REPRINTED FROM:

Robotics and
Flexible
Manufacturing
Systems

Selected and revised papers from the IMACS 13th World Congress,
Dublin, Ireland, July 1991, and the IMACS Conference on
Modelling and Control of Technological Systems, Lille, France, May 1991

edited by

Jean-Claude GENTINA
Ecole Centrale de Lille
Villeneuve d'Ascq, France

Spyros G. TZAFESTAS

Computer Engineering Division
National Technical University of Athens
Athens, Greece

NH,
]
‘E

1992

NORTH-HOLLAND
AMSTERDAM ¢ LONDON e NEW YORK ¢ TOKYO




Robotics and Flexible Manufacturing Systems

J.C. Gentina and S.G. Tzafestas (Editors)

Elsevier Science Publishers B.V. (North-Holland) 187
© 1992, IMACS. All rights reserved.

Modeling Behavioral Dynamics in Discrete Robotic Systems
with Logical Concurrent Objects

Ying Zhang and Alan K. Mackworth *
Department of Computer Science
University of British Columbia
Vancouver, B.C. Canada
E-mail: zhang@cs.ubc.ca, mack@cs.ubc.ca

Abstract

Robots are generally composed of multiple sensors, actuators and electromechan-
ical components. Robots are reactive as well as purposive systems, closely coupled
with their environments; they must deal with inconsistent, incomplete and delayed
information from various sources. Such systems are usually complex, hierarchical
and physically distributed. Each component functions according to its own dynam-
ics. Even though a lot of work has been done on the design of control systems,
there is little understanding of the overall behavioral dynamics, which is emergent
from the interactions among various components and their environment. We have
proposed a mathematical framework of behavioral dynamics called the Constraint
Net model (CN) [1]. CN provides a mathematical semantics for real-time program-
ming languages. In this paper, we give an overall introduction to the Constraint
Net model and then show that discrete constraint nets can be simulated by logical
concurrent objects. Logical concurrent objects support multi-agent communication
architectures, stream representations and direct broadcast, which provide a formal
and executable specification for the behavioral dynamics in discrete robotic systems.

1 Motivation and Introduction

The most important characteristic of animals or robots is to react appropriately to their
environment. A robot is an integration of the control with the plant. We have called a
robot an open robot [2], if the robot can work in unstructured and unpredictable environ-
ments, deal with inconsistent or incomplete information, and react to the environment
in real-time. We call this kind of robot an open robot because its characteristics are
consistent with the characteristics of an open system [3]. Any living system is an open
system [4]; being open is the most important characteristic of a living system. As an

*Shell Canada Fellow, Canadian Institute for Advanced Research




188

open system, it can interact with the environment, actively obtain information from the
environment, and adaptively achieve balance within the environment. Such robots are
useful for space applications, undersea exploration and forest harvesting.

The most important characteristic of open robot control systems is their distributed and
asynchronous architecture. Centralized control or synchronized timing structures have
inherent limitations for multi-sensory and multi-actuator systems [2], while distributed
control and event-driven structures make the overall dynamics extremely complicated and
unpredictable [3, 5]. There is a strong need for understanding, modeling and analysis of
open robots.

A robotic system is an integration of an open robot with its environment. We have
developed a mathematical framework called the Constraint Net model (CN) for modeling
behavioral dynamics in robotic systems [1]. CN is a real-time model, in which both data-
and control-flow can be represented. CN, in general, models distributed and asynchronous
systems, while centralized or synchronous control structures are special cases. CN pro-
vides a unified framework in which the environment as well as the control and the plant
can be modeled and the overall dynamics of the system can be analyzed. CN supports
multiple levels of abstraction so that a system can be modeled hierarchically and verified
incrementally.

CN provides a mathematical semantics for real-time programming languages. Most
widely used robot programming languages nowadays are not suitable for modeling behav-
ioral dynamics. They lack capabilities for describing parallel actions and sensorimotor
coordination. In [6], we have used parallel C++, an integration of C++ with parallel C,
for modeling and implementing the behavior of a robot arm with six joints. However, this
kind of modeling is too low-level to analyze the behavior at the design stage. Brooks {7]
designed and implemented the Behavior Language, a rule-based real-time parallel robot
programming language written in Lisp. However, the semantics of that language is not
clear, which again makes it hard to analyze programs and to prove correctness before
implementation. Models like Petri Nets [8] or Bond Graphs [9] are useful mainly for
system modeling and analysis. What we seek is an executable, yet formal, specification,
with clear and simple semantics for implementing, as well as modeling and analyzing
behavioral dynamics.

Concurrent logic programming languages like Strand [10], or Concurrent Constraint
Logic Programming languages [11] in general, support multi-agent communication archi-
tectures, stream representations with infinite fan-outs and direct broadcast. This family
of languages has been suggested as a good candidate for open systems [12]. An object-
oriented framework provides modularity and hierarchical architecture, which are essential
for modeling complicated behaviors.

We develop an object-oriented framework on top of Strand to simulate constraint nets
with discrete reference time structures. This executable model can be used to prototype
the design and to assist the verification of robotic systems.

In this paper, we begin with the discussion of behavioral dynamics in rfobotic systems,
then present the modeling of behavioral dynamics with constraint nets, and finally show
how to simulate discrete constraint nets with logical concurrent objects.




189

2 Behavioral Dynamics in Robotic Systems

The study of dynamics is concerned with how things change over time {5]. The study
of systems is concerned with how a system’s overall behavior is generated through the
interactions of its components. Robots are generally composed of multiple sensors, actua-
tors and electromechanical components. Robots are reactive as well as purposive systems,
closely coupled with their environments; they must deal with inconsistent, incomplete and
delayed information from various sources. Such systems are usually complex, hierarchical
and physically distributed. Each component functions according to its own dynamics.
The overall behavior of a robot cannot be determined by any of its single component.
Rather, it is emergent from the coupling of the dynamics of its various parts and its
interaction with the environment.

2.1 General Conceptions

For our purposes, a variable is a function of time. For instance, positions, velocities,
internal states, forces and control signals are modeled as variables. Variables may be
related to each other. The possible class of relations in physical systems is abstracted
as transductions. A transduction is a state-determined transformational process whose
output signal at any time is dependent on the input signals prior to that time. For
instance, integration, delay and finite state automata can be modeled as transductions.
Formally, a transduction is a function from a vector of input variables to an output
variable, whose value at any time depends only on those input values before or at that time.
We define a reference time as a global time of a system, and a clock as a special kind of
variable, which represent the local time or event structures of transductions (see Figure 1,
where a transition from 0 to 1 or 1 to 0 defines an event). Some transductions are triggered

N

Reference time

Figure 1: A clock

only at “points” created by clocks, while others may work at all times. A dynamic system
is a system defined on a reference time, which consists of a set of transductions and a set
of variables. Some variables in the system can be clocks. Systems modeled with clocks
can represent discrete control of asynchronous as well as synchronous interactions between
various components. Behavioral dynamics in robotic systems captures the the dynamic
interactions between an open robot and its environment.




190

2.2 An Example

Consider the robotic system shown in Figure 2, where robot R always tries to track object
A and to avoid B. R consists of a sensor which can detect the distances and directions of

Figure 2: A robot world

objects A and B up to a maximum range, and a steerable motor which can move R in one
of the four cardinal directions. A command to the motor is the desired velocity vector,
whose value is related to the sensed signal. We are interested in the following aspects of
the system:

e What is the simplest design for the controller of R?

e Is the controller robust, i.e. what ranges of delay or uncertainty can be tolerant in
the design?

o What restrictions should be imposed on the environment to show that R can achieve
its goal?

Even for a simple system like this, these questions are hard, if not impossible, to answer
without modeling and simulation.

3 Modeling Behavioral Dynamics with
Constraint Nets

3.1 Introduction to Constraint Nets

A constraint net models a dynamic system. Syntactically, a constraint net is a triple
CN = (Le¢,Td,Cn) where Lc is a set of locations which denote variables, T'd is a set of
transductions and Cn is a set of directed connections between locations and transductions,
with the restriction that (1) there is at most one connection pointing to each location,
(2) each port of a transduction connects to a unique location, (3) no location is isolated.
A location is an input if there is no connection pointing to it, otherwise it is an oufput.




191

A constraint net is closed iff there is no input location, otherwise it is open. An open
robot can be modeled by an open constraint net, where the open locations denote the
environment variables.

There are some basic operations that can be applied to one or more constraint nets to
construct a new constraint net. These operations include composition, which combines
two nets into one; equalization, which identifies two or more locations, with the restriction
that only one of them is an output location, into one; and reconnection, which changes
the connections between locations and transductions. With these operations, a complex
constraint net can be built out of simple ones. We define a module to be a constraint net
associated with a subset of its output locations, which, with its input locations, defines the
interface of the module. A constraint net can be hierarchically constructed with modules.

An equivalent representation of a constraint net is a set of equations, where each left-
hand side is an individual output location and each right-hand side is an expression
composed of transductions and locations. The semantics of a constraint net is defined as
the least fixpoint of the set of equations, which is called the trajectory of the dynamic
system. Formally, the trajectory of a dynamic system modeled by a constraint net is
a mapping from each output location to a transduction, which is a function from the
vector of input variables in the input locations to the output variable in this location.
For a complex system with multiple components, the behavior of the whole system can
be obtained by the behaviors of its components and their connections.

In a word, the semantics of a constraint net corresponds to the trajectory of the system
being modeled, which determines the behavior of that system. We call this the Constraint
Net model, since a constraint net behaves as if it is solving the constraints imposed by
various parts of the system. In fact, most relaxation algorithms (such as Newton’s method
and various neural network algorithms) can be implemented on this model directly.

A robotic system is a closed dynamic system which includes the control, the plant
and the environment (see Figure 3, where circles are vectors of locations and boxes are or
modules). The overall behavior of the system is determined by the fixpoint of the dynamic

CONTROLLER

Figure 3: A robotic system modeled by a constraint net

behavior of each component and their interactions. The design task for a robotic system
can be characterized as: given the models of some of the parts of the system, design the
rest of the system so that the desired behaviors can be achieved.




192

3.2 The Tracking Robot Example

We can model the tracking robot in the previous section by the constraint net shown in
Figure 4, where Plant is an integrator from velocity to position, Sensor is a transduction
from the current position variable and the environment variables (positions of A and B)
to the sensed signals, Controller is a module whose inputs are the sensed signals and
output is the desired velocity. The controller module can be further decomposed into two
layers, where the lower layer is a transduction for avoiding objects and the higher layer
is a transduction for tracking objects. The final command is obtained via the Arbiter.
One possible arbiter is a so-called priority gate: the lower layer command has a higher
execution priority. In this example, it ensures that the robot tracks A only if it will not
be caught by B.

(2) (®)

Figure 4: (a) The Constraint Net model of the open robot

(b) Further decomposition of the controller module

4 Simulating Discrete Constraint Nets with
Logical Concurrent Objects

4.1 Logical Concurrent Objects

Concurrent Constraint Logic Programming [11] provides some unique high-level primi-
tives for process communication and synchronization, among which are direct broadcast,
stream representations with incomplete messages and infinite fan-out, all under a uni-
form declarative semantics. Languages of a similar style include FCP, Parlog, FGHC
and Strand [10]. This family of languages has been suggested as a good candidate for
open systems [12]. An object-oriented framework provides modularity and hierarchical
architecture, which are essential for modeling complicated behaviors.

We developed an object-oriented framework on top of Strand, which can be used to
simulate discrete constraint nets, systems whose reference times are discrete. We formulate
discrete constraint nets as an extension of the distributed constraint logic paradigm. The
extension emphasizes the following aspects:




193

e logical concurrent objects as well as explicit port-to-port communications between
objects can be defined and manipulated explicitly;

e transductions are represented by logical concurrent objects and variables are repre-
sented by streams.

In general, a system is constructed using a set of transductions, each of which has its
own internal state, as well as a set of input ports and an output port. The behavior
of a transduction is defined by a set of transitions. Each transition maps the input and
current internal state into a set of actions. More specifically, a distributed constraint logic
programming language is extended with the following primitives:

e the definition of transductions:

class(transduction, [in1,in2,...], [statel,state2,...], out).

transduction::init => A1, A2, ... An
transduction#inl(Messagel)#in2(Message2)... =>
Ci1, C2, ...7 A1, A2, ... An

where Ci are guarded constraints and Ai are actions. These actions include sending
messages to its output port:

out <: Message
and updating its internal state:
new statei := NewStatei
e the use of transductions:
transduction(OutVar, InitState, InVars)

where OutVar is the output variable of the transduction, InitState is the initial
state vector and InVars is the vector of input variables of the transduction.

4.2 The Tracking Robot Constraint Net Example

We can model the tracking robot using this framework. Let delta be the step size of
the discrete reference time, maxrange be the range of the sensors, and k be a control
parameter.




194

class(plant, [velocityl, [x,y], positiomn).
plant::init => position <: [x,y].
plant#velocity([Vx,Vyl) =>

Px := x + delta * Vx, Py := y + delta * Vy,

new x := Px, new y := Py,

position <: [Px,Py].

class(sensor, [robot,object], [], signal).
sensor#robot ([Rx,Ry])#object([0x,0y]) =>
Dx := 0x - Rx, Dy := Oy - Ry,
range(Dx,Dx1), range(Dy,Dyl),
signal <: [Dx1,Dyl].
range(X,X1) => X >= maxrange 7 X1 :
range(X,X1) => X < -maxrange ? X1 :
range(X,X1) => otherwise 7 X1 := X.

mou
[N«

class(track, [sensor], [1, motor).

track#tsensor([0,0]) => motor <: idle.

track#tsensor([X,Y]) => X >0, Y> 0, X > Y ?
Vx := k * X, motor <: [Vx,0].

tracki#sensor ([X,Y]) => X > 0, Y> 0, Y>= X 7
Vy := k * Y, motor <: [0,Vy].

%(X0,Y0) is the initial position of the robot.
%A is the position variable of the object being tracked.
robot([X0,Y0],4) =>

plant([V], [X0,Y0], P),

sensor([P,A], [1, 9),

track([s], [1, V).

Figure 4.2 shows a trace of this robot for a particular X0, YO and A.

Even though it is a simple system, the underlying dynamics can be very complex. It
is interesting to see that the robot may never catch the object, if the maximum range
of the sensor is limited, or the control parameter is small, or the object moves too fast.
The dynamics gets more complicated if there are sensing or computation delays. We can
model the avoid transduction similarly and integrate the track and the avoid with the
arbiter.

class(arbiter, [in1,in2], [], out).

arbiter#inl (In1)#in2(In2) => Inl == idle 7
out <: In2.

arbiter#ini(In1)#in2(In2) => otherwise 7
out <: Ini.




195

g

No Nama -']
4 tEacker
« O J

ect

1,

Figure 5: A trace of the tracking robot

sensors(A,B,P,SA,SB) =>
sensor([P,Al, [1, SA),
sensor([P,B], [, SB).

controller(SA,SB,V) =>
track([sAl, [1, va),
avoid([SB], [], VB),
arbiter([VB,VvA], [1, V).

We can further model delays and distributed clocks, so that the system can be tested
under various assumptions.

5 Conclusion and Future Work

The behavioral dynamics of the interaction of an open robot and its environment can be
very complex even for a simple system. The Constraint Nets model provides a unified
framework for modeling, simulation and analysis of robotic systems. Logical concurrent
objects can be used to simulate discrete constraint nets, therefore provide a formal and
executable specification for the behavioral dynamics in discrete robotic systems.

We plan to further develop a visual programming and simulation environment, known
as ALERTS — A Laboratory for Embedded Real Time Systems, based on the Constraint
Net model. With ALERTS, a robotic system can be designed hierarchically, and simulated
or verified incrementally.




196

Acknowledgements

We wish to thank Peter D. Lawrence for valuable suggestions. The first author is sup-
ported by the University Graduate Fellowship from University of British Columbia. This
research was supported by the Natural Sciences and Engineering Research Council and
the Institute for Robotics and Intelligent Systems.

References

{1] Ying Zhang and Alan K. Mackworth. Constraint nets — a model of behavioral
dynamics in real-time robotic systems. In Preparation.

(2] Ying Zhang. Transputer-based behavioral module for multi-sensory robot control.
In Mike Reeve and Steven Ericsson Zenith, editors, Parallel Processing and Artificial
Intelligence, Communication Process Architecture. Wiley, 1989.

(3] B. A. Huberman. The ecology of computation. In B. A. Huberman, editor, The
Ecology of Computation. Elsevier Science Publishers B.V.(North-Holland), 1988.

[4] James G. Miller. Living Systems. McGRAW-Hill Book Company, 1978.

{5] James T. Sandfur. Discrete Dynamical Systems: Theory and Applications. Clarendon
Press, 1990.

(6] Ying Zhang. Object oriented modeling for sensor-guided real-time robot control. In
Alan S. Wagner, editor, Transputer Research and Applications 3. I0S Press, 1990.

[7] Rodney A. Brooks. A robust layered control system for a mobile robot. IEEE Journal
of Robotics and Automation, RA-2(1), March 1986.

[8] Paul Freedman. Time, petri nets, and robotics. IEEFE Transactions on Robotics and
Automation, 7(4), August 1991.

[9] Dean C. Karnopp, Donald L. Margolis, and Ronald C. Rosenberg. System Dynamics:
A Unified Approach. Wiley, 1990.

[10] Ian Foster and Steven Taylor. Strand: New Concepts in Parallel Programming. Pren-
tice Hall, 1989.

[11] Vijay Anand Saraswat. Concurrent constraint programming languages. Technical
report, Computer Science Department, Carnegie-Mellon University, 1989. Ph. D.
thesis.

[12] Kenneth M. Kahn and Mark S. Miller. Language design and open systems. In
B. A. Huberman, editor, The Ecology of Computation. Elsevier Science Publishers
B.V.(North-Holland), 1988.




