable to distinguish intended majors
from non-majors using the enrollment data available. As a proxy for
comparing CS majors and non-majors, we used the most common
faculties that offer majors in CS: Science, Arts, and Commerce3. Stu-
dents from other faculties or schools, such as Forestry or Education
or Engineering, also enroll in CS1, but in much smaller numbers.

We found that Science and Commerce students had better pass
rates than the overall average, both at 81%. This is 10% higher than
for students in Other programs, of whom 71% passed, and 21%
higher than for students in Arts, of whom only 60% passed. At
our university, the majority of students who major in CS are in
the Faculty of Science, although many Science students who take
CS1 are also non-CS majors. Roughly two thirds of the Commerce
students in CS1 in 2015/2016 were in a combined CS and Business
program. Amuch smaller proportion of CS majors are in the Faculty
of Arts. Thus, the lower pass rates for students in Arts and Other
programs suggest that non-CSmajors were disproportionatelymore
likely to fail or withdraw from CS1.

1All evaluations were approved by our institution’s Behavioural Ethics Review Board.
2Our gender data is from our student information system, which presents gender as
binary, and does not accurately represent students with non-binary gender identities.
3We also offer a second degree program in computer science for mature students with
previous degrees (n=79 in CS1 2015/2016). These students enter as CS majors, and are
required to take the existing CS1 course with their cohort. These students are not as
useful as a comparison group with non-major students, and have been excluded. We
also excluded graduate students, who number only one or two per year.

2.2 Student feedback from surveys
At the end of each term we conducted an online survey to gather
information about students’ CS1 experiences, which we used to
inform the CS0.5 course design. The survey was part of a larger
evaluation that extended over the term, and it included a range of
questions aimed at course improvement. For this paper we were
most interested in exploring the differences between students at the
end of the course as opposed to individual shifts from beginning
to end. Thus, we present here only results from the end-of-term
survey and only questions that relate to the measures of interest in
this paper, namely satisfaction and attitudes towards computing.

A total of 626 (55%) of the 1134 students registered at the end of
term participated. We asked respondents to specify their intended
major(s): those who chose CS as an intended major were classified
as CS majors (50%) and all others as non-CS majors (50%). We used
unpaired Welch’s t-tests to compare the satisfaction and attitudes
of CS majors and non-CS majors. See Figures 1 and 2; all questions
were optional, so the n varies for each group and question.

Satisfaction:We asked students to rate their satisfaction with
various elements of the course. We found that non-CS majors were
significantly less satisfied than CS majors with their overall experi-
ence, their expected grade, the time and effort that they put into
the course, and the skills and knowledge that they learned.

Attitudes towards computing:We asked respondents a subset
of questions from the Computing Attitudes Survey (CAS) [7], a val-
idated tool to measure students’ expert-like attitudes towards com-
puting. It consists of statements on which there is an empirically-
established expert opinion, and which cluster into five empirically-
determined subscales measuring different facets of students’ atti-
tudes. Respondents rate their agreement with each statement on a
5-point likert scale (strongly agree to strongly disagree).

Figure 1: Unpaired t-test of satisfaction in CS1 (2015/2016);
1=very unsatisfied; 5=very satisfied.

Figure 2: Unpaired t-test of students’ agreement with expert
opinions on CAS factors in CS1 (2015/2016).

Paper Session: Courses for Non-Majors SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

27

We used a subset of the statements from the three subscales most
related to the attitudes we wanted to foster in non-majors. The real-
world connections subscale (4 statements) focuses on relationships
between computing and the real world, e.g. "I think about the Com-
puter Science that I experience in everyday life," where the expert
opinion is agreement. The personal interest subscale (3 statements)
focuses on students’ enjoyment and engagement with computing,
e.g. "I enjoy solving Computer Science problems," where the expert
opinion is agreement. The problem-solving fixed mindset subscale
(7 statements), which we call growth mindset, focuses on students’
confidence and mindset when solving computing problems, e.g. "If
I get stuck on a computer science problem, there is no chance I’ll
figure it out on my own," where the expert opinion is disagreement.

We scored the students’ responses to the CAS statements follow-
ing the standard procedure [7]. We collapsed the responses into a
3-point range (disagree, neutral, agree), and then compared each
student’s response to the established expert opinion; a student’s
score on each subscale is calculated as the proportion of statements
belonging to that subscale where the student’s response matched
that of the experts. For each factor, a higher percent agreement
suggests more expert-like attitudes, i.e., more personal interest, a
stronger appreciation of the relationship between computers and
the real world, and more confidence and a more growth-oriented
mindset when solving problems. We compared the scores for each
group using Welch’s t-tests, and found that non-CS majors had
significantly less expert agreement than CS-majors on all subscales.

Student comments: To better understand non-CS majors’ ex-
periences in CS1 and the reasons for the differences in satisfaction
and attitudes towards CS, we open-coded their responses to free-
form questions about improvements to CS1, their experiences with
the course lectures and labs, and their other comments.

We found that non-CS majors commonly expressed concerns
about the difficulty of CS1 (24% of all respondents), the pace of the
course (17%), and the high workload required of students (14%).
Many of these students found it difficult to balance CS1’s work-
load with their other courses, e.g. "The amount of information is
overwhelming for people who had never programmed before. The
course load is way [too] much, I personally have 4 other courses
and it’s taking up way too much time."

10% of all respondents specifically mentioned that they did not
feel that CS1 was designed for non-majors or students without
prior programming experience. Two of these students explicitly
expressed a desire for an introductory programming course better
suited to them: "Perhaps if there was a class that taught non-CPSC
students how to program in Python and how that would be relevant
for any degree [choice], it would be more attractive and get people
hooked more"; "I wish there was a course that taught this at a slower
and more applicable pace for non-cpsc students."

2.3 Summary
Our evaluations confirmed that students in degree programs with
fewer CS majors failed the course at much higher rates. The surveys
further confirmed that non-majors were less satisfied than majors
with their overall experience in CS1, their expected grade, the
workload, and what they learned in CS1. Non-majors also had
less expert-like attitudes towards computer science. Not all of these

differences are surprising. We would expect, for example, that CS
majors might be more interested in computing than non-majors.
However, being less interested in computing should not lead to a
less satisfactory experience with the introductory course, nor does
it mean that these students should be more fixed in their mindsets
or be less able to appreciate the connections between computing
and their everyday lives.

3 CS0.5 CURRICULUM DESIGN
The findings from the surveys, combined with CS1 instructor re-
flections and consideration of similar courses elsewhere, led us to a
number of goals for CS0.5. We wanted the course to be relevant and
engaging to students with various interests, follow the core curricu-
lar approach of CS1, have a flexible schedule and slower pace, foster
positive attitudes about CS, be scalable to at least 500 students per
term, and encourage students to reflect on their learning.

One approach to making CS courses relevant and engaging to
non-CS students has been context-based CS1 courses (e.g. [1, 6, 10,
11, 13, 16]). However, rather than make multiple context-specific
courses for students in different fields, we wanted to create a single,
scalable course that provides flexibility in application topic area.
Another common approach has been to use data analysis as a driv-
ing problem to introduce computer science concepts, programming,
and data visualization (e.g. [2, 3, 18]). We wanted to maintain the
focus on systematic program design from our CS1 course, while
integrating the ideas of data analysis and visualization into CS0.5.
Therefore, our main learning goal for CS0.5 is for students to com-
plete a data analysis and visualization project in which they use
computation to systematically solve a problem from a discipline
of their choice. We centered the course design around a project
because projects have been found to increase student engagement
[12]. Every content module of the course focuses on the systematic
program design skills and concepts that students will need to use in
the project. Each student chooses a topic of interest for their project;
we hoped that the ability to personalize the project would improve
students’ attitudes about computer science, especially students’
personal interest in computing and the applications of computing
to the real world.

To address concerns about workload and pace we reduced the
overall number of learning goals in CS0.5 compared to CS1, and
reduced the overall credit count compared to CS1 (3-credits vs.
4-credits). The CS0.5 students learn enough systematic program de-
sign to design a readable, well-structured, and well-tested program
that uses Python’s CSV module to read a .csv file, defines appro-
priate data types, analyzes the data to answer a specific question,
and produces a graph to visualize the results. However, they do
not tackle the latter 60% of the CS1 learning outcomes which cover
more advanced topics (e.g. trees and generative recursion).

We chose to offer CS0.5 as a blended, reduced-face-time course,
as we hoped that increased flexibility would lead to more accessi-
bility for non-majors. Although the workload was the same as it
would be for a non-blended course of the same credit count, the
students have more control over when and where they complete
their coursework. They attend one mandatory 80-minute lecture
and one mandatory 50-minute tutorial per week (compared to two
80-minute lectures or three 50-minute lectures and one mandatory

Paper Session: Courses for Non-Majors SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

28

3-hour lab in CS1). In each content module students are assigned
pre-class work consisting of reading custom course materials, solv-
ing problems using the new concepts, and writing and submitting a
brief summary of what they learned and at least one question about
the module or how it relates to the rest of the course. In lecture we
use Just-In-Time teaching [15] and deliver short mini-lectures to
address the questions raised by students in their pre-class work.
Students spend the majority of lecture time working in small groups
to solve problems on a worksheet package; we usually interject
with one or two 5-10 minute mini-lectures and/or wrap-up discus-
sion that focuses on key problems from the worksheets. Completed
worksheet packages are collected in the following lecture, graded
for completion, and returned electronically. In tutorials, students
work in small groups on weekly homework assignments with TA
support. They also complete weekly peer review assignments that
require them to solve a problem, assess three of their peers’ solu-
tions, and complete a self-assessment of their own solution.

We encouraged group work so that the students would have peer
support if they started to feel discouraged. We also discussed the
growth mindset [8] in class to foster positive attitudes, although
we did not teach mindsets explicitly, as done by Cutts et al. [5]. To
encourage students to reflect on their own learning, we included
reflective questions on each worksheet package. For example, in
one package we asked them "Which parts of the course are you
finding the most difficult?" and "What is your strategy for mastering
the parts of the course that you are finding the most difficult?".

4 CS0.5 YEAR ONE EVALUATION
We offered CS 0.5 for the first time in 2016/2017 Term 1 to 101
students (51% female), and then in Term 2 to 110 students (56%
female); CS1 was offered in parallel to 1369 undergraduate students
(39% female). We marketed CS1 to students intending to major in
CS, as well as non-major students who felt it matched their needs
and interests. We marketed CS0.5 as an alternative for non-majors
who were interested in an introductory programming course that
would allow them to solve problems in the discipline of their choice.

In both terms in 2016/2017 we conducted an evaluation of CS0.5
and CS1 to examine whether CS0.5 was successful in improving
outcomes–measured in terms of pass rates, satisfaction, and attitudes–
relative to the non-CS majors who remained in CS1. We conducted
end-of-term surveys, and in CS0.5 we also ran Appreciative Inquiry
focus groups to gain deeper insight into the students’ experiences
in the course and identify what they most valued about its design.

4.1 Proportions passing CS0.5 and CS1
The pass rates for each degree program are shown in Table 1. Over-
all, 83% of all students passed CS0.5 (n = 211) and 17% withdrew
or failed. This contrasts with CS1 (n=1369), where 75% passed and
25% withdrew or failed. We saw notable increases in CS0.5 pass
rates for all degree programs compared to CS1: the proportion was
7% higher for Science students, 15% higher for Arts students, 16%
higher for Commerce students, and 12% higher for Other students.
The outcomes in CS1 were fairly consistent with the previous year,
differing by 5% or less for most groups. This suggests to us that
the factors that influence different groups’ success in CS1 are fairly
steady year over year. A notable exception was the 13% increase

Table 1: Proportion passing in CS0.5 and CS1 in 2016/2017.

Science Arts Commerce Other
CS0.5 88% 78% 93% 96%
CS1 81% 63% 77% 84%

in the proportion of Other students passing CS1, which may have
been caused by more students in Other programs who expected to
struggle in CS1 preferentially choosing CS0.5 instead.

4.2 Survey feedback in CS0.5 and CS1
In CS0.5 132 (66%) of the 201 students still registered at the end
of term completed the survey, while in CS1, 726 (56%) of the 1307
students still registered completed it. We again asked respondents
in the CS1 survey to declare their intended major(s): those students
who chose computer science as at least one of their majors were
classified as CS majors (52%), while all other respondents were
classified as non-CS majors (48%).

We asked students in both courses the same set of satisfaction
and CAS [7] questions as in the previous year’s CS1 survey. We
used one-way between-subjects ANOVAs to examine differences in
satisfaction and attitudes between CS0.5 students and CS and non-
CS majors in CS1. We performed post-hoc pairwise comparisons
using the conservative Bonferroni correction. See Figures 3 and 4;
all questions were optional, so the n varies for each group.

Satisfaction: Students’ satisfaction varied significantly for over-
all experience, the expected grade, the amount of time and effort
put into the course, and the skills and knowledge learned.

Figure 3: Between subjects ANOVA of satisfaction in
2017/2018; 1=very unsatisfied; 5=very satisfied.

Figure 4: Between subjects ANOVA of students’ agreement
with expert opinions on CAS in 2017/2018.

Paper Session: Courses for Non-Majors SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

29

Post-hoc comparisons showed that the satisfaction of non-CS
majors in CS1 was significantly less than both CS majors in CS1 and
CS0.5 students in their overall experience in the course (p < .001
and p < .01 respectively), their expected grade (both p < .001),
the amount of time and effort (p < .05 and p < .001 respectively),
and the skills and knowledge (p < .01 and p < .001 respectively).
The satisfaction with the time and effort required was also less
for CS majors in CS1 than students in CS0.5; there were no other
significant differences between these two groups.

Attitudes towards computing:We found significantly differ-
ent levels of expert agreement on the personal interest, real world
connections and growth mindset subscales.

The post-hoc comparisons showed that non-CS majors in CS1
scored significantly lower than both CS majors in CS1 and CS0.5
students on the personal interest (both p < .001), real world con-
nections (p < .001 and p < .05 respectively), and growth mindset
(both p < .01) subscales. CS majors scored significantly higher on
the personal interest (p < .01) measure than CS0.5 students; we
found no differences between these groups on the other factors.

CS0.5 student comments: To explore the extent to which the
observed outcome improvements could be explained by our curricu-
lum design decisions, we analyzed students’ responses to free-form
questions about suggestions for improvement, their experiences
with the lectures, tutorials, and project, and additional comments.

69% of all respondents remarked on how the project allowed
them to apply skills in the course to their personal interests, e.g.
"The project made me feel like everything I had learned was put
towards a very interesting end-goal. It allowed me to understand
the greater contexts within and beyond computer science and how
it can be applied in different areas of life".

Students’ comments also suggest that the course design sup-
ported them in developing a growth mindset in computing, with
33% of all respondents describing growth mindset related concepts
or experiences. For example, some describe improving their skills
tackling difficult problems: "I improved my ability to systematically
work through a problem, looking at each specific aspect instead of
immediately trying to go for the big picture, as that can be over-
whelming." Others commented on the positive feelings associated
with overcoming challenges. For example, one student wrote "the
feeling of accomplishment whenever I figured out how to solve
a problem is amazing. Anytime I mastered a new skill in general
was great." Also related were students’ comments on the benefit
of having multiple opportunities to interact with course concepts
and recognize that they needed help over time, e.g. "I love that ...
we had a lot of chances to learn the material and ask for help. [If]
we didn’t understand it during pre-reading we could understand it
during class, and then during the peer review, and then during the
tutorial, and then during the practice problems."

4.3 CS0.5 student focus group feedback
In addition to comparing non-CS majors experience in CS0.5 with
CS1 through the surveys, we also wanted to deeply explore the
students’ learning experience in CS0.5, identify the elements of
the course design that course participants most valued, and so-
licit participant-driven ideas for improvements. To answer these
questions, we conducted focus groups in CS0.5 using Appreciative

Inquiry (AI) [19], an action-driven, participatory research method-
ology that focuses on what’s working well and drives change by
enhancing current strengths.

Focus group design:We conducted three 3-hour sessions with
a total of 23 students and five teaching assistants. We conducted
the first two sessions in the month following the first offering, and
the third session the month following the second offering. Two
facilitators led each session.

AI uses a four-phase process centered on an affirmative topic, in
our case "CS0.5 at its best." In each 3-hour session, a different group
of participants completed the first three phases of this process. In
the first phase (Discovery), the participants conducted storytelling-
based interviews in small groups to solicit stories that illustrated
CS0.5 at its best. Each storyteller also identified what they valued
about themselves or others in their story. The small groups then
identified the three to five most salient themes from these stories
and wrote them on a large piece of paper to share with the whole
group via a gallery walk. Each participant voted on their top priority
themes and we carried the most highly-rated themes into the next
phase. The participants then formed new small groups, based on
the priority theme that they were interested in, and collaboratively
generated a drawing and a present-tense, one-sentence description
(a provocative proposition) of how they envisioned CS0.5 at its best
in relation to their theme (Dream phase). Finally, the participants
brainstormed course design ideas that could enable this ideal future
state (Design phase). The final AI phase, Delivery on changes, is too
large to conduct in a 3-hour focus group; instead, course staff are
using the findings to inform future course revisions.

Findings:We found several common themes that participants
valued. Many of these aligned with our course design intentions,
while some gave us new insight into non-majors’ perspectives on
their experiences learning CS that we intend to bring forward as we
continue to iterate on the course. The project came up frequently,
with groups using themes of ‘versatility’, ‘flexibility’, ‘universal
appeal’ and ‘personal connection’ to describe the project and their
appreciation of being able to apply new knowledge to their own
interests. Envisioning what this could look like, one group wrote
the provocative proposition that CS0.5 "enables students to incor-
porate their own interests and teaches skills that are relevant to
their personal goals". Many felt that the project already does this
successfully, but the design phase generated several suggestions for
further improvement, e.g. collaborating with lab courses to use real
observational data, grouping sections into disciplinary clusters, or
providing students with more ways to showcase their final projects.

Several themes addressed the ‘availability’ (two groups), ‘ac-
cessibility’, and ‘diversity’ of resources, which the respondents
appreciated because they could get the type of help they needed
when they wanted it. One group’s proposition described CS0.5 as
"students actively learning how to think systematically by coding
whenever they want, wherever they want, whatever they want."
Design brainstorming in this area generated many new ideas for
resources, such as weekly Q&A live streams, online chats for stu-
dents who had trouble attending office hours, and dedicated CS0.5
study spaces to work with their peers outside of class time.

The growth mindset arose through several common themes re-
lated to the challenges that students encountered with the course
concepts and assignments, and how they perceived these challenges:

Paper Session: Courses for Non-Majors SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

30

‘perseverance’ (three groups) repeatedly came up as a quality that
participants valued in themselves at their best in the course, a
fourth group raised the related quality of ‘self-reliance’, and two
groups cited the challenge and benefit of ‘independent learning.’
One group’s proposition focused on students being "motivated
by success to use resources and pursue solutions to challenging
problems." Complementary to this focus on the individual were
themes focused on the benefits of interactions with others: ‘team-
work’, ‘support system’, ‘community’ and ‘peer review.’ Along these
lines, one group’s proposition described "students asking each other
questions, giving feedback, having discussions, and explaining their
work," while another described "easily accessible, virtual and in-
person resources to facilitate independent and collaborative student
learning." These themes prompted many suggestions to enable even
more avenues to support students and encourage them when things
get tough, such as more opportunities for peer feedback, actively
helping students get to know each other better, and new resources
like the online chats or dedicated meeting rooms mentioned earlier.

5 DISCUSSION AND CONCLUSIONS
Our evaluation of the first two semesters of CS0.5 confirms that
our course design decisions were successful in improving students’
outcomes in CS0.5 relative to non-CS major students in CS1. The
pass rates of students from all programs improved considerably in
CS0.5 over CS1. Not only did students’ satisfaction and attitudes
improve in CS0.5 when compared with non-CS majors in CS1, we
were encouraged to find that these were often in line with those of
the CS-majors in CS1.

Survey respondents’ reported satisfaction and comments suggest
that CS0.5 students found the workload to be much more manage-
able than non-CS majors in CS1. Compared to non-CS majors in
CS1, CS0.5 students were more satisfied not only with the time
and effort that they expected to put into the course, but the grade
they were able to earn with that effort, and in their overall expe-
rience. In addition, CS0.5 students were more satisfied with the
skills they learned than non-CS majors in CS1. This suggests that
the reduction in the number of learning goals made the course
more manageable for non-CS majors, without hurting the course’s
perceived substance or value. Related to workload, the flexibility of
the work-anywhere approach afforded by the blended classroom
was identified as particularly valuable by several AI groups.

CS0.5 students’ attitudes towards computing also improved on
all measures. Compared to non-CS majors in CS1 we saw more
expert-like growth mindsets, not only in the CAS scores, but also
in the AI and survey comments made by CS0.5 students about over-
coming challenges. The CS0.5 students also showed an increased
interest in Computer Science and ability to connect computing to
real world applications. The AI and survey comments revealed that
the personalized project was particularly effective at promoting
these attitudes and fostering positive experiences.

One limitation of this work is that the students who partici-
pated in evaluations may have been more engaged and thus some
measures may be positively overestimated. This is especially likely
in CS1, where instructors have noticed that many students who
fail the course simply disengage and stop attending. This possibil-
ity is further suggested since survey respondents’ pass rates are
higher than for the courses overall (by 11% in 2015/2016 and 10%
in 2016/2017 in CS1; by 8% in C0.5).

Appreciative Inquiry is not yet commonly used in CS education,
but we hope our experience will encourage others to try using
AI. The students provided rich, actionable feedback and we were
impressed with their deep reflections on their learning experiences.

We plan to continue to evaluate the course via surveys and Ap-
preciative Inquiry focus groups, and to respond to student feedback
via curricular and pedagogical changes. We are happy to share our
course materials; please contact the second author.

ACKNOWLEDGMENTS
We gratefully acknowledge the financial support provided by the
UBC Carl Wieman Science Education Initiative and by UBC Vancou-
ver students via the Teaching and Learning Enhancement Fund. We
thank Steven A. Wolfman, Albert Xing, Alfred Xing, Giulia Mattia,
and Erika Thompson for their contributions to this work.

REFERENCES
[1] Joel C. Adams and Randall J. Pruim. 2012. Computing for STEM Majors:

Enhancing Non CS Majors’ Computing Skills. In Proc. SIGCSE ’12. 457–462.
doi.org/10.1145/2157136.2157270

[2] Ruth E. Anderson, Michael D. Ernst, Robert Ordóñez, Paul Pham, and Ben Tri-
belhorn. 2015. A Data Programming CS1 Course. In Proc. SIGCSE ’15. 150–155.
doi.org/10.1145/2676723.2677309

[3] Austin Cory Bart, Ryan Whitcomb, Dennis Kafura, Clifford A. Shaffer, and Eli
Tilevich. 2017. Computing with CORGIS: Diverse, Real-world Datasets for Intro-
ductory Computing. In Proc. SIGCSE ’17. 57–62. doi.org/10.1145/3017680.3017708

[4] Tracy Camp, W. Richards Adrion, Betsy Bizot, Susan Davidson, Mary Hall,
Susanne Hambrusch, Ellen Walker, and Stuart Zweben. 2017. Generation
CS: The Growth of Computer Science. ACM Inroads 8, 2 (May 2017), 44–50.
doi.org/10.1145/3084362

[5] Quintin Cutts, Emily Cutts, Stephen Draper, Patrick O’Donnell, and Peter Saffrey.
2010. Manipulating Mindset to Positively Influence Introductory Programming
Performance. In Proc. SIGCSE ’10. 431–435. doi.acm.org/10.1145/1734263.1734409

[6] Zachary Dodds, Ran Libeskind-Hadas, and Eliot Bush. 2012. Bio1 As CS1: Evalu-
ating a Crossdisciplinary CS Context. In Proc. ITiCSE ’12. 268–272. doi.org/10.
1145/2325296.2325360

[7] Brian Dorn and Allison Elliott Tew. 2015. Empirical validation and application of
the computing attitudes survey. Computer Science Education 25, 1 (2015), 1–36.
https://doi.org/10.1080/08993408.2015.1014142

[8] Carol S. Dweck. 2006. Mindset: The New Psychology of Success. Random House.
[9] Matthias Felleisen, Robert Bruce Findler, Mathhew Flatt, and Shriram Krishna-

murthi. 2001. How to Design Programs. MIT Press.
[10] Christian T. Jacobs, Gerard J. Gorman, Huw E. Rees, and Lorraine E. Craig. 2016.

Experiences with efficient methodologies for teaching computer programming to
geoscientists. J. of Geoscience Ed. 64, 3 (2016), 183–198. doi.org/10.5408/15-101.1

[11] Cynthia Bailey Lee. 2013. Experience Report: CS1 in MATLAB for Non-majors,
with Media Computation and Peer Instruction. In Proc. SIGCSE ’13. 35–40. doi.
org/10.1145/2445196.2445214

[12] Patricia A. Marsh. 2007. What is known about student learning outcomes and how
does it relate to the scholarship of teaching and learning. Int. J. for the Scholarship
of Teaching and Learning 1, 2 (2007), 1–13. doi.org/10.20429/ijsotl.2007.010222

[13] Bruce A. Maxwell and Stephanie R. Taylor. 2017. Comparing Outcomes Across
Different Contexts in CS1. In Proc. SIGCSE ’17. 399–403. doi.org/10.1145/3017680.
3017757

[14] Dawn C. Meredith and Edward F. Redish. 2013. Reinventing physics for life-
sciences majors. Physics Today 66, 7 (2013), 38–43. doi.org/10.1063/PT.3.2046

[15] Gregor M. Novak. 2011. Just-in-time teaching. New Directions for Teaching and
Learning 2011, 128 (Dec 2011), 63–73. doi.org/10.1002/tl.469

[16] Lauren Rich, Heather Perry, and Mark Guzdial. 2004. A CS1 Course Designed
to Address Interests of Women. In Proc. SIGCSE ’04. 190–194. doi.org/10.1145/
971300.971370

[17] Linda J. Sax, Kathleen J. Lehman, and Christina Zavala. 2017. Examining the
Enrollment Growth: Non-CS Majors in CS1 Courses. In Proc. SIGCSE ’17. 513–518.
doi.org/10.1145/3017680.3017781

[18] David G. Sullivan. 2013. A Data-Centric Introduction to Computer Science for
Non-Majors. In Proc. SIGCSE ’13. 71–76. doi.org/10.1145/2445196.2445222

[19] Diana Whitney and David Cooperrider. 2011. Appreciative inquiry: a positive
revolution in change. ReadHowYouWant. com.

Paper Session: Courses for Non-Majors SIGCSE’18, February 21-24, 2018, Baltimore, MD, USA

31

doi.org/10.1145/2157136.2157270
doi.org/10.1145/2676723.2677309
doi.org/10.1145/3017680.3017708
doi.org/10.1145/3084362
doi.acm.org/10.1145/1734263.1734409
doi.org/10.1145/2325296.2325360
doi.org/10.1145/2325296.2325360
https://doi.org/10.1080/08993408.2015.1014142
doi.org/10.5408/15-101.1
doi.org/10.1145/2445196.2445214
doi.org/10.1145/2445196.2445214
doi.org/10.20429/ijsotl.2007.010222
doi.org/10.1145/3017680.3017757
doi.org/10.1145/3017680.3017757
doi.org/10.1063/PT.3.2046
doi.org/10.1002/tl.469
doi.org/10.1145/971300.971370
doi.org/10.1145/971300.971370
doi.org/10.1145/3017680.3017781
doi.org/10.1145/2445196.2445222

	Abstract
	1 Introduction
	2 Majors and Non-Majors in CS1
	2.1 Pass, fail and withdrawal rates
	2.2 Student feedback from surveys
	2.3 Summary

	3 CS0.5 Curriculum Design
	4 CS0.5 Year One Evaluation
	4.1 Proportions passing CS0.5 and CS1
	4.2 Survey feedback in CS0.5 and CS1
	4.3 CS0.5 student focus group feedback

	5 Discussion and Conclusions
	Acknowledgments
	References

