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Abstract. Constraint-Based Inference (CBI) is a unified framework that
subsumes many practical problems in different research communities.
These problems include probabilistic inference, decision-making under
uncertainty, constraint satisfaction, propositional satisfiability, decoding
problems, and possibility inference. Recently, researchers have presented
various unified representation and algorithmic frameworks for CBI prob-
lems in their fields, based on the increasing awareness that these problems
share common features in representation and essentially identical infer-
ence approaches. As the first contribution of this paper, we explicitly use
the semiring concept to generalize various CBI problems into a single
formal representation framework that provides a broader coverage of the
problem space based on the synthesis of existing generalized frameworks.
Second, the proposed semiring-based unified framework is also a single
formal algorithmic framework that provides a broader coverage of both
exact and approximate inference algorithms, including variable elimi-
nation, junction tree, and loopy message propagation methods. Third,
we discuss inference algorithm design and complexity issues. Finally, we
present a software toolkit named the Generalized Constraint-Based In-
ference Toolkit in Java (GCBIJ) as the last contribution of this paper.
GCBIJ is the first concrete software toolkit that implements the abstract
semiring approach to unify the CBI problem representations and the in-
ference algorithms. The discussion and the experimental results based
on GCBIJ show that the generalized CBI framework is a useful tool for
both research and applications.

1 Introduction

Constraint-Based Inference (CBI) is a general term covering many different prob-
lems in several research communities. It consists of discovering new constraints
from a set of given constraints over individual entities. These new constraints
reveal previously undiscovered properties of those entities. Practical problems
from many different fields can be seen as constraint-based inference problems,
including probabilistic inference, decision-making under uncertainty, constraint
satisfaction problems, propositional satisfiability, decoding problems, and possi-
bility inference.

Along with the development of inference approaches for concrete CBI prob-
lems, researchers are increasingly aware that these problems share common ab-
stract representation features. Many inference algorithms, described differently,



implicitly have essentially identical ideas underlying them. Understanding the
common features and characteristics of CBI representations helps research com-
munities exchange ideas and design more efficient inference algorithms.

The purpose of this paper is to use the algebraic semiring concept to general-
ize a wide range of CBI problems and different exact and approximate inference
algorithms into a single formal framework based on the synthesis of existing gen-
eralized frameworks. We aim to analyze the common characteristics of inference
algorithms based on the abstract problem representation, then apply the general
knowledge learned from the unified framework to improve the concrete inference
algorithm design in specific application domains.

To demonstrate the representation power of the proposed semiring-based uni-
fied framework, a toolkit named Generalized Constraint-Based Inference Toolkit
in Java (GCBIJ) is implemented. It can be used to verify, test, compare, and
analyze generalized approaches for CBI problems. The flexible architecture of
GCBIJ enables implemented generalized inference algorithms to be applied to
solve concrete problems simply through specifying different semirings. GCBIJ’s
extensibility enables users to design their own task-specific semirings and use
available generalized inference algorithms. This not only demonstrates the fea-
sibility of using semirings to unify the CBI problem representations and the
various inference algorithms, but also shows that GCBIJ is a suitable platform
for both research and practical problem-solving.

2 Related Work

Generalized representation and inference algorithms for CBI problems have been
studied for the past ten years. All of these studies are based on the follow-
ing observation: there are two essential operations in constraint-based inference:
(1) combination, which corresponds to an aggregation of constraints, and (2)
marginalization, which corresponds to the projection of a specified constraint
onto a narrower domain. Different generalized representations express these two
operations through various tools or notions. Given the distributivity property
of the two operations, generalized inference algorithms can be abstracted that
exploit that property.

2.1 Generalized CBI Representations

Semiring-based CSP (SCSP) [1] was the first generalized framework for soft con-
straint programming, which includes max CSPs, fuzzy CSPs, weighted CSPs,
and probabilistic CSPs. It generalizes these soft constraint programming prob-
lems, as well as classic CSPs, into a single abstract framework. The c-semiring, a
commutative semiring with the additive idempotency property, is the key notion
in SCSP that represents both the combination and marginalization operations.
Given that the CSP is an instance of the generalized CBI problem, the SCSP
framework inspired us to propose the semiring-based unified framework in this
paper. In addition to the generalized representation of hard and soft CSPs, SCSP



also generalizes the soft local consistency approaches. Extended from local con-
sistency techniques for classic CSPs, generalized soft local consistency can be
instantiated to solve a wide range of soft constraint programming problems.
The success of the SCSP framework [2] demonstrates that a generalized prob-
lem representation will provide opportunities to migrate an existing approach
for one problem to solve another problem, if the two problems have the same
abstract representation. That is our motivation for proposing a semiring-based
unified framework to represent CBI problems from other disciplines as well as
constraint programming.

The valuation algebra framework [3] is an abstract framework for describing
probabilistic inference problems in expert systems. It is inspired by the formu-
lation of simple axioms that solve global problems through local computing.
Knowledge or information in the framework is called valuation. Inferences are
made by computing the marginal of a combination of several valuations. The
framework of the valuation algebra is abstracted to include many different for-
malisms. Bayesian networks, Dempster-Shafer belief function models, Spohn’s
epistemic belief models, and possibility theory are shown [3] to fit into the valu-
ation algebra framework. The authors also suggested that constraint satisfaction
problems, propositional logic, and discrete optimization problems could be ex-
pressed in the valuation algebra framework.

2.2 Generalized Inference Algorithms

Many algorithms have been proposed for probabilistic inference. The variable
elimination algorithm [4] and the junction tree algorithms [5–7] were among the
first inference algorithms for probability inference in Bayesian networks. Origi-
nating in dynamic programming, the variable elimination or bucket elimination
algorithms explicitly use the distributivity of arithmetic additive and multiplica-
tive operations. The generalized bucket elimination algorithm [8] can be used in
belief assessment, most probable explanation, maximum a posteriori hypothe-
sis, and maximum expected utility problems. The bucket elimination approach
was also applied in constraint satisfaction problems. It was proved that the
generalized bucket elimination algorithm is applicable to both probabilistic and
deterministic inference [9].

The Generalized Distributive Law (GDL) [10] is a general message-passing
algorithm, a synthesis of work in the information theory, signal processing, statis-
tics, and artificial intelligence communities. GDL generalizes the computational
problems as “Marginalize a Product Function” (MPF) problems through using
commutative semirings to represent the combination and marginalization oper-
ations. GDL can be seen, in the AI community, as a junction tree algorithm.
As a semiring-based generalized inference algorithm, GDL can represent a wide
range of inference algorithms.

More recently, a unified algorithmic framework was proposed [11] to represent
tree-decomposition algorithms as a generalized bucket-tree elimination algorithm
for automated reasoning tasks. Different from GDL, the generalized bucket-tree
elimination does not rely on semirings. Abstract concepts are used to represent



combination and marginalization operations, though the distributivity is also
the key idea behind the algorithm. Using those concepts, the message-passing
within the tree structure can be abstractly represented. The authors also sug-
gested using their generalized algorithmic framework for constraint satisfaction
problems.

3 Background

3.1 Graphical Representations of a CBI Problem

In this paper, a constraint-based inference problem is characterized in terms of
a set of variables with values in a finite domain and a set of constraints on these
variables. The inference task for a CBI problem is then to make explicit new
constraints over some variables, based on the given constraints.

We can use graphs to represent CBI problems. The graphical representations
of CBI problems provide opportunities for researchers to design efficient inference
approaches.

Hypergraph Representations The most straightforward graphical represen-
tation of a CBI problem is the hypergraph representation, where nodes represent
variables and hyperarcs represent constraints.

Primal Graph Representations Although the hyper-graph representation is
straightforward, it is hard to represent practical CBI problems using hyperarcs.
In a primal graph the hyperarcs in a hypergraph are replaced by cliques. The
primal graph representation of a CBI problem is an undirected graph G = (V, E),
where V = {V1, · · · , Vn} is a set of vertices, each vertex Vi corresponding to a
variable Xi of the CBI problem; and E = {(Vi, Vj)|Vi, Vj ∈ V} is a set of edges
among vertices. There exists an edge (Vi, Vj) if and only if the corresponding
variables Xi and Xj appear in the scope of the same constraint.

Junction Tree Representations Sometimes the primal graph of a CBI prob-
lem is re-organized as a secondary structure to achieve better computational
efficiency. The junction tree is a widely used secondary structure in graphical
models. A junction tree is an undirected graph T = (C,S). C = {C1, · · · , Cn} is
a set of clusters, where each cluster Ci corresponds to an aggregation of a subset
of vertices VCi

⊆ V in the primal graph G = (V, E). S = {Sij , ·, Slm} is a set
of separators between clusters, where Sij is the separator of clusters Ci and Cj ,
corresponding to the vertices of VCi

∩ VCj
. In addition, the following junction

tree properties have to be satisfied:

1. Singly connected property : T = (C,S) is a tree;
2. Running intersection property : ∀Ci, Cj ∈ C, VCi

∩ VCj
⊆ VCk

holds for any
cluster Ck on the path between Ci and Cj ;

3. Constraint allocation property : For any constraint f of the CBI problem,
∃Ci ∈ C s.t. Scope(f) ⊆ Ci.



Factor Graph Representations The factor graph [12] is another graphical
representation for CBI problems, widely used in information theory research. A
factor graph is a bipartite graph that expresses the structure of the factorization.
A factor graph has a variable node for each variable, a factor node for each
constraint, and an edge connecting a variable node to a factor node if and only
if the variable is in the scope of the constraint.

3.2 Semiring and Commutative Semiring

Definition 1 (Semiring). Let S be a set. Let ⊕ and ⊗ be two closed binary
operations on S. Here we assume operation ⊗ has precedence over operation ⊕.
(S,⊕,⊗) is a semiring if the operations satisfy the following axioms:

– Additive associativity: ∀a, b, c ∈ S, (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c);
– Additive commutativity: ∀a, b ∈ S, a ⊕ b = b ⊕ a;
– Multiplicative associativity: ∀a, b, c ∈ S, (a ⊗ b) ⊗ c = a ⊗ (b ⊗ c);
– Left and right distributivity: ∀a, b, c ∈ S, a ⊗ (b ⊕ c) = a ⊗ b ⊕ a ⊗ c and

(b ⊕ c) ⊗ a = b ⊗ a ⊕ c ⊗ a.

A semiring (S,⊕,⊗) is a ring that need not have either additive (⊕) inverses
or an additive identity element. In other words, a semiring is a commutative
semigroup under addition and a semigroup under multiplication.

Definition 2 (Commutative Semiring). A commutative semiring is a semir-
ing that satisfies the following additional conditions:

– Multiplicative commutativity: ∀a, b ∈ S, a ⊗ b = b ⊗ a;
– Multiplicative identity: there exists a multiplicative identity element 1 ∈ S,

such that a ⊗ 1 = 1 ⊗ a = a for any a ∈ S;
– Additive identity: there exists an additive identity element 0 ∈ S, such that

a ⊕ 0 = 0 ⊕ a = a for any a ∈ S.

A commutative semiring (S,⊕,⊗) is a commutative monoid under both ad-
dition and multiplication. We say that ⊕ is idempotent if a ⊕ a = a and ⊗ is
idempotent if a ⊗ a = a for any a ∈ S. Furthermore, we say a commutative
semiring (S,⊕,⊗) is additive invertible if ∀a ∈ S, ∃−a ∈ S, s.t. a⊕−a = 0 and
(S,⊕,⊗) is multiplicative invertible if ∀a ∈ S, ∃a−1 ∈ S, s.t. a ⊗ a−1 = 1.

Here we define k-semiring as a generalization of semiring with a 1-semiring
corresponding to the definition of a semiring.

Definition 3 ((Commutative) k-Semiring). A (commutative) k-semiring is
a tuple (S, op0, op1, · · · , opk) such that for each i ∈ {1, · · · , k}, (S, opj , opi) is a
(commutative) semiring for every j < i.

The definition of (commutative) k-semiring is sometimes too strong in prac-
tice. For example, we may need only (S, opi−1, opi) to satisfy the (commutative)
semiring properties. We do not necessarily need (S, opj , opi) to be a (commuta-
tive) semiring for ∀j < i always, although the strong definition provides com-
putational flexibility in algorithm designs. ([0,∞),max,+,×) is an example of
a commutative 2-semiring.



4 A Semiring-Based Generalized Framework for CBI

4.1 A Semiring-Based Generalized Framework

A constraint-based inference problem is defined in terms of a set of variables
with values in finite domains and a set of constraints on these variables. We use
commutative semirings to unify the representation of constraint-based inference
problems from various disciplines. Formally:

Definition 4. (Constraint-Based Inference (CBI) Problem) A constraint-based
inference (CBI) problem P is a tuple (X,D,R, F ) where:

– X = {X1, · · · ,Xn} is a set of variables;
– D = {D1, · · · ,Dn} is a collection of finite domains, one for each variable;
– R = (S,⊕,⊗) is a commutative semiring;
– F = {f1, · · · , fr} is a set of constraints. Each constraint is a function that

maps value assignments of a subset of variables, its scope, to values in S.

Before defining various tasks for CBI problems, we define the two basic con-
straint operations as follows, using the two binary operation ⊗ and ⊕ of the
commutative semiring R. Please note that we use the same two symbols ⊗ and
⊕ to represent the two constraint level operations. The meaning of them can be
easily distinguished given the context.

Definition 5. (The Combination of Two Constraints) The combination of two
constraints f1 and f2 is a new constraint g = f1 ⊗ f2, where Scope(g) =
Scope(f1) ∪ Scope(f2) and g(w) = f1(w↓Scope(f1)) ⊗ f2(w↓Scope(f2)) for every
value assignment w of variables in the scope of the constraint g.

Definition 6. (The Marginalization of a Constraint) The marginalization of Xi

from a constraint f , where Xi ∈ Scope(f), is a new constraint g =
⊕

Xi
f , where

Scope(g) = Scope(f) \ Xi and g(w) =
⊕

xi∈Domain(Xi)
f(xi,w) for every value

assignment w of variables in the scope of the constraint g.

Definition 7. (The Inference Task for a CBI problem) Given a variable subset
of interest Z ⊆ X, let Y = X \ Z, then the inference task for a CBI problem
P = (X,D,R, F ) is defined as computing:

gCBI(Z) =
⊕
Y

⊗
f∈F

f (1)

Given a CBI problem P = (X,D,R, F ), if ⊕ is idempotent, we can define
the assignment task for a CBI problem.

Definition 8. (The Assignment Task for a CBI problem) Given a variable sub-
set of interest Z ⊆ X, let Y = X \ Z, the assignment task for a CBI problem
P = (X,D,R, F ) is to find a value assignment for the marginalized variables Y ,



which gives the result of the corresponding inference task gCBI(Z). Formally, a
solution to the assignment task is:

y = arg
⊕
Y

⊗
f∈F

f (2)

where arg is a prefix of operation ⊕. In other words, arg⊕xf(x) returns x⊕ s.t.
f(x⊕) = ⊕xf(x).

If a total ordering of S exists, we can define the optimization task for a CBI
problem as maximizing (or minimizing) the computed result of the corresponding
CBI inference task by finding a value assignment to variables Z. Formally :

Definition 9. (The Optimization Task for a CBI problem) Given a variable
subset of interest Z ⊆ X, let Y = X\Z and R = (S,max,⊕,⊗) be a commutative
2-semiring, then the optimization task for a CBI problem P = (X,D,R, F ) is
defined as computing:

gOPT = max
Z

⎛
⎝⊕

Y

⊗
f∈F

f

⎞
⎠ (3)

The assignment task for an optimization task is then to compute:

z = arg max
Z

⎛
⎝⊕

Y

⊗
f∈F

f

⎞
⎠ (4)

In general, ⊗ is a combination operation for CBI problems that combines
a set of constraints into a constraint with a larger scope; ⊕Y = ⊕X\Z is a
marginalization operation that projects a constraint over the scope X onto its
subset Z, through enumerating all possible value assignments of Y = X \ Z.

Practically, sometimes there are observations of, or evidence about, the val-
ues of some variables. In such cases, constraints with observed variables in their
scopes can be modified through instantiation before performing the inference.
Although there are many observation-handling techniques to accelerate the in-
ference process, we will not incorporate them into our framework here. Another
issue concerning practical CBI tasks is the normalization after the computation.
In this paper, we omit normalization constants since they are simple to define
and compute in specific application scenarios.

4.2 Instances of the Generalized CBI Framework

Many CBI problems from different disciplines can be embedded into the pro-
posed generalized CBI framework. In this section we will briefly introduce these
problems as instances of the framework.



Constraint Satisfaction Problems A constraint satisfaction problem (CSP)
is defined over a set of variables of discrete domains and a set of constraints or
evaluation functions, where each constraint is defined on a subset of variables.
The inference task for a CSP is to find if there exists a value assignment that
satisfies all the constraints. The assignment task for a CSP is to find such a
value assignment or all such assignments. We use the commutative semiring
R = ({false, true},∨,∧) to represent a CSP in the framework.

Soft CSPs are used to model over-constrained problems by introducing soft
constraints that may be (partially) violated. Following the results of the Semiring
CSP [1] and Valued CSP [13] frameworks, various soft CSPs including Max CSPs,
Weighted CSPs, Probability CSPs, and Fuzzy CSPs can also be embedded into
our framework [14].

Propositional Satisfiability Problems The propositional satisfiability prob-
lem (SAT) is a central problem in logic and artificial intelligence, which consists
of a logical propositional formula in n variables. Analogous to the CSP, both SAT
and MaxSAT can be embedded into our framework by specifying the commuta-
tive semirings R = ({false, true},∨,∧) and R = ([0,∞),max,+), respectively.

Probability Inference Problems Probability inference problems can be seen
as constraint-based inferences by treating conditional probability distributions
(CPDs) as soft constraints over variables. Generally, there are three types of tasks
in probability inference: probability assessment, most probable explanation, and
maximum a posteriori hypothesis (maximum likelihood). All of these tasks can
be generalized into our semiring-based framework, by specifying the commuta-
tive (2-)semirings R as ([0,∞),+,×), ([0,∞),max,×), and ([0,∞),max,+,×),
respectively.

Dynamic Bayesian Networks Many discrete-time stochastic processes can
be graphically represented as dynamic Bayesian networks (DBN) [15]. As an
extension of Bayesian networks (BN), inference tasks can be performed over a
DBN. We can abstract DBNs into our framework using the same commutative
semiring R = ([0,∞),+,×).

Decision-Making Problems The Decision Network (DN) or the influence dia-
gram [16], is a graphical representation for decision-making problems. A decision
network is a directed acyclic graph with three types of nodes: random nodes, de-
cision nodes, and value nodes. The goal of one-off decision-making problems in
decision networks is to find the policies for each decision node that maximize the
summation of expected utilities. A decision-making problem can be embedded
into our framework using a commutative 2-semiring R = ([0,∞),max,+,×). We
do not integrate sequential decision-making problems [17] in decision networks
into our framework and leave it in our future work.



Possibility Inference Problems Possibility theory [18] is another approach to
characterizing uncertainties. Each constraint in a possibility inference problem
specifies the degree of possibility of the configuration of variables. The degree of
possibility, or possibility potential, is a value in [0, 1], representing non-possibility
to full certainty. In possibility theory, a binary operation T, also called a t-norm,
is a function T : [0, 1]×[0, 1] → [0, 1], which satisfies the boundary, monotonicity,
and commutativity conditions [18]. There are many t-norms in possibility theory
research. The most frequently used t-norms are:

– Product t-norm: aTb = a × b;
– Gödel’s t-norm: aTb = min(a, b);
– Lukasziewcz’s t-norm: aTb = max(0, a + b − 1).

Given a t-norm, a possibility inference problem can be embedded into our frame-
work using a commutative semiring R = ([0, 1],max,T) if the corresponding
t-norm satisfies the commutative semiring properties.

Maximum Likelihood Decoding In digital communication, decoding is an
important step in recovering the original information transmitted through a
discrete memoryless channel. Maximum Likelihood Decoding (MLD), or equiv-
alently minimum log-likelihood, is one widely used approach. A semiring-based
general massage-passing approach for MLD was first proposed in [10]. Basically,
the commutative semiring R = ([0,∞),min,+) can be used to abstract the
minimum log-likelihood decoding problem.

5 Exact Inference Algorithms

The distributivity and the commutativity properties of a commutative semir-
ing provide computational opportunities for solving constraint-based inference
problems more efficiently. Different computation sequences lead to different costs,
given the same computation task defined by a commutative semiring. Many in-
ference algorithms have been developed independently, explicitly or implicitly
exploiting the distributivity of commutative semirings. The key idea of these al-
gorithms is to rearrange the computation sequences of the task solutions. In this
section we generalize these algorithms into two categories: variable elimination
algorithms and junction tree algorithms.

5.1 Generalized Variable Elimination Algorithm

The basic idea behind variable elimination (VE) algorithms comes from non-
serial dynamic programming [19]. These algorithms work by eliminating vari-
ables one by one while computing the effect of each eliminated variable on the
remaining problem. See Fig. 1 for the description of our generalized variable
elimination algorithm for the CBI inference task, abstracted from the variable
elimination algorithm [4] in probability inference.



Input: A CBI problem (X, D, R, F ) and a variable subset of interest Z
Output: gCBI(Z) =

⊕
X−Z

⊗
f∈F

f

1: Let Y = X \ Z
2: Choose an elimination ordering σ =< Y1, · · · , Yk > of Y
3: for i = k to 1 do
4: F ′ := ∅
5: for each f ∈ F do
6: if Yi ∈ Scope(f) then
7: F ′ := F ′ ∪ {f}
8: F := F \ {f}
9: end if

10: end for
11: f ′ :=

⊕
Yi

⊗
f∈F ′ f

12: F := F ∪ {f ′}
13: end for
14: Return gCBI(Z) :=

⊗
f∈F

f

Fig. 1. Generalized Variable Elimination Algorithm (GVE) for the CBI Inference Task

A common concern of applying VE algorithms is how to find an optimal
elimination ordering to minimize the computation cost. Finding an optimal elim-
ination ordering, which is equivalent to finding an optimal triangulated graph
or finding the treewidth, is NP-hard [20]. Several heuristic search methods [21]
can be used to generate near-optimal elimination orderings.

For the assignment task for a CBI problem, backtracking approaches can
be applied. All intermediate constraints during the elimination procedure are
cached. The final computation value of gCBI(Z) is used as an index to track
valid value assignments in the intermediate constraints.

To apply VE algorithms, commutativity of ⊗ is required; for the CBI infer-
ence task that enables us to rearrange the combination sequence of local func-
tions. The commutativity of ⊕ is a desired property as well; that enables us to
exploit different elimination orderings. Identity elements for the two operations
are not required, so we can relax the requirement of commutative semiring here.

An extension of the generalized VE algorithm works with CBI problems
defined on a commutative k-semiring (S, op0, op1, · · · , opk) [14]. In such cases, we
repeatedly use the generalized VE for the last two operations, then replace F by
the new marginalized constraints. Interestingly, it is another variable elimination
process that eliminates the second last operation repeatedly.

Many concrete algorithms from different fields can be seen as instances of
variable elimination. For classic CSPs, [22] proposed a variable elimination al-
gorithm in the early 80s. The Adaptive Consistency algorithm [23] is another
instance of variable elimination for CSPs. For propositional SAT problems, di-
rectional resolution is the core of the well-known Davis-Putnam (DP) algorithm
[24]. The variable elimination [4] and the bucket elimination [8] algorithms have
been widely studied in tackling inference tasks of probability assessment, MPE,
and MAP problems. For decision-making problems, [25] reduced the influence di-



agrams to Bayesian networks; the variable elimination algorithm for probabilistic
inferences is then applied to solve decision-making problems. For maximum like-
lihood decoding, Viterbi decoding [26] is an instance of variable elimination. We
can design other concrete VE algorithms for problems that can be abstractly rep-
resented by the semiring-based unified framework, through instantiating different
semirings. In general, variable elimination is a variant of dynamic programming,
which is the key idea of these algorithms.

According to the complexity analysis given in [14], both the space and time
complexities of the generalized VE algorithm are linear in the size of the problem,
but exponential in the induced width of an elimination ordering or the width
of a tree decomposition of the corresponding primal graph representation. For a
large CBI problem with a complex graphical representation, treewidth (the lower
bound of widths of all tree decompositions of the problem) is often intractable
to compute, which makes the direct application of the VE algorithm infeasible.
There are basically two approaches to cope with that: the first one is to seek
approximate inference solutions in terms of some criteria; the second is to incor-
porate value properties of the variables and exploit the structural properties of
the problem.

5.2 Generalized Junction Tree Algorithm

The major motivation that prompts researchers to use junction tree (JT) al-
gorithms to solve CBI problems is handling multiple queries. Junction tree al-
gorithms can share intermediate computational results among different queries,
which is an advantage relative to variable elimination algorithms. In fact, junc-
tion tree algorithms can be seen as memorized dynamic programming [27], where
solutions for subproblems are memorized for later use. A junction tree is a struc-
ture that efficiently divides the original problem into subproblems.

In general, junction tree algorithms assign constraints to clusters and combine
constraint in the same cluster. The combined constraint is marginalized and
passed as a message between clusters. Following a specified message-passing
scheme, the junction tree reaches consistency and any variable of interest can be
queried through marginalizing out other variables in the cluster that contains
that variable. Formally, the generalized junction tree algorithm for the inference
task of a CBI problem is shown in Fig. 2, which is abstracted from the message-
passing scheme in the Shenoy-Shafer architecture [5] of probabilistic inference.

One interesting case of applying JT algorithms is that the variable subset of
interest Z in query is not contained in a single cluster. A solution is to find a
subtree TZ = (CZ ,SZ) of T = (C,S), where Z ⊆ C =

⋃
C∈CZ

C. The answer
to the query is computed as the marginal of the combination of all the local
constraints together with all the incoming messages of the subtree TZ . The basic
idea here is to treat the subtree TZ as a virtual cluster and compute the marginal
as treating normal concrete clusters.

We can modify the generalized JT algorithm to solve the assignment task for
a CBI problem. After computing gCBI(Z) in some cluster Ci, backtracking is



Input: A junction tree T = (C,S) of a CBI problem (X, D, R, F ), a variable subset
of interest Z

Output: gCBI(Z) =
⊕

X\Z

⊗
f∈F

f

1: Attach to each cluster Ci a potential φCi = 1
2: for each f ∈ F do
3: Find a cluster Ci such that Scope(f) ⊆ Ci

4: φCi := φCi ⊗ f
5: end for
6: for each Edge Sij which is from clusters Ci to Cj do
7: if Ci has received messages from all its neighbors other than Cj then
8: Ni−j := Neighbor(Ci) \ {Cj}
9: % m(Ci, Cj) is the message sent from Ci to Cj ;

10: m(Ci, Cj) :=
⊕

Ci\Sij
(φCi ⊗

⊗
Cl∈Ni−j

m(Cl, Ci))

11: end if
12: end for
13: for each Ci ∈ C do
14: if Z ⊆ Ci then
15: φCi := φCi ⊗

⊗
Cl∈Neighbor(Ci)

m(Cl, Ci)

16: Return gCBI(Z) :=
⊕

Ci\Z
φCi

17: end if
18: end for

Fig. 2. Generalized Junction Tree Algorithm (GJT) for the CBI Inference Task

applied to the variables contained in Ci. After a value assignment for these vari-
ables is decided, the (partial) assignment is passed to all the neighboring clusters
of Ci. The procedure recursively instantiates values of variables according to the
messages passing from the instantiated clusters to the un-instantiated ones.

Following the result of [5], commutativity of both ⊕ and ⊗ is required, which
ensures the correctness and completeness of the JT algorithm. The identity ele-
ments of the two operations are required as well. Other special semiring proper-
ties, such as the combination (or additive) invertible property and the combina-
tion (or additive) idempotency property, are not mandatory, but these properties
do enable us designing more efficient message-passing schemes.

A commutative semiring (R,⊕,⊗) is idempotent under combination if ∀a ∈
R, a ⊗ a = a. Since combination corresponds to information (or constraint)
gathering, the idempotency of combination implies that repeatedly combining
the same information will not produce new information. Furthermore, consider-
ing the marginalization of a set of information m =

⊕
i mi in a semiring with

the combination idempotency property, we get m = m ⊗ m = m ⊗
⊕

i mi =⊕
i (m ⊗ mi). This induction implies m =

⊕
i mi =

⊕
i (m ⊗ mi), which means

that combining the marginalization with original information will not produce
new information after another marginalization. This implies we can ignore the
double-counted messages in the generalized junction tree algorithm, without loss
of correctness. We abstracted a variant of the generalized JT algorithm for semir-



ings with the combination idempotency property [14], GJT-Idemp, based on the
previous observation.

Another variant of the generalized JT algorithm is based on the invertible
property of combination. The basic idea of utilizing the invertible property is
caching the combination of all the incoming messages and dividing the specific
incoming message to get the outgoing message for that separator. Dividing here
eliminates duplicated information from the combined message. We abstracted
a variant of the generalized JT algorithm for semirings with the combination
invertible property, GJT-Inv, based on this observation. Two other variants
for semirings with the combination invertible property are GJT-LS and GJT-
HUGIN, corresponding to the Lauritzen-Spiegelhalter (LS) architecture [28] and
the HUGIN architecture [7] in probabilistic inference, respectively. Details of
these algorithms can be found in [14].

Many concrete algorithms from different fields can be seen as instances of the
generalized junction tree algorithm. In the probabilistic inference community,
junction tree algorithms have been widely studied since the late 1980s. These
algorithms include message-passing schemes in Shenoy-Shafer [5], Lauritzen-
Spiegelhalter [28], and HUGIN [7] architectures. The application of junction
tree algorithms for constraint satisfaction problems can be traced back to [29],
which is essentially the same scheme as Shenoy-Shafer architecture, except that
the relational join and project operations are used as constraint combination
and marginalization operations. In [30], the arc consistency algorithm for the
rooted join tree (TAC) was presented to solve CSPs represented by constraint
networks. The contribution of their work is proposing and analyzing parallel
(PTAC) and distributed (DTAC) message-passing schemes based on the TAC,
which can be generalized and applied to junction tree algorithms of other disci-
plines. The junction tree algorithm was explicitly generalized as the Generalized
Distributive Law (GDL) [10]. Many concrete decoding algorithms, including the
Baum-Welch algorithm, the Gallager-Tanner-Wiberg decoding algorithm, and
the BCJR algorithm, are all special cases of the GDL algorithm.

In general, junction tree algorithms are memorized dynamic programming,
which cache solutions for subproblems to answer multiple queries. Both the time
and space complexities [14] of junction tree algorithms are polynomial in the
size of the junction tree, with a constant factor exponential in the maximum
subproblem size. So the key to applying JT algorithms is to divide the original
CBI problem into subproblems with tractable sizes. However, many practical
CBI problems have large treewidth. As the lower bound of the width of any
tree decomposition, a large treewidth makes exact inference in the junction tree
infeasible. There are two ways to perform approximate inferences in such a situ-
ation: (1) Splitting the oversized clusters, which corresponds to removing some
edges from the primal graph representation or retracting some constraints in the
original CBI problem; (2) Using junction graphs to perform inference, instead
of junction trees. In a junction graph, messages can pass in loops and may not
terminate, which means that information may be counted repeatedly. Some cri-



teria are used to terminate the message-passing after reaching preset thresholds.
Both of these approaches will be discussed in the following section.

5.3 Complexity

The time and space complexities of the generalized junction tree algorithm,
as well as the generalized variable elimination algorithm are discussed in [14].
Both the VE and the JT algorithms are exponential in the induced width of
an elimination ordering, or the width of a junction tree representation. In the
generalized VE and JT algorithms working on semirings with the combination
invertible or idempotency property, the time complexity is linear in the size of
a problem, whereas in the generalized JT algorithm, it is quadratic in the size
of a problem. The space complexity is linear in the size of a problem, regardless
of the properties the semiring has.

The complexity expressions do not convey sufficient information about the
running times of these algorithms. The upper bounds of different operations of
these algorithms are listed in Table 1, in terms of the number of operations. Here
G = (V, E) and T = (C,S) are respectively a primal graph representation and
a junction tree representation of the CBI problem; d is the maximum domain
size of variables; w is the width of T ; r is the number of constraints; and sep
is the maximum separator size. The binary operation  is the inverse operation
that is defined as: ∀a, b ∈ S, a  b ≡ a ⊗ b−1, where b−1 ∈ S is the inverse of b.
More specifically, for a CBI problem defined on a semiring with the combination
invertible property, generally we conclude: (1) GJT-Inv uses the least time, fol-
lowed by GJT-HUGIN and then GJT-LS; (2) GJT-LS uses the least space while
GJT-HUGIN and GJT-Inv use about the same space.

Table 1. Upper bounds of running times for generalized variable elimination (GVE)
and generalized junction tree (GJT) and its variants, in terms of the number of oper-
ations.

Algor. # of Operation ⊗ # of Operation ⊕ # of Operation �

GVE (r − |V|) · dw+1 |V| · dw+1 0

GJT (4 · |C|2 − |C| + r) · dw+1 2 · |C| · (dw+1 − dsep) 0
GJT-Idemp (|C| + r) · dw+1 2 · |C| · (dw+1 − dsep) 0
GJT-Inv (|C| + r) · dw+1 2 · |C| · (dw+1 − dsep) |C| · dw+1

GJT-LS (|C| + r) · dw+1 2 · |C| · (dw+1 − dsep) 2 · |C| · dw+1

GJT-HUGIN (|C| + r) · dw+1 2 · |C| · (dw+1 − dsep) 2 · |C| · dsep

6 Approximate Inference Algorithms

The analyses in the previous section show that both the variable elimination and
the junction tree algorithms can perform exact inference for a constraint-based



inference problem in polynomial time and space. However, there always exist
constant factors in the time and space complexities that are exponential in the
maximum cluster size of the problem’s tree decomposition. This means that the
generalized exact inference algorithms would be infeasible when the treewidth
of the corresponding problem, a lower bound of width for all possible tree de-
compositions, is intractable. This practical challenge encourages researchers to
develop approximate inference algorithms for CBI problems, if approximate in-
ference results with some quality guarantee are acceptable in their application
domains.

The key idea of these approximate inference algorithms is to restrict the size
of the maximum subproblem, or equivalently, the maximum cluster size of a
tree decomposition or the induced width given an elimination ordering, to an
acceptable level. In general, there are at least two possible ways to design an al-
gorithm to achieve this purpose. The first approach is to revise the original CBI
problems by removing some less important constraints, which makes the struc-
ture of the problem’s graphical representation much simpler; another approach
does not touch the original CBI problem but re-organizes it into more complex
graphical representations, e.g., a junction graph with loops. Inference procedures
are carefully re-designed to cope with these graphical representations.

6.1 Algebraic Approximation for VE and JT

The algebraic foundation of some approximate inference algorithms is based
on Eq. 5. Here F is a set of constraints and Fi is a subset of constraints for
i = 1, · · · , b, where F1∪· · ·∪Fb = F and Fi∩Fj = ∅ for any i, j ∈ {1, · · · , b}, i �= j.
The basic idea here is breaking the original CBI problem into b (overlapped) sub-
problems, solving them individually, then joining them again to get the solution.

⊕
Y

⊗
f∈F

f ≈
b⊗

i=1

(
⊕
Y

⊗
f∈Fi

f) (5)

Approximate Variable Elimination Algorithm According to the general-
ized exact variable elimination algorithm in Fig. 1, the bottleneck of computation
occurs when we eliminate a variable Xi, too many constraints with Xi in their
scopes have to be combined, which implies a large constraint after combining
and marginalizing. The way to overcome this bottleneck is to clone Xi with
several identical copies X

(1)
i , · · · ,X(b)

i . The constraints with Xi in their scopes
are revised by replacing Xi with X

(j)
i , j ∈ {1, · · · , b} according to specified rules.

Then the VE algorithm can be applied. Of course, introducing identical copies
X

(1)
i , · · · ,X(b)

i of Xi will introduce conflicts of the Xi values and bring errors in
the marginalization.

Min-Buckets [31] is the first algorithm proposed for applying this idea to solve
probability inference problems approximately. We generalize the Min-Buckets
algorithm as the generalized approximate variable elimination algorithm in our
semiring-based unified framework [14].



Approximate Junction Tree Algorithm The generalized junction tree al-
gorithm can be modified to perform approximate inference based on Eq. 5. The
basic idea of the approximate JT algorithm is to pass a set of messages from one
cluster to another, instead of passing a single message. The combination of these
messages is an approximation of the message passed in the exact JT algorithm.

The Min-Clustering Tree [32] is an approximate probability inference algo-
rithm following this idea. We generalize the Min-Clustering Tree algorithm as the
generalized approximate junction tree algorithm in our semiring-based unified
framework [14].

For semirings with the combination invertible property, the inverse of a mes-
sage is similarly approximated by the combination of a set of the messages’
inverses. The approximation can be formalized as Eq. 6.

1  (
⊕
Y

⊗
f∈F

f) ≈
b⊗

i=1

⎛
⎝1  (

⊕
Y

⊗
f∈Fi

f)

⎞
⎠ (6)

After applying Eq. 6, we can revise any one of these exact junction tree
algorithms for semirings with the combination invertible property to cope with
approximate inference tasks [14].

Discussion Algebraic approximation is the foundation of many approximate
inference approaches for CBI problems. On the CBI problems level, it is equiv-
alent to retracting some given constraints. On the primal graph representation
level, it is equivalent to removing some edges from the graph. On the junction
tree representation level, it is equivalent to splitting some clusters in the junction
tree. The purpose of these approximations is to restrict the size of the maximum
subproblem to a tractable level. Though the idea of algebraic approximation is
straightforward, it is hard to analyze the error bounds of these approaches, es-
pecially when the combination and marginalization operations are abstract. So
far there are few theoretical guidelines for choosing which constraints should be
released (which edges should be moved, how to split a cluster); only empirical
analyses currently apply in such cases.

6.2 Loopy Message Propagation

The algebraic approximation implies that the original CBI problems are revised
and simplified to make computation feasible. Loopy message propagation, by
contrast, does not revise the original CBI problems.

As already known, in junction tree algorithms both the time and space com-
plexities are bounded by the maximum cluster size. To maintain junction tree
properties, the maximum cluster size is usually large in practical problems. If
junction tree properties are relaxed, in other words, if the secondary structure
is not necessarily a tree but a graph with loops, the maximum cluster size can
be dramatically reduced.



At the same time, the message-passing may not terminate due to the intro-
duction of loops. Also messages will be repeatedly counted. Both of these bring
errors of inferences. However, empirical results in probability inference [33] and
Turbo decoding [34] show that the same message-passing schemes in exact junc-
tion tree algorithms work well in junction graphs with loops. When the junction
graph is singly connected, the exact inference result is produced after one iter-
ation of message-passing. When there exists only a single loop in the junction
graph, it is guaranteed to converge to the correct result under some conditions
[35]. Based on these observations, we generalized the loopy message propagation
algorithm in our semiring-based unified framework [14].

The basic idea of the generalized loopy message propagation is the same as
message-passing in the generalized junction tree algorithm, except that messages
at iteration t are updated by incoming messages at iteration t − 1. The initial
messages are produced based on the local constraints and do not depend on the
incoming messages from the neighboring clusters. If a CBI problem is defined
on a semiring with the combination invertible property, the algorithm can be
revised slightly to save computational cost.

A special case of applying the loopy message propagation is performing
inference on CBI problems defined on semirings with the combination idem-
potency property. Since the idempotency of combination implies that repeat-
edly counted messages will not introduce errors, the loopy message propaga-
tion returns exact answers after finite iterations. Classic CSPs can be embed-
ded into our semiring-based unified framework using the commutative semiring
R = ({false, true},∨,∧). It is easy to show that the combination operation ∧,
logical AND, is idempotent. Then the loopy message propagation should be an
exact inference algorithm for classic CSPs. In practice, Arc Consistency [36], the
key technique for CSPs, can be seen as a special case of the generalized loopy
message propagation for CBI problems defined on semirings with the combina-
tion idempotency property. In Arc Consistency, the messages are the possible
values of the variable in a separator. Combining messages from other clusters will
remove illegal values, in other words, revise the outgoing message. The algorithm
terminates when all the messages remain the same.

6.3 Hybrid Junction Tree Algorithm

The last approach for the approximate inference of CBI problems is the gener-
alized hybrid junction tree algorithm [14]. Generally, it passes messages exactly
to or from clusters with tractable sizes. When a cluster with intractable size is
encountered, the hybrid junction tree algorithm builds a local junction graph
based on the local constraints and incoming messages. In other words, large
clusters are treated as subproblems. Loopy message propagation is used in this
local junction graph. In addition to the local constraints of a subproblem, all
the incoming messages are seen as constraints of the subproblem. All outgoing
messages are initially seen as unitary constraints. After performing the loopy
message propagation over the junction graph of the subproblem for several it-
erations, we can approximately produce outgoing messages. These approximate



messages then pass to the neighbors clusters, as in the generalized approximate
junction tree algorithm.

7 Framework Implementation

We here implemented the proposed semiring-based unified framework for CBI
problems as a software toolkit, named the Generalized Constraint-Based In-
ference Toolkit in Java (GCBIJ) [14]. The toolkit provides a way to represent
various concrete CBI problems and a series of generalized exact and approx-
imate inference algorithms. By specifying various semirings, these generalized
inference algorithms can be instantiated as concrete algorithms that solve CBI
problems from different disciplines. GCBIJ also provides a collection of parsers
to translate concrete problems from various fields with domain-specific formats,
such as the DIMACS, BIF, XMLBIF, and CSPIF formats.

The architecture of GCBIJ is flexible, making it easy to extend. Users can
implement their own task-specified semirings to fulfill their purposes. All the
implemented inference algorithms use the abstract semiring class to access ba-
sic operations, without relating to the properties of concrete semirings. On the
contrary, to design a new inference algorithm, users do not need knowledge
of specific semirings, which ensures the generality of the algorithm. Given the
common parser interface, users can also design a new parser to translate their
domain problems into our internal CBI problem representation. GCBIJ is a con-
crete system for implementing the ideas and concepts of the proposed unified
framework.

We use GCBIJ to do a series of experiments [14] for CBI problems from
different fields, including CSP, MaxCSP, SAT, and probability inference. The
results of these experiments are not totally new to research communities. How-
ever, these results as a whole show that (1) the proposed semiring-based unified
framework and generalized inference algorithms are suitable for representing
and solving various concrete CBI problems; (2) GCBIJ is a good platform for
studying CBI problems; (3) GCBIJ has the potential to tackle practical appli-
cations. Although more optimization and implementation work is required, the
extendibility and flexibility of GCBIJ make it a suitable toolkit for both CBI
research and applications.

8 Conclusion

As the first contribution of this paper, we propose a semiring-based unified frame-
work, a single formal representation framework that provides a broader coverage
of the constraint-based inference problem space based on the synthesis of ex-
isting generalized frameworks. Our framework explicitly subsumes and unifies
many concrete CBI problems, such as probabilistic inference, decision making
under uncertainty, constraint satisfaction problems, propositional satisfiability,
decoding problems, and possibility inference, in an abstract representation.



The unified framework is also a single formal algorithmic framework that pro-
vides a broader coverage of both exact and approximate inference algorithms.
This is the second contribution of this paper. We unify various widely used in-
ference algorithms, such as the exact and approximate variable elimination algo-
rithms, the exact and approximate junction tree algorithms, and loopy message
propagation, based on the framework. Many of these algorithms depend only
on the basic properties of the commutative semirings. Based on other special
properties of different commutative semirings, we also generalize the variants of
these algorithms that arise in different application scenarios.

Abstract representations of CBI problems, as well as abstract inference al-
gorithms, provide several opportunities for researchers from various fields: (1)
they can study the most important common characteristics of various CBI prob-
lems without representation barriers; (2) they can analyze and compare differ-
ent inference approaches; (3) they can borrow design ideas from other fields
and improve the inference approaches’ efficiency in their own domains; and (4)
implementations at the abstract level significantly reduce the amount of work
targetted previously at the individual problems. In other words, researchers from
different fields may reinterpret many familiar approaches in their domains at a
higher level. The algorithm discussions and the complexity analyses in this pa-
per are examples of applying the abstract knowledge to the concrete application
domains.

The unified representation for CBI problems and inference algorithms is not,
of course, a totally novel idea. Much research has been conducted in various
disciplines through using different tools or notions. Here we have significantly
broadened the scope of the problems and the coverage of the algorithms. The
final contribution of this paper is a software toolkit, the Generalized Constraint-
Base Inference Toolkit in Java (GCBIJ). GCBIJ is the first concrete toolkit to
implement ideas for unifying the representations of CBI problems using semir-
ings and to implement various inference algorithms on the abstract level. The
generalization and extensibility of GCBIJ make it a good platform for both CBI
research and practical problem solving.
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