
Local Consistency in Junction Graphs for
Constraint-Based Inference

Le Chang and Alan K. Mackworth

Department of Computer Science, University of British Columbia
2366 Main Mall, Vancouver, B.C. Canada V6T 1Z4

{lechang, mack}@cs.ubc.ca

Abstract. The concept of local consistency plays a central role in constraint
satisfaction and has been extended to handle general constraint-based inference
(CBI) problems. We propose a family of novel generalized local consistency con-
cepts for the junction graph representation of CBI problems. These concepts are
based on a general condition that depends only on the existence and property of
the multiplicative absorbing element and does not depend on the other semiring
properties of CBI problems. We present several local consistency enforcing al-
gorithms and their approximation variants. Theoretical complexity analyses and
empirical experimental results for the application of these algorithms to both
MaxCSP and probability inference are given. We also discuss the relationship
between these local consistency concepts and message passing schemes such as
junction tree algorithms and loopy message propagation.

1 Introduction

The concept of local consistency plays a central role in constraint satisfaction. Given
a constraint satisfaction problem (CSP), local consistency can be characterized as de-
riving new, possibly tighter, constraints based on local information. The derived con-
straints simplify the representation of the original CSP without the loss of solutions.
This can be seen as a preprocessing procedure. For example, a value may be removed
from a variable domain by the preprocessing because it violates these derived con-
straints. Both systematic approaches such as inference or propagation algorithms and
stochastic approaches such as local searches benefit from these simplifications. Among
the family of local consistency enforcing algorithms or filtering algorithms, arc consis-
tency [1] is one of the most important techniques for binary classic CSPs. It is straight-
forward to extend it as generalized arc consistency [2] to handle non-binary classic
CSPs. Many stronger local consistencies [3–5] have been studied within the constraint
programming community. Based on the Semiring CSP [6] and Valued CSP [7] frame-
works, arc consistency has also been extended, as soft arc consistency [8, 9], to handle
over-constrained and preference-based problems that can be modelled as soft CSPs. Re-
cently, we presented a weaker condition [10], based on a commutative semiring struc-
ture, for applying the generalized arc consistency approach to constraint-based infer-
ence (CBI) problems beyond classic and soft CSPs. There problems include probability
inference, possibility inference, and maximal likelihood decoding. The weaker condi-
tion proposed in [10] has also been relaxed to fit generalized approximate preprocessing
schemes.

We propose in this paper a new family of generalized local consistency concepts
for the junction graph representation of CBI problems. These concepts are based on a
general condition that depends only on the existence and property of the multiplicative
absorbing element and does not depend on other semiring properties of CBI problems.
We present several local consistency enforcing algorithms with various levels of en-
forcement and corresponding theoretic and empirical complexity analyses. We show in
this paper that some of these algorithms can be seen as generalized versions of well-
known local consistency enforcing techniques in CSPs and can be exported to other
domains. Other abstract local consistency concepts are novel to the constraint program-
ming community and provide more efficient preprocessing results. We also discuss the
relationship between these local consistency concepts and message passing schemes
such as junction tree algorithms and loopy message propagation. Local consistencies
can be achieved along with message propagation and improve the efficiency of mes-
sage passing schemes.

2 A CBI Framework and Junction Graph

Constraint-Based Inference (CBI) is an umbrella term for a class of various superfi-
cially different problems including probabilistic inference, decision-making under un-
certainty, constraint satisfaction problems, propositional satisfiability problems, decod-
ing problems, and possibility inference. we abstracts these problems into a single formal
framework [11] using the algebraic semiring structure S = 〈A,⊕,⊗〉 where constraint
combination is represented by the abstract multiplicative operator ⊗ and constraint
marginalization is represented by the abstract additive operator ⊕. A CBI problem P
in this framework is a tuple (X,D,S,F), where X is a set of variables, D is a set of
finite domains for each variable, S = 〈A,⊕,⊗〉 is a commutative semiring, and F is a
set of constraints. Each constraint is a function that maps value assignments of a subset
of variables to values in A. Given a CBI problem, the inference task is defined as com-
puting gCBI(Z) =

⊕
Y

⊗
f∈F f . If ⊕ of the semiring S is idempotent, the allocation

task is defined as computing y = arg
⊕

Y

⊗
f∈F f , where arg is a prefix of operator

⊕. In other words, arg⊕ is an operator that returns the arguments of the ⊕ operator.
Our local consistency concepts are based on this CBI framework and apply to CBI

problems with commutative semirings that are eliminative. A commutative semiring
S = 〈A,⊕,⊗〉 is eliminative [10] if there exists a unique multiplicative absorbing
element α⊗ ∈ A (α⊗ ⊗ a = α⊗,∀a ∈ A) and α⊗ is equal to the additive identity
element 0 (0 ⊕ a = a,∀a ∈ A). Furthermore, our approximate local consistency
concepts apply to CBI problems with commutative semirings that are eliminative and
monotonic. A commutative semiring S = 〈A,⊕,⊗〉 is monotonic [10] if there exists a
total order ≤S on A, the additive identity element 0 is the minimum element w.r.t. ≤S,
a≤Sb implies a ⊕ c≤Sb ⊕ c and a ⊗ c≤Sb ⊗ c, ∀a, b, c ∈ A. Examples of eliminative
and monotonic semirings can be found in [10].

A junction graph J = (C,S) of a CBI problem P = (X,D,S,F) is defined
as following: C = {C1, · · · , Cn} is a set of clusters, each cluster Ci corresponds to an
aggregation of variables that is a subset of X and has attached initially a local constraint
φCi

= 1 (1 is the multiplicative identity element s.t. 1 ⊗ a = a,∀a ∈ A); S =

{Sij |Ci, Cj ∈ C} is a set of separators between Ci and Cj if Ci ∩ Cj
= ∅ and Sij

corresponds to an aggregation of variables that consists of the intersection variables
between Ci and Cj . A junction graph satisfies the condition that for any constraint f ∈
F, there exists a cluster Ci ∈ C s.t. Scope(f) ⊆ Ci. The definition of junction graph
ensures that the subgraph induced by any variable is connected. We say a junction graph
is initialized if for each constraint f ∈ F, we choose a cluster Ci s.t. Scope(f) ⊆ Ci

and update φCi
by φCi

⊗ f .

3 Local Consistency for CBI Problems

We present here novel local consistency concepts for initialized junction graphs of a
CBI problem with an eliminative semiring. If the semiring used to represent a CBI
problem is both eliminative and monotonic, it is straightforward to modify these con-
cepts as approximate local consistencies using an element ε ∈ A to approximate the
multiplicative absorbing element α⊗ that is equal to the additive identity element 0
for an eliminative commutative semiring, and using ≤S to replace
= in the following
definitions.

3.1 Single, Directional and Neighborhood Cluster Consistencies

The fundamental concept of local consistency for an initialized junction graph of a CBI
problem with an eliminative commutative semiring is single cluster consistency. Here
we consider only the local constraints attached to a single cluster and do not consider
the effects of other clusters. Formally:

Definition 1 (Single Cluster Consistency (SCC)). A cluster Ci of an initialized junc-
tion graph is locally consistent if ∀X ∈ Scope(φCi

), ∀x ∈ DX , ∃w, a value assign-
ment of variables Scope(φCi

)−X , s.t. φCi
(x,w)
= α⊗. An initialized junction graph

of a CBI problem is Single Cluster Consistent if all the clusters are consistent.

Single cluster consistency covers the definition of Generalization of Generalized
Arc Consistency (GGAC) [10], which abstracts Generalized Arc Consistency (or Hyper-
Arc Consistency) in constraint programming. If the junction graph of a CBI problem is
primal, in other words, there is one cluster that corresponds to exactly one constraint
and separators represent common variables shared between any two constraints, SCC is
identical to GGAC. If the junction graph is constructed without satisfying this special
structural requirement, SCC is stronger than GGAC in general.

Figure 1 shows a generalized routine of enforcing single cluster consistency for
an initialized junction graph of a CBI problem P = (X,D,S,F) with an eliminative
commutative semiring S. The procedure REVISE of SCC-Enforcing is shown in Figure
2.

We also introduce two other local consistencies for an initialized junction graph of
a CBI problem that are stronger than Single Cluster Consistency. They are Directional
Cluster Consistency and Neighborhood Cluster Consistency. Effects of other clusters
in the junction graph are taken into account. The distinction between these two local
consistencies is based on which clusters are selected for consideration.

Input: A CBI problem P = (X,D,S,F) and its initialized junction graph representation J =
(C,S)

Output: A Single Cluster Consistent CBI problem P′ = (X,D′,S,F′)
1: for each Ci ∈ C do
2: for each X ∈ Domain(φCi) do
3: if REVISE(X, φCi) then
4: for each Cj ∈ C do
5: if X ∈ Scope(φCj) then
6: Remove all tuples in φCj with the value that is removed from X
7: end if
8: end for
9: end if

10: end for
11: end for
12: Return P′ := P

Fig. 1. Single cluster consistency enforcing algorithm (SCC-Enforcing).

Definition 2 (Directional Cluster Consistency (DCC)). Given a cluster Ci of an ini-
tialized junction graph and a separator Sij that connects another cluster Cj to Ci, let
gi = φCi

⊗ (⊕Cj−Sij
φCj

). We say Ci is pair consistent w.r.t. Cj if ∀X ∈ Scope(gi),
∀x ∈ DX , ∃w, a value assignment of variables Scope(gi)−X , s.t. gi(x,w)
= α⊗. An
initialized junction graph of a CBI problem is Directional Cluster Consistent given a
total ordering of the clusters if all clusters of the graph are pair consistent w.r.t all its
lower-order neighbor clusters.

Definition 3 (Neighborhood Cluster Consistency (NCC)). Given a cluster Ci of an
initialized junction graph, let gi = φCi

⊗ ⊗
Cj∈Neighbors(Ci)

(⊕Cj−Sij
φCj

). We say
Ci is neighborhood consistent if ∀X ∈ Scope(gi), ∀x ∈ DX , ∃w, a value assignment
of variables Scope(gi)−X , s.t. gi(x,w)
= α⊗. An initialized junction graph of a CBI
problem is Neighborhood Cluster Consistent if all clusters are neighborhood consistent.

We revise the single cluster consistency enforcing algorithm in Figure 1 to direc-
tional cluster consistency and neighborhood cluster consistency enforcing algorithms
by updating the local potential φCi

according to the definition, as shown in Figure 3
and 4, respectively.

3.2 Approximate Local Consistencies

Given a CBI problem P = (X,D,S,F), if the commutative semiring S = 〈A,⊕,⊗〉
is both eliminative and monotonic, we propose an approximation scheme to enforce
local consistency for its initialized junction graph representation with a user-controlled
threshold. More specifically, we use an element ε ∈ A to approximate the multiplicative
absorbing element α⊗ that is equal to the additive identity element 0 for an eliminative
commutative semiring, and use ≤S to replace
= in previous local consistency defi-
nitions. The monotonic properties for both multiplicative and additive operators in a

Input: A variable X ∈ X and a constraint f with X ∈ Scope(f)
Output: TRUE if a value is removed from the domain of X , FALSE for else
1: flag := TRUE
2: for each x ∈ DX do
3: for each value assignment w of Scope(f)−X do
4: if f(x,w) �= α⊗ then
5: flag := FALSE
6: Break loop
7: end if
8: end for
9: if flag then

10: Remove x from DX

11: Return TRUE
12: end if
13: end for
14: Return FALSE

Fig. 2. Procedure REVISE(X, f) for eliminating a domain value from a variable X according to
the local constraint f .

SCC DCC NCC
Time |C|dk+1 (|S| + |C|)dk+1 (2|S| + |C|)dk+1

Space |C|dk+1 |C|dk+1 |C|dk+1

Table 1. Time and space upper bound comparison among various local consistency enforcing
algorithms for a junction graph J = (C,S) of a given CBI problem, where d = maxDi∈D |Di|
and k = maxCi∈C |Ci|.

monotonic semiring ensure that this approximation always returns a lower bound esti-
mate of the inference task for a given CBI problem [10]. Correspondingly, the proce-
dure REVISE in Figure 2 is modified to handle approximate local consistency enforcing
tasks, as shown in Figure 5. All the local consistency enforcing algorithms discussed in
the previous section then can be modified respectively.

4 Complexities and Relation with Message Propagation in
Probability Inference

The worst case space complexities of all three local consistency enforcing algorithms
are the same: linear in the number of clusters in the junction graph and exponential
in the maximal cluster size. The worst case time complexities are linear in the size of
the junction graph and exponential in maximal cluster size too. We compare the upper
bounds of time and space of local consistency enforcing algorithms for initialized junc-
tion graphs in Table 1. It shows that all of them use the same space, though achieving
Single Cluster Consistency uses the least time, followed by Directional Cluster Consis-
tency, and then Neighborhood Cluster Consistency.

As shown in Table 1, the upper bounds of both time and space for achieving local
consistencies using cluster consistency enforcing algorithms proposed in this paper are

Input: A CBI problem P = (X,D,S,F), its initialized junction graph representation J =
(C,S), and a total ordering OC of clusters in C

Output: A Directional Cluster Consistent CBI problem P′ = (X,D′,S,F′)
1: for i = |C| − 1 to 1 do
2: Let Ci = OC[i]
3: for j = |C| to i + 1 do
4: Let Cj = OC[j]
5: φCi := φCi ⊗ (⊕Cj−Sij φCj)
6: end for
7: if REVISE(X, φCi) then
8: for each Ck ∈ C do
9: if X ∈ Scope(φCk) then

10: Remove all tuples in φCj with the value that is removed from X
11: end if
12: end for
13: end if
14: end for
15: Return P′ := P

Fig. 3. Directional cluster consistency enforcing algorithm (DCC-Enforcing).

bounded by the maximum cluster size as well as the structure of the junction graph for
a given CBI problem. Intuitively a simple junction graph implies large cluster sizes, so
there is a tradeoff between the size of the graph and the largest cluster when constructing
a junction graph. Various heuristic search approaches are discussed in [11] that can be
used to construct junction graphs.

The junction tree representation is a special case of junction graphs that satisfies
the tree property. The junction tree algorithm [12] is a widely studied inference algo-
rithm in probability inference that utilizes the properties of the junction tree structure.
It is also generalized to handle constraint-based inference problems [11], based on the
seminal work on constraint programming [13, 14] and the latest general algorithmic
framework [15]. Given the identical message representation and updating scheme in
the inward phase of the junction tree algorithm and our directional cluster consistency
enforcing algorithm (with a cluster order given by the width-first traverse starting from
the root cluster), it is straightforward to show that the directional cluster consistency
can be achieved along with the inward message passing in the junction tree algorithm,
if the junction graph of a given CBI problem satisfies junction tree properties. A CBI
problem processed by such a DCC-enforcing procedure then can be solved through
backtrack-free search starting from the root cluster, which is a process equivalent to
outward message propagation in the junction tree algorithm. This observation ensures
that we can perform the message passing of junction tree algorithms and at the same
time simplify the original problem representation according to the directional cluster
consistency enforcement. Performing the message propagation and the simplification
together reduces both the time and space complexities of the junction tree algorithm.
The nature of the message passing scheme in the junction tree algorithm ensures that
the directional cluster consistency enforcing can be performed in parallel for clusters

Input: A CBI problem P = (X,D,S,F) and its initialized junction graph representation J =
(C,S)

Output: A Single Cluster Consistent CBI problem P′ = (X,D′,S,F′)
1: for each Ci ∈ C do
2: for each Cj ∈ Neighbors(Ci) do
3: φCi := φCi ⊗ (⊕Cj−Sij φCj)
4: end for
5: if REVISE(X, φCi) then
6: for each Ck ∈ C do
7: if X ∈ Scope(φCk) then
8: Remove all tuples in φCj with the value that is removed from X
9: end if

10: end for
11: end if
12: end for
13: Return P′ := P

Fig. 4. Neighborhood cluster consistency enforcing algorithm (NCC-Enforcing).

in different branches of the tree. We will investigate different parallel and hybrid DCC-
enforcing techniques following the results of [14] in future work.

Loopy message propagation [16] is another widely studied approximation inference
approach based on the junction graph representation in probability inferences. It is also
generalized to apply to other CBI problems [11] using the semiring concepts. Neighbor-
hood cluster consistency can be achieved along with each message updating step in the
generalized loopy message propagation without additional computational cost except
invalid value detection at each cluster. The time and space complexities of loopy mes-
sage propagation are reduced after invalid values are removed from the CBI problem
following NCC enforcement. The message updating step as well as NCC enforcement
of the generalized loopy message propagation can be performed in all clusters in paral-
lel saving significant computational cost if parallel computing is feasible.

5 Experimental Results

We discuss in this section experimental results of applying the local consistency enforc-
ing algorithms proposed in this paper to the junction graph representation of Weighted
CSP and Probability Assessment that can be modelled as CBI problems. These prepro-
cessing or filtering algorithms simplify the original problem so that inference algorithms
can then be applied with less computational complexity. A workstation with Pentium
4 3.0GHz CPU and 1 Gigabyte memory running SuSE Linux 9.1 is used to run the
experiments in this section.

5.1 Weighted CSP

Weighted CSPs are direct extension of MaxCSPs where each value assignment in a
constraint corresponds to a non-negative integer or weight instead of 0 for legal and

Input: A variable X ∈ X, a constraint f , an element ε ∈ A
Output: TRUE if a value is removed from the domain of X; FALSE if else
1: flag := TRUE
2: for each x ∈ DX do
3: for each value assignment w of Scope(f)−X do
4: if ε≤Sf(x,w) then
5: flag := FALSE
6: Break loop
7: end if
8: end for
9: if flag then

10: Remove x from DX

11: Return TRUE
12: end if
13: end for
14: Return FALSE

Fig. 5. Procedure ε-REVISE(X, f, ε) for eliminating a domain value from a variable X according
to the approximate threshold ε of a local constraint f .

1 for forbidden in MaxCSPs. Two constraint tuple weights are combined with arith-
metic plus and the goal of the inference is to find a value assignment of all variables
that minimizes the combination of all constraints in the problem. Weighted CSPs then
can be easily embedded into the semiring-based CBI framework using the semiring
SWCSP = 〈Z+ ∪ {0},min,+〉. Because the multiplicative absorbing element α⊗ of
the semiring SWCSP is equal to the additive identity element 0 that is equal to +∞,
SWCSP is eliminative. Also we can show that SWCSP is monotonic, so both the exact
and approximate local consistency enforcing schemes in this paper apply to Weighted
CSPs.

We study a random binary Weighted CSP with 100 variables and 200 constraints.
The domain of each variable consists of 5 values. We choose randomly a weight from
0 to 10 for each value assignment of every constraint. We construct junction graphs
through restricting the maximum cluster size from 2 to 4. Then we apply SCC, DCC
and NCC enforcing algorithms to preprocess this Weighted CSP with various ε that
approximates the multiplicative absorbing element α⊗ = ∞. The efficiency of the pre-
processing algorithms is characterized as the average variable domain size. We show
the experimental results in Table 2. For the purpose of comparison, we normalize the
local constraint at each cluster before performing invalid value detection. Given these
experimental results, we conclude: (1) For all of these approximate local cluster consis-
tency enforcing algorithms, the closer ε is to the exact multiplicative absorbing element
α⊗ = ∞, the fewer domain values are eliminated during the preprocessing. (2) The
preprocessing time for each local cluster consistency enforcing algorithm is affected by
the structure of the junction graph, but it does not change monotonically with the maxi-
mal cluster size. (3) In sequential computing schemes, SCC uses the least preprocessing
time, followed by DCC and then NCC. The time used by DCC or NCC can be reduced
if parallel computing is introduced. (4) DCC has the strongest preprocessing ability

k = 2 k = 3 k = 4

|C| 200 107 69
|S| 1500 772 520

Max Degree 26 24 26

Algorithm SCC DCC NCC-1 NCC-3 SCC DCC NCC-1 NCC-3 SCC DCC NCC-1 NCC-3

ε = 7 4.84 2.40 3.17 1.38 4.70 2.69 2.90 1.44 4.41 2.94 3.02 1.50
ε = 10 5.00 2.88 4.21 1.58 4.97 3.36 3.97 1.65 4.94 3.51 4.05 1.87
ε = 15 5.00 3.35 4.85 1.87 5.00 4.05 4.79 2.02 4.98 4.22 4.76 2.28
ε = 25 5.00 3.97 5.00 2.36 5.00 4.44 4.96 2.61 5.00 4.65 4.97 2.88
ε = 50 5.00 4.32 5.00 3.09 5.00 4.88 5.00 3.39 5.00 4.91 5.00 3.75
ε = 75 5.00 4.55 5.00 3.53 5.00 4.94 5.00 3.93 5.00 4.97 5.00 4.22
ε = 100 5.00 4.66 5.00 3.88 5.00 4.97 5.00 4.22 5.00 4.98 5.00 4.46
ε = 125 5.00 4.77 5.00 4.08 5.00 4.98 5.00 4.36 5.00 4.99 5.00 4.59
ε = 150 5.00 4.82 5.00 4.24 5.00 4.99 5.00 4.53 5.00 5.00 5.00 4.66
ε = 200 5.00 4.90 5.00 4.46 5.00 5.00 5.00 4.65 5.00 5.00 5.00 4.75
ε = 500 5.00 4.94 5.00 4.89 5.00 5.00 5.00 4.99 5.00 5.00 5.00 4.92

Avg. Time (s) 0.16 16.25 42.88 180.65 2.62 12.72 30.86 137.48 3.55 16.25 43.85 234.80
Table 2. Average variable domain sizes for a Weighted CSP that is preprocessed by three ap-
proximate local cluster consistency enforcing algorithms with different junction graph represen-
tations and different approximate element ε. Here SCC stands for Single Cluster Consistency;
DCC stands for Directional Cluster Consistency; NCC-n stands for Neighborhood-Cluster Con-
sistency with n steps of message updating. k is the size of the maximal cluster in a junction graph
J = (C,S). The original average domain size is 5 and we normalize the local constraint at each
cluster for comparison.

due to its “global” property. In other words, message passing from lower order clusters
contains information from clusters that are lower than them. NCC with one step mes-
sage updating is slightly better than SCC in that a cluster in NCC collects information
from all its immediate neighbors. If we perform several steps (3 in our experiments) of
message updating, more values are removed.

5.2 Probability Assessment

Probability inference problems can be seen as constraint-based inference by treating
conditional probability distributions (CPDs) as soft constraints over variables. The prob-
ability distribution over all the variables is given by the combination of the CPDs us-
ing the arithmetic product. The probability assessment problem computes the posterior
marginal probability of a subset of variables, given values for some variables as known
evidence. The probability assessment problem can be represented as a CBI problem
using the commutative semiring SPROB = 〈R+ ∪ {0},+,×〉. It is easy to show that
α⊗ = 0 = 0 in SPROB and SPROB is monotonic that both the exact and approxi-
mate local consistency enforcing schemes in this paper apply to probability assessment
problems.

The Bayesian network used here is the Insurance network from the Bayesian Net-
work Repository [17]. The network has 27 variables and 27 non-binary constraints

0 0.005 0.01 0.015 0.02
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ε

N
um

be
r

of
 O

pe
ra

tio
ns

 (
%

)

SCC
DCC
NCC

0 0.005 0.01 0.015 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

ε

A
ve

ra
ge

 E
rr

or

SCC
DCC
NCC

A: Inference Speed B: Average Error

Fig. 6. The number of binary operations required for probability assessment after using the local
cluster consistency enforcing algorithms (shown as a fraction of the number required without pre-
processing) and the resultant average error of the marginal probability for the Insurance network
as a function of ε

(CPDs). In our experiments, we randomly choose one variable as observed. The ap-
proximate local cluster consistency enforcing algorithms are used to preprocess the
problem based on a junction graph representation with the maximal cluster size of 5.
The junction tree algorithm in Lauritzen-Spiegelhalter architecture [18] is used to in-
fer the marginal probability of every unobserved variable. We compare the number of
binary operations required for probability assessment after using the preprocessing al-
gorithms (shown as a fraction of the number required without preprocessing) and the
resultant error of the marginal probability for the Insurance network as a function of ε
in Figure 6. At each value of ε, we collect data for 5 runs. It is clear that ε controls the
tradeoff of the precision and the speed of the inference. DCC and NCC have stronger
ability of speeding up the inference but introduce more errors than SCC, so they are
more sensitive to the selection of the approximation threshold ε.

6 Conclusion

As the first contribution of this paper we propose a family of novel generalized lo-
cal consistency concepts for the junction graph representation of CBI problems. These
concepts apply to a broader coverage of inference problems from various fields based
only on the general condition that depends on the properties of semirings that are used
to abstract these problems. Second, we present several local consistency enforcing al-
gorithms, including single, directional and neighborhood cluster consistency enforc-
ing algorithms and their corresponding approximation variants. Third, theoretical space
and time complexities of these preprocessing or consistency enforcing algorithms are
discussed and experimental results of applying them to both MaxCSP and probabil-
ity assessment problems are given. Finally, we discuss the relationship between these
local cluster consistency concepts and message passing schemes such as junction tree
algorithms and loopy message propagation. We will study efficient approaches to com-
bining together the local cluster consistency enforcing with the message propagation
for general CBI problems in future work.

References

1. Mackworth., A.K.: Consistency in networks of relations. Artificial Intelligence 8 (1977)
99–118

2. Mackworth, A.K.: On reading sketch maps. In: IJCAI77. (1977) 598–606
3. Mohr, R., Henderson, T.: Arc and path consistency revisited. Artificial Intelligence 28 (1986)

225–233
4. Wallace, R.: Directed arc consistency preprocessing as a strategy for maximal constraint

satisfaction. In: Proc. of ECAI’94 Workshop on Constraint Processing, Amsterdam (1994)
5. Larrosa, J., Schiex, T.: In the quest of the best form of local consistency for weighted csp.

In: Proc. of IJCAI-03, Acapulco, Mexico (2003) 239–244
6. Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimiza-

tion. J. ACM 44 (1997) 201–236
7. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard and easy

problems. In: IJCAI95, Montreal (1995) 631–637
8. Cooper, M., Schiex, T.: Arc consistency for soft constraints. Artificial Intelligence 154

(2004) 199–227
9. Bistarelli, S.: Semirings for Soft Constraint Solving and Programming. Springer-Verlag

(2004)
10. Chang, L., Mackworth, A.K.: A generalization of generalized arc consistency:

From constraint satisfaction to constraint-based inference. In: Proc. of 5th Work-
shop on Modelling and Solving Problems with Constraints, Edinburgh (2005) 68–75
www.cs.ubc.ca/˜lechang/publications/IJCAI05 Wshp.pdf.

11. Chang, L.: Generalized constraint-based inference. Master’s thesis, Dept. of Computer
Science, Univ. of British Columbia (2005)

12. Shenoy, P.P., Shafer, G.: Axioms for probability and belief-function propagation. In: Proc.
of UAI90. (1990) 169–198

13. Dechter, R., Pearl, J.: Tree clustering for constraint networks. Artif. Intell. 38 (1989) 353–
366

14. Zhang, Y., Mackworth, A.K.: Parallel and distributed finite constraint satisfaction: Complex-
ity, algorithms and experiments. In: Parallel Processing for Artificial Intelligence. Elsevier
Science Publishers (1994) 305–334

15. Kask, K., Dechter, R., Larrosa, J., Dechter, A.: Unifying cluster-tree decompositions for
reasoning in graphical models. Artificial Intelligence 166 (2005) 165–193

16. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference:
An empirical study. In: Proc. of UAI99. (1999) 467–475

17. Friedman, N., Goldszmidt, M., Heckerman, D., Russell, S.: (Bayesian network repository,
http://www.cs.huji.ac.il/labs/compbio/repository/)

18. Lauritzen, S.L., Spiegelhalter, D.J.: Local computations with probabilities on graphical struc-
tures and their application to expert systems. Journal of the Royal Statistical Society, Series
B 50 (1988) 157–224

