
Will the Robot

Do the Right Thing?

by

Ying Zhang and Alan K. Mackworth�

Technical Report 92-31

November 1992

Department of Computer Science
The University of British Columbia

Vancouver, B. C. V6T 1Z2
Canada

email: zhang@cs.ubc.ca, mack@cs.ubc.ca

*Shell Canada Fellow, Canadian Institute for Advanced Research

c1992 Ying Zhang and Alan K. Mackworth

Will The Robot

Do The Right Thing?

Ying Zhang and Alan K. Mackworth�

Department of Computer Science

University of British Columbia

Vancouver, B.C., Canada, V6T 1Z2

E-mail: zhang@cs.ubc.ca, mack@cs.ubc.ca
phone: (604)822-3731

Abstract

Constraint Nets have been developed as an algebraic on-line computational

model of robotic systems. A robotic system consists of a robot and its environ-

ment. A robot consists of a plant and a controller. A constraint net is used to

model the dynamics of each component and the complete system. The overall be-

havior of the system emerges from the coupling of each of its components. The

question posed in the title is decomposed into two questions: �rst, what is the

right thing? second, how does one guarantee the robot will do it? We answer these

questions by establishing a formal approach to the speci�cation and veri�cation of

robotic behaviors. In particular, we develop a real-time temporal logic for the spec-

i�cation of behaviors and a new veri�cation method, based on timed 8-automata,

for showing that the constraint net model of a robotic system satis�es the speci�-

cation of a desired global behavior of the system. Since the constraint net model

of the controller can also serve as the on-line controller of the real plant, this is a

practical way of building well-behaved robots. Running examples of a coordinator

for a two-handed robot performing an assembly task and a reactive maze traveler

illustrate the approach.

�Shell Canada Fellow, Canadian Institute for Advanced Research

1 Motivation and Introduction

Robots are generally composed of multiple sensors, actuators and electromechanical com-

ponents. Robots are reactive as well as purposive systems, closely coupled with their

environments; they must deal with inconsistent, incomplete and delayed information

from various sources. Such systems are usually complex, hierarchical and physically dis-

tributed. Each component functions according to its own dynamics. The overall behavior

of a robot cannot be determined by any one of its components. Rather, it is emergent

from the coupling of the dynamics of its various parts and its interaction with the en-

vironment. Therefore, in order to predict the robotic behaviors, we have to model the

robot, the environment and their interactions. The current trend for developing intelli-

gent robots is to combine AI techniques with the traditional control theory [15]. However,

most of this work is ad hoc, and there is no well de�ned interface between the higher

level (AI) and the lower level (control). The coordination between these levels is not fully

understood. One major problem is a fundamental mismatch of computational models.

AI is based on o�-line computational models and control is based on on-line computa-

tional models. (O�-line models take a computational problem as a function from inputs

to outputs; on-line models take a computational problem as a process from input traces

to output traces. Di�erential/di�erence equations and Mealy/Moore Machines [11, 12]

are typical on-line models.)

We have advocated instead a formal approach to modeling a robotic system consisting

of the plant, the controller and the environment. Inuenced by the Operator Net model

[3] and the Temporal Automaton Model [7], we have developed an algebraic model,

called Constraint Nets (CN) [20], of general dynamic systems. The motivation for this

uni�ed modeling framework is to provide concise and formal semantics for integrated

systems with multiple components and mixed types of dynamic structures. With CN,

environments and plants as well as control structures can be represented in a single

on-line framework under multiple levels of abstraction [17].

1

We believe that the intelligence of an agent should be judged by the quality of the

agent's interaction with the environment [4]. The intelligence of an agent is measured by

its ability to accomplish di�cult tasks in complex, hazardous or uncertain environments.

However, because there is, as yet, no rigorous de�nition of intelligent behavior, we shall

use the concept of desired behavior. In this paper we develop a formal speci�cation

language for desired behavior and explore a formal method for the veri�cation of the

system under design.

While modeling focuses on the underlying structure of a system, and the organization

and coordination of the components or subsystems, speci�cation imposes constraints

on the system's global behavior. Since robotic behaviors are the relationships between

robots and their environments over time, we choose temporal logics as the speci�cation

language. Various forms of temporal logics [5] have been proposed in both the systems

[9, 6, 13, 2] and AI [1, 16, 10, 14] communities. We will develop a real-time linear

temporal logic which is capable of representing a large class of temporal properties such

as safety, liveness (recurrence or persistence), goal achievement (equilibrium) and real-

time response. Furthermore, a systemmodeled by a constraint net can be veri�ed against

its desired global behavior speci�cation by a general veri�cation method. Manna and

Pnueli [8] have developed a general method for verifying a concurrent program against a

8-automaton speci�cation. 8-automata serve as a more perspicuous representation than

linear temporal logics. We extend 8-automata to timed 8-automata by introducing timed

states, so that any formula in the real-time temporal logic can be represented by a timed

8-automaton. The general method is modi�ed to verify a constraint net against a timed

8-automaton speci�cation.

The rest of the paper is organized as follows. Section 2 depicts the structure of robotic

systems, illustrated by two running examples: a hand coordinator and a maze traveler.

In addition, we introduce some general concepts of dynamic systems. Section 3 gives the

structure of Constraint Nets and demonstrates constraint net modeling via the examples.

2

Section 4 presents the temporal logic speci�cation language and its relationship with the

Constraint Net model. Section 5 describes timed 8-automata and the veri�cation method.

Section 6 concludes the paper and points out some directions for further research.

2 Structure and Dynamics of Robotic Systems

CONTROLLER

PLANT

ENVIRONMENTU YX

Figure 1: A robotic system

A robotic system is a constrained dynamic system consisting of the plant, the con-

troller and the environment (Fig. 1). Basically, the roles of these three subsystems can

be characterized as follows:

� Plant: the plant is a set of entities which must be controlled to achieve certain

behaviors. For example, one or more robot arms, one or more vehicles, an airplane

or a nuclear power plant can be considered as the plant of a robotic system.

� Controller: the controller is a set of computational systems which sense the states

of the plant and the environment, and send commands or data to the plant being

controlled. For example, an analog circuit, a digital computer, a combination of

analog and digital devices as well as various sensing systems can be considered as

parts of the controller of a robotic system.

� Environment: the environment is a set of entities beyond the control of the con-

troller, with which the plant may interact. For example, obstacles to be avoided,

3

objects to be reached, other agents, rough terrain, or the sti�ness of a contacted

surface can be considered as the environment of a robotic system.

We introduce two running examples to illustrate the general structure of robotic systems.

Example 2.1 The Hand Coordinator: Suppose a two-handed robot is required to

�t caps on jars on an automated assembly line. The robot must pick up a jar and hold it

with one hand and then �t a cap on the jar with its other hand. However, the hands are

working asynchronously at their own speed; for example, jars or caps may occasionally

be unavailable, but we can assume that the acts of jar picking and cap �tting are atomic.

We will design a hand coordinator so that the right hand will cap only if the left hand

is holding a jar; the left hand will pick up a jar only if the right hand has done the

capping. The robotic system, shown in Fig. 2, consists of the hand coordinator (part of

the controller), the left and right hands (part of the controller and the plant), and the

assembly line with jars and caps (the environment). The whole system should work as

C1

R1

R2

C2

Left Hand Right Hand
Coordinator

 Hand

Figure 2: The hand coordinator system

follows. Whenever there are more jars available, the left hand will request permission

(R1) to pick up a jar, and the coordinator will grant the request (C1) if the previous

jar has been capped. On the other hand, whenever there are more caps available, the

right hand will request permission (R2) to cap a jar, and the coordinator will grant the

request (C2) if the left hand is holding a jar in place.

Example 2.2 The Maze Traveler: Suppose a maze is composed of separated >-

shaped obstacles of bounded size placed in one of four directions on an unbounded plane.

4

A simple robot (Fig. 3 (a)) is required to traverse the maze from west to east (Fig. 3

(b)).

SN MS

SSMN

W

N

E

S

SW

ME

MW

SE

(a) (b)

Figure 3: (a) A simple robot (b) Traveling through a maze

In this example, the plant is the body of the robot which can move in one of four

directions; the environment is the maze; and the controller connects sensing signals to

motor commands (Fig. 4). For example, when the north sensor SN is on, the robot is

touching a wall directly to its north; when the east motor ME is on, the robot moves

east.

To conclude this section, we introduce some general concepts of dynamic systems

which will be used later.

� Variable trace: A variable trace is a function of time to a domain of values. For

simplicity, in this paper, we shall consider time as the set of natural numbers with

arithmetic ordering. A general time structure has been de�ned in [20].

� Transduction: A transduction is a mapping from input traces to output traces,

which satis�es the causal relationship between its inputs and outputs, viz. the

5

SE SN ME MS X YMN

ME

MN

MS

SE

SN

Y

X

East Sensor North Sensor East Motor North Motor South Motor X-Coordinate Y-Coordinate

ROBOT

BODY
CONTROL

CIRCUITMAZE

Figure 4: The maze traveler robotic system

output values at any time are determined by the input values prior to or at that

time. Transductions can be considered as transformational processes. For exam-

ple, a temporal integration is a transduction. We will see that any deterministic

automaton de�nes a transduction. Clearly, transductions are closed under compo-

sition. Transliterations and unit delays are two elementary types of transductions

for dynamic systems.

� Transliteration: A transliteration fT is a pointwise extension of function f , that is,

the output value at any time is the function of the input value at that time. Let v

be the input variable trace then we have fT (v) = �t:f(v(t)).

� Unit delay: A unit delay �(init) is a transduction such that the initial output value

is init and the rest of the output values are the input values at the previous time.

� Dynamics of Robotic Systems: A robotic system can be modeled as a set of trans-

ductions. Formally, let X be the state traces of the plant, U be the control

traces and Y be the state traces of the environment, the plant is a transduction

P : U � Y ! X; the controller is a transduction C : X � Y ! U ; and the envi-

6

ronment is a transduction E : X ! Y . The overall behavior of the system is not

determined by any one of the transductions, but emerges from the coupling of the

interactions among all the transductions. Formally, the trajectory of the system is

the solution of the following equations:

x = P (u; y); u = C(x; y); y = E(x)

3 Modeling with Constraint Nets

In this section, we introduce the Constraint Net (CN) model and characterize its compos-

ite structure and modularity. The formal semantics of the model, based on the �xpoint

theory of continuous algebras, has been presented in [20].

3.1 Constraint nets

A constraint net is a triple CN � hLc; Td;Cni, where Lc is a set of locations, each of

which is associated with a sort ; Td is a set of transductions, each of which is associated

with a tuple of input ports and an output port , of given sorts; Cn is a set of directed

connections between locations and ports of transductions of the same sort. Topologically,

a constraint net is a bipartite directed graph where locations are represented by circles,

transductions are represented by boxes and connections are represented by arcs, each

from a port of a transduction to a location or vice versa, with the restriction that (1)

there is at most one connection pointing to each location, (2) each port of a transduction

connects to a unique location and (3) no location is isolated. A location is an input i�

there is no connection pointing to it otherwise it is an output . For a constraint net CN ,

the set of input locations is denoted by I(CN), the set of output locations is denoted by

O(CN). A constraint net is closed i� there are no input locations otherwise it is open.

Semantically, a constraint net is a set of equations, where each left-hand side is

an individual output location and each right-hand side is an expression composed of

7

transductions and locations. The semantics is de�ned as the least �xpoint of the set of

equations.

f
T (q 0)δ Q NQ

I

Figure 5: A state transducer

A state transducer is a quadruple hI;Q; q0; fi where I is the set of inputs, Q is the set

of states, q0 2 Q is the initial state and f : I � Q ! Q is the state transition function.

A state transducer can be represented by an open constraint net with a transliteration

fT and a unit delay �(q0) (Fig. 5). A state transducer de�nes a transduction from input

traces to state traces.

Example 3.1 A negated Muller-C element is a basic element in asynchronous circuits

[18]. A negated Muller-C element is a state transducer de�ned as hB �B;B; 0; nci where

B = f0; 1g,

nc(hi1; i2i; q) =

(
i1 if i1 6= i2
q otherwise

Example 3.2 A ip-op, the memory unit in sequential circuits, is a state transducer

de�ned as hB � B;B; 0; ffi where

ff(hi1; i2i; q) =

8><
>:

1 if i1 = 1 (set)

0 otherwise if i2 = 1 (reset)

q otherwise

A transducer (Mealy Machine) is a tuple hI;Q; q0; f;O; f
oi where hI;Q; q0; fi is a

state transducer, O is the set of outputs and fo : I � Q ! O is the output function. A

transducer can be represented by an open constraint net composed of a state transducer

and a transliteration. A transducer de�nes a transduction from input traces to state

traces and a transduction from input traces to output traces.

8

Generalizing, we can model a discrete dynamic system in a constraint net composed

only of transliterations and unit delays. Any output location of a unit delay is called a

state location. A discrete dynamic system modeled by a constraint net with transliter-

ations and unit delays can be written as a set of equations where each left-hand side is

an individual output location and each right-hand side is a function of locations. Let l0

denote the next value at location l. There are two types of equations:

� l0
s
= lns if ls is a state location of a unit delay from location lns;

� lo = f(l1; : : : ; ln) if lo is an output location of a transliteration fT from locations

l1; : : : ; ln.

Let S be the set of state locations, O = O(CN)nS be the set of other output locations,

I = I(CN) be the set of input locations and A be the domain of values. Generally,

a constraint net on a discrete time structure can be written as two sets of equations:

s0 = fs(i; s); o = fo(i; s) where s : S ! A is a state tuple, i : I ! A is an input

tuple, fs is a tuple of transition functions, o : O ! A is an output tuple, and fo is

a tuple of output functions. Therefore, such a constraint net is globally a transducer

hI;S; s0; fs;O; foi where I = fiji : I ! Ag is the set of inputs, S = fsjs : S ! Ag is the

set of states, s0 is the initial state, fs is the state transition function, O = fojo : O ! Ag

is the set of outputs and fo is the output function.

3.2 Modules

A module is a pair hCN;Oi where CN is a constraint net and O � O(CN) is a subset

of the output locations of CN ; O and I(CN) de�ne the interface of the module. For

example, a state transducer (Fig. 5) can be encapsulated as a module with I and Q as

the interface. Complex modules can be hierarchically constructed from simple ones using

three operations: composition, coalescence and hiding [20].

9

Example 3.3 The Hand Coordinator: The hand coordinator can be designed using

negated Muller-C elements [18]. Let NC be the module representing the element; the

hand coordinator is a composition of two modules as in Fig. 6.

C1

R1 R2

C2

C C

Figure 6: The hand coordinator (where � denotes the second input port of NC)

The set of equations of this net is: C10 = nc(hR1; C2i; C1); C20 = nc(hC1; R2i; C2)

where R1 and R2 are input locations, C1 and C2 are state locations. The initial state

is: C1 = 0; C2 = 0. We will see that this circuit works as a synchronizer in event logic;

an event is signaled by a transition from 0 to 1 or 1 to 0.

Example 3.4 The Maze Traveler: The controller for the maze traveler can be built

using AND, OR and NOT gates with a ip-op memory unit (Fig. 7).

The robot is the integration of the controller and the robot body where SE and

SN are input locations, FF , X and Y are state locations, and ME, MN and MS are

the other output locations. The body can be modeled as a state transducer hB � B �

B;Z�Z; hx0; y0i; fxyi where Z is the set of integers and fxy(hME;MN;MSi; hX;Y i) =

hX +ME;Y +MN �MSi, i.e. the next hX;Y i position is displaced by a grid point

depending on the motion commands. The output functions of the robot are ME =

:SE;MN = :(FF _SN) ^ SE and MS = FF ^ SE. The state transition functions of

the robot are FF 0 = ff(hSN;:SEi; FF) and hX 0; Y 0i = fxy(hME;MN;MSi; hX;Y i),

or, with the right-hand side composed of only state and input locations, hX 0; Y 0i =

fxy(h:SE;:(FF _ SN) ^ SE;FF ^ SEi; hX;Y i).

10

SE

SN
MN

MS

ME

reset

set
FF

CONTROL CIRCUIT

Figure 7: The controller for the maze traveler

In the next two sections, we will develop a logical speci�cation language for repre-

senting the desired behaviors of a system and a veri�cation method for ensuring that the

model of the system satis�es the speci�cation.

4 Speci�cation in Real-Time Temporal Logic

While modeling focuses on the underlying structure of a system, and the organization and

coordination of the components or subsystems, the overall behavior of the modeled system

is not explicitly expressed. For most nonlinear systems, there is no closed form solution

so that the global behavior can only be analyzed via simulation. A logical speci�cation

imposes constraints on the system's global behaviors. In this section, we develop a �rst

order temporal logic as a speci�cation language and establish the relationship between

a constraint net and a logical speci�cation. For simplicity, we still consider discrete

time structures only. However, the logic we develop here can be extended to dense time

structures without substantial modi�cation.

4.1 Syntax and semantics

A �rst order temporal logic L(A) on a multi-sorted algebra A is de�ned as follows. Let

Xl be a set of local variables (locations) whose values change over time and Xg be a set

11

of global variables (parameters) whose values are constant over the time. A term in L

is a term in A on the set of variables Xl [X
0

l
[Xg. A state formula Fs is a �rst-order

formula:

Fs � false j T1 = T2 j p(T1; : : : ; Tn) j Fs1 ! Fs2 j9xFs

where Ti is a term, p is a predicate and x 2 Xg is a global variable. A formula F of the

logic is recursively de�ned as:

F � Fs jF1 ! F2 j F1UF2 j F1U
nF2

where n is a natural number. If F is a formula in L, FV (F) denotes the set of free

variables in F .

A frame Fr of the logic L(A) is a pair hA; Ii where I is an interpretation which maps

each predicate p to a set of tuples in A. A modelM of a formula F is a pair hFr; �i where

� is a mapping from FV (F) to variable traces. Let vi be a valuation of the free variables

at a given time i, i.e. vi(x) = �(x)(i); vi(x
0) = �(x)(i + 1), and v�

i
be the valuation

extended to terms. A model M satis�es a formula F at time i, written M j=i F , as

follows:

� M 6j=i false;

� M j=i T1 = T2 i� v
�

i
(T1) = v�

i
(T2);

� M j=i p(T1; : : : ; Tn) i� (v�
i
(T1); : : : ; v

�

i
(Tn)) 2 I(p);

� M j=i F1 ! F2 i� M j=i F1 impliesM j=i F2;

� M j=i 9xF , x 2 Xg i� 9v 2 A,M j=i F [v=x], where F [v=x] stands for substitution;

� M j=i F1UF2 i� 9i
0; i0 > i and M j=i0 F2 and 8i

00; i < i00 < i0;M j=i00 F1

(U is the basic temporal operator meaning \until");

� M j=i F1U
nF2 i� 9i

0; i < i0 � i+ n and M j=i0 F2 and 8i
00; i < i00 < i0;M j=i00 F1

(Un is the basic real-time temporal operator).

12

The syntax of the logic can be extended by following operators:

� :F � F ! false: M j=i :F i� M 6j=i F ; true � :false: M j=i true;

� 3F � trueUF : M j=i 3F i� 9i0; i0 > i and M j=i0 F (\eventually");

� 2F � :(3(:F)): M j=i 2F i� 8i0; i0 > i impliesM j=i0 F (\always afterwards");

� F � falseUF : M j=i F i� M j=i+1 F (\next");

� 3nF � trueUnF , F will be true some time within n in the future;

� 2nF � :(3n:F), F will always be true within n in the future.

The logical speci�cation is a powerful language for specifying various qualitative behaviors

of a real-time embedded system. Some typical desired behaviors are:

� goal achievement: if P is the state formula for a desired goal, 32P ;

� safety: if P is the state formula for a dangerous situation, 2(:P);

� real-time response: if E is an event and R is the response, 2(E ! 3nR).

Example 4.1 The Hand Coordinator: Let E(X) denote that there is an event, a

transition from 1 to 0 or vice versa, at X. If an event at C1 (C2) is the signal for

holding a jar (�tting a cap), the desired behavior for the hand coordinator is P ^I1 ^ I2

where P � 3E(C2) ! :E(C2)UE(C1), I1 � 2:(E(C1) ^ (:E(C2)UE(C1))) and

I2 � 2:(E(C2) ^ (:E(C1)UE(C2))). P states that jar holding by the left hand must

precede cap �tting by the right hand. I1 and I2 state that the acts of holding and �tting

must interleave.

Example 4.2 The Maze Traveler: We give a precise de�nition of the desired behavior

for the maze traveler. It can be stated as a liveness property: 23ME meaning that the

robot will persistently move east.

13

4.2 Satisfaction of a speci�cation by a constraint net

A formula F 2 L(A) is a speci�cation of CN � hLc; Td;Cni i� FV (F) � Lc. A model

of F w.r.t. CN is hFr; �i such that � is consistent with the semantics of CN , i.e.

8o 2 O(CN) \ FV (F), �(o) = Fo(�(i)) where Fo is the transduction corresponding to

the output location o. CN satis�es F , written CN j= F , i� for all modelsM of F w.r.t.

CN , M j= F , where j= abbreviates j=0. One of the simple properties of the satisfaction

relation is that if CN j= F1 and CN j= F2 then CN j= F1 ^ F2. So a complex formula

can be decomposed into simple ones which can be veri�ed separately.

5 Veri�cation by Model Checking

8-automata developed in [8] are more expressive than linear discrete temporal logics.

Furthermore, there is a general veri�cation method for a 8-automaton speci�cation of a

concurrent program. In this section, we �rst introduce 8-automata and the veri�cation

method modi�ed from [8] with concurrent programs replaced by constraint nets, and

then extend 8-automata, and the veri�cation method, to timed 8-automata by adding

timed states.

5.1 8-automata

A 8-automaton [8] A(A) is a quintuple hQ;R; S; e; ci where Q is a �nite set of automaton

states, R � Q is a set of recurrent states and S � Q is a set of stable states. Let

Ls(A) � L(A) be the set of state formulas, e : Q! Ls(A) is an entry condition function

such that
W
q2Q e(q) = true, and c : Q � Q ! Ls(A) is a transition condition function

such that 8q 2 Q;
W
q0
2Q
c(q; q0) = true. A run of A over a model M on a discrete

time structure is a sequence of states q0; q1; q2; : : : such that (1) M j=0 e(q0); and (2) for

all time points i > 0, M j=i c(qi�1; qi). Let Inf(r) � Q denote the set of automaton

states that appear in�nitely many times in r. A run r is de�ned to be accepting i�: (a)

Inf(r) \ R 6= ;; or (b) Inf(r) � S. A 8-automaton A accepts a model M, written

14

M j= A, i� all possible runs of A over M are accepting. A accepts a constraint net

CN , written CN j= A, i� A accepts all models of CN . It has been shown [8] that the

speci�cation power of 8-automata is identical to that of ETL, an extended linear discrete

temporal logic [19]. Therefore, for a discrete time structure every formula without real-

time operators in L(A) can be expressed as a speci�cation in a 8-automaton A(A).

A graphical representation of a 8-automaton is a directed graph with nodes as au-

tomaton states and arcs as transitions. Each state in R is marked with 3 and each state

in S is marked with 2. If e(q) 6= false, there are arrows to node q. If c(q; q0) 6= false,

there are arcs from q to q0. Each node, arrow or arc is labeled by a state formula F , such

that e(q) = (
W
a2Arrows

Fa) ^ Fq and c(q; q0) = (
W
a2Arcs

Fa) ^ Fq0. By default, nodes,

arrows or arcs without labels are labeled with the formula true.

B

(a) (b) (c)

G G

S

S

R

R
R

R

Figure 8: 8-automata: (a) 32P (b) 2:P (c) 2(E ! 3R)

Some examples of 8-automata and the corresponding formulas are shown in Fig. 8.

Fig. 8(a) accepts a computation which satis�es :P only �nitely many times, Fig. 8(b)

accepts a computation which never satis�es P and Fig. 8(c) accepts a computation which

will satisfy R in the �nite future whenever it satis�es E.

5.2 Model checking

Let CN be a constraint net which is semantically represented as a transducer hI;S; s0; fs;O; foi.

We write f'gCNf g to denote the veri�cation condition:

'[fo(i; s)=o]
^
s0 = fs(i; s)! [i0=i; s0=s; fo(i

0; s0)=o]

15

where ' and are state formulas.

Model checking of a constraint net CN against its speci�cation A(A) involves two

phases: Phase 1: Associate with each automaton state q 2 Q an assertion �q 2 Ls(A),

called the invariant at q, such that the following requirements are satis�ed:

� Initiality: [s0 ^ e(q)]! �q;8q 2 Q.

� Consecution: f�qgCNfc(q; q
0)! �q0g, 8q; q0 2 Q.

Phase 2: Associate with each automaton state q 2 Q a ranking function �q : I �S !W,

where W is a well-founded set, i.e., 8w0 2 W, any decreasing sequence w0 > w1 > : : : is

�nite, such that the following requirements are satis�ed:

� De�nedness: �q ! 9w:�q = w;8q 2 Q.

� Non-increase: f�q ^ �q = wgCNfc(q; q0)! �q0 � wg;8q0 2 S.

� Decrease: f�q ^ �q = wgCNfc(q; q0)! �q0 < wg;8q0 2 Qn(R [S).

It has been proven that these veri�cation rules are sound and complete [8].

E(C1) E(C2)

E(C1) E(C2)

E(C1) E(C2)

E(C1) E(C2)

q0 q1

ME ME

q0 q1

(a) (b)

Figure 9: The speci�cation of (a) the hand coordinator; (b) the maze traveler

Example 5.1 The Hand Coordinator: The desired behavior of the coordinator can

be expressed in one 8-automaton (Fig. 9(a)). The model checking is done in two phases.

Phase 1: Associate with q0; q1; q2 the invariants C1 = C2, C1 6= C2 and false respec-

tively. The following veri�cation conditions are satis�ed:

16

� Initiality:

q0 : (C1 = 0) ^ (C2 = 0) ^ true! C1 = C2

q1 : (C1 = 0) ^ (C2 = 0) ^ false! C1 6= C2

� Consecution: Let HC be [C10 = nc(hR1; C2i; C1)]
V
[C20 = nc(hC1; R2i; C2)],

(q0; q0) : C1 = C2 ^HC ! (:E(C10) ^ :E(C20)! C10 = C20)

(q0; q1) : C1 = C2 ^HC ! (E(C10) ^ :E(C20)! C10 6= C20)

(q0; q2) : C1 = C2 ^HC ! (E(C20)! false)

: : :

where E(X 0) � X 0 6= X.

Phase 2: since q0; q1 2 R and the invariant of q2 is false, the veri�cation conditions are

trivially satis�ed.

Example 5.2 The Maze Traveler: The desired behavior of the maze traveler can be

represented by the 8-automaton in Fig. 9 (b). The �rst phase is trivially satis�ed since

c(q; q0) = �q0; e(q) = �q for any q; q
0 in this example. For the second phase, suppose the

maximum length of an obstacle is L. Associate with each automaton state a ranking

function � : B � B � Z ! B � D where D is the interval [0; L + 1] of natural numbers.

The ranking function is de�ned as:

�(SE;FF; Y) =

8><
>:
h1; 1 + Li if :SE
h1;DN � Y i if SE ^ :FF
h0; Y �DSi if SE ^ FF

where DN (DS) is the Y -coordinate of the north (south) end of the current maze block.

ObviouslyDN�Y and Y �DS � L. The order on B�D is de�ned as: h0;�i < h1;�i and

hX;Y 1i � hX;Y 2i i� Y 1 � Y 2. B �D is a well-founded set since L is �nite. With this

ranking function and the well-founded set, any transition that ends up at q1 2 Qn(R[S)

would lead to a decrease in ranking. To see this, let MT be

[FF 0 = ff(hSN;:SEi; FF)]
^
[hX 0; Y 0i = fxy(h:SE;:(FF_SN)^SE;FF^SEi; hX;Y i)]:

17

The following two requirements are satis�ed:

(q0; q1) : SE = 0 ^ �(SE;FF; Y) = w ^MT ! (SE0 = 1 ! �(SE0; FF 0; Y 0) < w)

and

(q1; q1) : SE = 1 ^ �(SE;FF; Y) = w ^MT ! (SE0 = 1! �(SE0; FF 0; Y 0) < w).

5.3 Timed 8-automata

To guarantee real-time response, we extend 8-automata to timed 8-automata by adding

a new class of automaton state, timed states: T � Q. Associated with any q 2 T , there

is a natural number n such that a run is accepting if, in addition, for any run segment

starting with q 2 T , there is q0 6= q, such that the length of the segments q; q; : : : q; q0

is bounded by n + 1. Graphically, a T state is denoted by the natural number n. Any

formula in L(A) can be represented by a timed 8-automaton T A(A) for any discrete

time structure. For example, F1U
nF2 is represented as a timed 8-automaton in Fig. 10.

 F1 F2

F1 F2

F2
n

Figure 10: The timed 8-automaton for F1U
nF2

Example 5.3 The real-time response 2(E ! 3nR) can be depicted by the timed 8-

automaton in Fig. 11 (a) and the real-time behavior of the maze traveler 2(:ME !

32LME) is shown in Fig. 11 (b).

Model checking for timed automata is augmented with a phase checking the bound-

edness. Phase 3: Associate with each q 2 T a timing function, q : I �S ! N where N

is the set of natural numbers, such that the following requirements are satis�ed:

18

R R
R

S

S R

7

Figure 11: (a) Real-time response (b) Real-time behavior of the maze traveler

� Boundedness: �q ! 1 � q � nq, 8q 2 T ;

� Decrease: f�q ^ q = wgCNfc(q; q)! q < wg;8q 2 T .

6 Conclusion and Further Work

Will the robot do the right thing? One can guarantee the answer yes by modeling

the complete robotic system at an appropriate level of abstraction and proving that

the model satis�es the desired behavioral speci�cation. We are developing an integrated

environment known as Alert (A laboratory for embedded real-time systems) for modeling

robotic systems with constraint nets. We intend to present tools for the speci�cation and

veri�cation of robotic systems based on the results in this paper, in the future.

Acknowledgements

This research was supported by the Natural Sciences and Engineering Research Council
and the Institute for Robotics and Intelligent Systems.

References

[1] J. F. Allen. Towards a general theory of action and time. In James Allen, James

Hendler, and Austin Tate, editors, Readings in Planning, pages 464 { 479. Morgan
Kaufmann Publishers Inc., 1990.

19

[2] R. Alur and T. A. Henzinger. A really temporal logic. In 30th Annual Symposium

on Foundations of Computer Science, pages 164 { 169, 1989.

[3] E. A. Ashcroft. Dataow and eduction: Data-driven and demand-driven distributed

computation. In J. W. deBakker, W.P. deRoever, and G. Rozenberg, editors, Cur-

rent Trends in Concurrency, number 224 in Lecture Notes on Computer Science.
Springer-Verlag, 1986.

[4] R. A. Brooks. Intelligence without representation. Arti�cial Intelligence, 47(1 { 3),

January 1991.

[5] E. Emerson. Temporal and modal logic. In Jan Van Leeuwen, editor, Handbook of
Theoretical Computer Science, volume B: Formal Models and Semantics. Elsevier,
MIT Press, 1990.

[6] L. Lamport. The temporal logic of actions. Technical Report 79, Digital Systems
Research Center, Palo Alto, California, December 1991.

[7] J. Lavignon and Y. Shoham. Temporal automata. Technical Report STAN-CS-

90-1325, Robotics Laboratory, Computer Science Department, Stanford University,
Stanford, CA 94305, 1990.

[8] Z. Manna and A. Pnueli. Speci�cation and veri�cation of concurrent programs by 8-
automata. In Proc. 14th Ann. ACM Symp. on Principles of Programming Languages,
pages 1{12, 1987.

[9] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

[10] D. McDermott. A temporal logic for reasoning about processes and plans. In James
Allen, James Hendler, and Austin Tate, editors, Readings in Planning, pages 436 {

463. Morgan Kaufmann Publishers Inc., 1990.

[11] G. H. Mealy. A method for synthesizing sequential circuits. Bell Sys. Tech. Journal,
34:1045 { 1079, 1955.

[12] E. F. Moore. Gedanken-experiments on sequential machines. In C.E. Shannon and

J. McCarthy, editors, Automata Studies. Princeton University Press, 1956.

[13] J. S. Ostro�. Temporal Logic For Real-Time Systems. John Wiley & Sons Inc., 1989.

[14] S. J. Rosenschein. Formal theories of knowledge in AI and robotics. New Generation

Computing, 1985.

[15] M. Schoppers, editor. Communications of ACM. ACM, August 1991. Special Section

on Real-Time Knowledge-Based Control Systems.

20

[16] Y. Shoham. Reasoning about Change. MIT Press, 1988.

[17] Y. Shoham. Agent-oriented programming. Technical Report STAN-CS-1335-90,
Computer Science Department, Stanford University, 1990.

[18] I. E. Sutherland. Micropipeline. Communication of ACM, 32(6), June 1989.

[19] P. Wolper. Temporal logic can be more expressive. Information and Control, 56:72
{ 99, 1983.

[20] Y. Zhang and A. K. Mackworth. Constraint Nets: A semantic model of real-time
embedded systems. Technical Report 92-10, Department of Computer Science, Uni-
versity of British Columbia, 1992.

21

