
Formal Specification of Performance Metrics for Intelligent Systems

Ying Zhang
System and Practice Lab, Xerox Palo Alto Research Center

Palo Alto, CA 94304
Alan K. Mackworth

Department of Computer Science, University of British Columbia
Vancouver, B.C., Canada, V6T 1Z4

Email: yzhang@parc.xerox.com, mack@cs.ubc.ca

ABSTRACT

There are now so many architectures for intelligent systems:
deliberative planning vs. reactive acting, behavioral subsuming
vs. hierarchical structuring, machine learning vs. logic reasoning,
and symbolic representation vs. procedural knowledge. The
arguments from all schools are all based on how natural systems
(i.e., biologically inspired, from basic forms of life to high level
intelligence) work by taking the parts that support their
architectures. In this paper, we take an engineering point of view,
i.e., by using requirements specification and system verification
as the measurement tool. Since most intelligent systems are real-
time dynamic systems (all lives are), requirements specification
should be able to represent timed properties. We have developed
timed ∀-automata that fit to this purpose. We will present this
formal specification, examples for specifying requirements and a
general procedure for verification.

KEYWORDS: formal specification, constraint-based
requirements, system verification

1. INTRODUCTION AND MOTIVATION
Over the last half a century, intelligent systems have
become more and more important to human society, from
everyday life to exploration adventures. However, unlike
most other engineering fields, there has been little effort
towards developing sound and deep foundations for
quantitatively measurement and understanding such
systems. The lack of measurement and understanding leads
to unsatisfactory behavior or even potential danger for
customers. The systems may not achieve desired
performance in certain environments, or, the systems may
even result in catastrophe in life-critical circumstances.
 Many researchers have suggested measures of
performance for intelligent systems, such as the Turing
Test [12], Newell’s expanded list [9,10] and Albus’s
definition of intelligence [4]. However, most of these
measures are not based on formal quantitative metrics.
There are also efforts on comparing performance on pre-
defined tasks, such as a soccer competition [11]. However,

these methods are domain specific therefore hard to apply
to general cases. We advocate formal methods for
specifying performance requirements of intelligent
systems. Much research has been done on formal methods
(http://archive.comlab.ox.ac.uk/formal-methods.html) over
the last twenty years. In this paper, we explore one of the
approaches, namely, using timed ∀-automata for
specifying performance requirements.
 The timed ∀-automata model was developed in [13,
17] as an extension of discrete time ∀-automata [8] to
continuous time, annotations with real-time. Timed ∀-
automata are simple yet able to represent many important
features of dynamic systems such as safety, stability,
reachability and real-time response. In the rest of this
paper, we introduce the formal definition of timed ∀-
automata first, then present examples of timed ∀-automata
for representing performance metrics, and finally describe
a general verification procedure for this type of
requirements specification.

2. TIMED ∀-AUTOMATA
In general, there are two uses of automata: 1. to describe
computations, such as input/output state automata, and 2.
to characterize a set of sequences, such as regular
grammars/languages. Examples of the first category are
mostly deterministic and examples of the second category
are mostly non-deterministic. However, all the original
automata work is based on discrete time steps/sequences.
Approaches to extending automata to continuous time have
been explored in hybrid systems community over the last
decades [1,2,7]. The timed ∀-automata model that we
developed belongs to the second category, i.e., non-
deterministic finite state automata specifying behaviors
over continuous time. The discrete time version of ∀-
automata was originally proposed as formalism for the
specification and verification of temporal properties of
concurrent programs [8].

2.1. Syntax

Syntactically, a timed ∀-automaton is defined as follows.

[Definition 1] A ∀-automaton A is a quintuple (Q, R, S, e,
c) where Q is a finite set of automaton-states, R ⊆ Q is a
set of recurrent states and S ⊆ Q is a set of stable states.
With each q ∈ Q, we associate an assertion e(q), which
characterizes the entry condition under which the
automaton may start its activity in q. With each pair q, q’
∈ Q, we associate an assertion c(q, q’), which
characterizes the transition condition under which the
automaton may move from q to q’. R and S are
generalizations of accepting states. We denote by B = Q –
(R ∪ S) the set of non-accepting (bad) states. Let R+ be the
set of non-negative real numbers representing time
durations. A timed ∀-automaton is a triple (A, T, τ) where
A is a ∀-automaton, T ⊆ Q is a set of timed automaton-
states and τ: T ∪ {B} → R+ ∪ {∞} is a time function.

 One of the engineering advantages of using automata
as a specification language is its graphical representation.

It is useful and illuminating to represent timed ∀-automata
by diagrams. A timed ∀-automaton can be depicted by a
labeled directed graph, where automaton-states are
depicted by circle nodes and transition relations are by
directional arcs. In addition, each automaton-state may
have an entry arc pointing to it; each recurrent state is
depicted by a diamond and each stable state is depicted by
a square, inscribed within a circle. Nodes and arcs are
labeled by assertions as follows. A node or an arc that is
left unlabeled is considered to be labeled with true.
Furthermore, (1) if an automaton-state q is labeled by ψ
and its entry arc is labeled by ϕ, the entry condition e(q) is
given by e(q) = ψ ∧ϕ; if there is no entry arc, e(q) = false,
and (2) if arcs from q to q’ are labeled by ϕi, i = 1…n, and
q’ is labeled by ψ, the transition condition c(q, q’) is given
by c(q, q’) = (ϕ1 ∨…∨ϕn) ∧ψ; if there is no arc from q to
q’, c(q, q’) = false. A T-state is denoted by a nonnegative
real number indicating its time bound. Some examples of
timed ∀-automata are shown in Figure 1.

 (a) (b) (c) (d)

Figure 1. Examples of timed ∀-automata

2.2. Semantics
Semantically, each assertion denotes a constraint defined
on a domain of interest. Let D be a domain of interest; D
can be finite, discrete, or continuous, or a cross product of
a finite number of domains. Physically, D can represent,
for example, speeds, distances, torques, sentences,
commands or a combination of the above. A constraint C
defined on D is a subset of D, C ⊆ D. Physically, a
constraint represents certain relation on a domain, such as
a relation between external environment stimuli and an
agent’s internal knowledge representation, or, a relation
between internal states and actions, or, the relation
between the current and next state. An element d in
domain D satisfies constraint C, if and only if d ∈ C.
 The semantics of timed ∀-automaton is defined as
follows. Let T be a time domain, which can be continuous,
for example, R+. First, let us define runs of ∀-automata.
Let A = (Q, R, S, e, c) be a ∀-automaton and v: T → D be
a function of time. A run of A over v is a function r: T →Q
satisfying:

1. Initiality: v(0) ∈ e(r(0));
2. Consecution:

a. Inductivity: ∀t>0, ∃q∈Q, t’<t,∀t”,
t’≤t”<t, r(t”)=q and v(t) ∈ c(r(t”), r(t))
and

b. Continuity: ∀t, ∃q∈Q, t’>t, ∀t”, t<t”<t’,
r(t”)=q and v(t”) ∈ c(r(t), r(t”)).

When T is discrete, the two conditions in
Consecution reduce to one, i.e., ∀t>0, v(t) ∈
c(r(pre(t)), r(t)) where pre(t) is the previous time
point of t.

 If r is a run, let Inf(r) be the set of automaton-states
appearing infinitely many times in r, i.e., Inf(r) =
{q|∀t∃t’≥t, r(t’)=q}. A run is called accepting if and only if

1. Inf(r) ∩R≠0, i.e., some of states appearing
infinitely many times in r belong to R, or

2. Inf(r) ⊆ S, i.e., all the states appearing infinitely
many times in r belong to S.

 For a timed ∀-automaton, in addition for a run to be
accepting, it has to satisfy time constraints. Let I ⊆ T be a
time interval and |I| be the time measurement, and let r|I be

G¬G ¬G

E
E

¬E

¬E

F

¬F

E
E

¬E

¬E

F

¬F

5

a segment of r over time interval I. A run satisfies time
constraints if and only if:

1. Local: For any q ∈ T any time interval I, if r|I is a
segment of consecutive states of q, then |I| ≤τ(q);

2. Global: For any time interval I, if r|I is a segment
of consecutive states of B∪S, then ∫IχB(r(t))dt
≤τ(B), where χB: Q→{0,1} is the characterization
function for the set B.

[Definition 2] A timed ∀-automaton TA = (A, T, τ)
accepts a trace v, if and only if

1. All runs are accepting for A;
2. All runs satisfy the time constraints.

 With the semantics defined, we can infer that, for the
timed ∀-automata in Figure 1, (a) specifies the behavior of
reachability, i.e., eventually the system should satisfy
constraint G, (b) specifies the behavior of safety, i.e.
constraint G is never satisfied, (c) specifies the behavior of
bounded response, i.e., whenever constraint E is satisfied,
constraint F will be satisfied within bounded time and (d)
specifies the behavior of real-time response, i.e., whenever
constraint E is satisfied, constraint F will be satisfied
within 5 time units.

3. EXAMPLES OF PERFORMANCE
SPECIFICATION
Timed ∀-automata are simple yet powerful for the
specification of behaviors of dynamic systems, since it
integrates constraint specification with timed dynamic
behavior specification.

3.1. Examples of Constraint Specification
Constraint specification alone can specify many
performance metrics. Constraints specify relations between
external environment stimuli and an agent’s internal
knowledge representation, or between internal states and
actions, or between the current and next states. Constraints
can be finite, discrete or continuous, or any combination of
the above. Constraints can be linear, nonlinear, equalities
or inequalities. Moreover, constraints can also specify
optimal conditions or optimality with extra constraints, or
combinations of multiple optimal criteria and additional
constraints.
 Considering the following examples for specifying
constraints:

1. Inequality: f(x) ≤ 0 where x is a vector of
variables and f is a vector of functions.

2. Optimality: min |f(x)| where |x| is a norm for x.
3. Negation: x ≠ y.
4. Constrained Optimality: min|f(x)| given g(x)≤0.
5. Robustness: Let f(x) be a set of output functions

with x as inputs. The robustness can be

represented by its Jacobian J = ∆f/∆x. There are
many ways to state an optimal condition for
robustness. One method is to minimize |w| where
w is the diagonal elements of W in the singular
value decomposition of J = UWVT.

3.2. Examples of ∀-Automata
With automata, timed dynamic behaviors can be specified.
Here is a set of examples for specifying performance using
timed ∀-automata, as shown in Figure 1:

1. Let G be a constraint that the distance between
the robot and its desired position is less than some
constant value. Then Figure 1(a) specifies that the
robot will eventually arrive its desired position.

2. Let G be a constraint that the error of a learning
algorithm is less than a desired tolerance. Then
Figure 1(a) specifies that the learning will
eventually convergence. If let the state of ¬G in
Figure 1(a) as a timed state with time bound t, it
further specifies that the learning will be done
within time t.

3. Let G be a constraint that the distance between
the robot and obstacles is less than some constant
value. Then Figure 1(b) specifies that the robot
will never hit any obstacle. If G denotes that the
current memory usage is out of the limit, Figure
1(b) specifies that the memory usage at any time
is within its limit.

4. Let E be an external stimuli and F be a response.
Then Figure 1(c) specifies that there is a response
after stimuli within bounded time. Figure 1(d)
specifies that such a response is within 5 time
units.

 Even though timed ∀-automata are powerful, still they
are not able to represent all forms of performance metrics.
For example, optimal performance over time min∫f(t)dt is
not specifiable with timed ∀-automata. This form is mostly
used for characterizing energy, efficiency or overall errors.
Furthermore, specification with probability behaviors are
not included either. However, it is not hard to add
probability, for example, instead of “all runs” must be
accepting and satisfying time constraints, we can say “x%
runs” must be accepting and satisfying time constraints.

3.3 Performance Comparisons
Note that requirements specification defines what the
system should do, rather than defining how the system is
organized, i.e., its architecture. For example, behavior-
based control [4,6] (which is arbitration based or a
horizontal hierarchy) has a different form of architecture
from function-based control [5] (which is abstraction-
based or a vertical hierarchy); model-based systems have a
different form of architecture from learning-based systems,

event-driven systems have a different kind of architecture
from time-driven systems. Different systems with different
architectures can still be compared based on the behavioral
interface under the formal performance specification. For
example, given a set of requirements specification Rs and
system A satisfies a subset As ⊆ Rs and system B satisfies
a subset Bs ⊆ Rs. If As ⊆ Bs, system A is not better than
system B with respect to requirements Rs. Similarly, if
system A satisfies requirement α and system B satisfies
requirement β and if α implies β, system A is better than
system B with respect to the requirement.
 However, this specification does not define metrics on
architectures. The measurement of performance should
come from the customer’s point of view, but the
measurement of architecture should come from the
developer’s point of view, i.e., design time, debug time,
upgrading time, modularity and the percentage of re-usable
components.

4. SYSTEM VERIFICATION
For most dynamic systems, stability or convergence is the
most important property that needs to be verified. For
example, we can verify that equation dx/dt = 0 satisfies the
property of ∀-automaton in Figure 1(a) with G as |x|≤ε for
any positive number ε. The most commonly used method
for the verification of such properties is the use of
Liaponov functions. We developed a formal method based
on model-checking, that generalizes Liaponov functions
[13,17]. This method is automatic if the domain of interest
is finite discrete and time is discrete [13].
 The details of the model-checking method are out of
the scope of this paper. The basic principle is to first find a
set of invariants, each associated with an automaton-state
in the timed ∀-automaton. Then, find a set of Liaponov
functions, which are non-increasing in stable states and
decreasing in bad states. Finally, find a set of local and
global timing functions, where local timing functions are
decreasing in timed states and global timing functions, like
Liaponov functions, are non-increasing in stable states and
decreasing in bad states, in addition to be bounded in
values.

5. RELATED WORK AND CONCLUSION
Much work has been done in formal approaches to system
specification and verification [1,2,7,8]. In general, there
are two schools. One is to develop a uniform specification
for both systems and their requirements; the other is to use
two different specifications, one for systems and one for
requirements. The advantage of the former is that the same
formal approach can apply to both system synthesis and
system verification. However, in most cases, if the
specification language is powerful for both systems and
requirements, the synthesis or verification tasks become

hard. We advocate the latter approach, i.e., using timed ∀-
automata for requirements specification and using
Constraint Nets [13,18,19] for system modeling. Control
synthesis [13,14] and verification [13,15,16,17,20] are also
studied in this framework.
 In this paper, we have shown how to use formal
methods to specify the performance metrics of intelligent
systems, with timed ∀-automata as an example. The
advantage of formal methods over other methods lies in
their precision and generality. Timed ∀-automata, with its
graphical depiction and constraint specification, is a simple
yet powerful formalism for specifying many properties of
dynamic systems.

6. REFERENCES

[1] Alur, R., C. Courcoubetis, T.A Henzinger and P. Ho,
“Hybrid automata: Hybrid automata: An algorithmic
approach to the specification and verification of hybrid
systems,” R. L. Grossman, A. Nerode, A. P. Ravn, and H.
Rischel, editors, Hybrid Systems, LNCS 736, Springer-
Verlag, 1993, pp. 209 – 229.

[2] Alur, R. and D. Dill, “Automata for modeling real-time
systems,” M.S. Peterson, editor, ICALP90: Automata,
Languages and Programming, LNCS 443, Springer-
Verlag, 1990, pp. 322 – 335.

[4] Albus, J.S., “Outline for a Theory of Intelligence,”
IEEE Transactions on Systems, Man, and Cybernetics,
Vol. 21, No. 3, pp. 473 – 509, May/June 1991.

[5] Arkin, R.C., Behavior-Based Robotics, The MIT Press,
Cambridge, MA, 1998.

[6] Brooks, R.A., “Intelligence without reason,” in IJCAI
1991, Sydney, Australia, pp. 569 – 595.

[7] Henzinger, T.A., Z. Manna and A. Pnueli, “Timed
transition systems,” J.W. deBakker, C. Huizing, W.P.
dePoever, and G. Rozenberg, editors, Real-Time: Theory
in Practice, LNCS 600, Springer-Verlag, 1991, pp. 226 –
251.

[8] Manna, Z. and A. Pnueli, “Specification and
verification of concurrent programs by ∀-automata,” in
Proc. 14th Ann. ACM Symp. On Principles of
Programming Languages, 1987, pp. 1-12.

[9] Newell, A., “The Knowledge Level,” Artificial
Intelligence, 18(1), pp. 87-127, 1982.

[10] Newell, A., and Simon, H., GPS: A Program that
Simulates Human Thought," Feigenbaum and Feldman,

editors, Computers and Thought, McGraw-Hill, New
York, 1963.

[11] Sahota, M. and A. K. Mackworth, “Can situated
robots play soccer?” in Proc. Artificial Intelligence, 1994,
Banff, Alberta, pp. 249 – 254.

[12] Turing, A. "Computing Machinery and Intelligence."
Mind 59, pp. 433-460, 1950. Reprinted in Feigenbaum and
Feldman, editors, Computers and Thought, McGraw-Hill,
New York, 1963.

[13] Zhang, Y., “A Foundation for the Design and
Analysis of Robotic Systems and Behaviors”, PhD Thesis,
University of British Columbia, Canada, 1994.

[14] Zhang, Y. and A. K. Mackworth, “Synthesis of
Hybrid Constraint-Based Controllers,” P. Antsaklis, W.
Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems
and Automatic Control, LNCS 999, Springer-Verlag,
1994, pp. 552 – 567.

[15] Zhang, Y. and A. K. Mackworth “Specification and
Verification of Constraint-Based Dynamic Systems,” A.
Borning, editor, Principles and Practice of Constraint
Programming, LNCS 874, Springer-Verlag, 1994, pp. 229
– 242.

[16] Zhang, Y. and A. K. Mackworth, “Will The Robot Do
The Right Thing,” in Proc. Artificial Intelligence, 1994,
Banff, Alberta, pp. 255 – 262.

[17] Zhang, Y. and A. K. Mackworth, “Specification and
Verification of Hybrid Dynamic Systems Using Timed ∀-
Automata,” Verification and Control of Hybrid Systems,
LNCS 1066, Springer-Verlag, 1995.

[18] Zhang, Y. and A. K. Mackworth, “Constraint
Programming in Constraint Nets”, V. Saraswat and P. Van
Hentenryck, editors, Principles and Practice of Constraint
Programming, MIT Press, Cambridge, MA, 1995, pp. 49 –
68.

[19] Zhang, Y. and A. K. Mackworth, “Constraint Nets: A
Semantic Model for Hybrid Dynamic Systems,” Journal of
Theoretical Computer Science, Vol. 138, No. 1, pp. 211 –
239, 1995.

[20] Zhang, Y. and Alan K. Mackworth, “Modeling and
Analysis of Hybrid Systems: An Elevator Case Study,”
H.Levesque and F.Pirri, editors, Logic Foundations for
Cognitive Agents, Springer, Berlin, 1999, pp. 370-396.

