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Abstract

Hybrid dynamic systems are systems consisting of a non-trivial mixture of discrete and con-
tinuous components, such as a controller realized by a combination of digital and analog circuits,
a robot composed of a digital controller and a physical plant, or a robotic system consisting of a
computer-controlled robot coupled to a continuous environment. Hybrid dynamic systems are more
general than traditional real-time systems. The former can be composed of continuous subsystems
in addition to discrete and event-controlled components.

In this paper, we develop a semantic model, constraint nets (CN), for hybrid systems. CN
captures the most general structure of dynamic systems so that systems with discrete and continuous
time, discrete and continuous variables, and asynchronous as well as synchronous event structures,
can be modeled in a unitary framework. Using aggregation operators, a system can be modeled
hierarchically in CN; therefore, the dynamics of the environment as well as the dynamics of the
plant and the dynamics of the controller can be modeled individually and then integrated. Based
on abstract algebra and topology, CN supports multiple levels of abstraction, so that a system can
be analyzed at different levels of detail. CN also provides a rigorous formal programming semantics
for the design of hybrid real-time embedded systems.

1 Motivation and Introduction

A dynamic system is defined on a structure (7, A) where 7 is a time structure and A is a domain
structure; the time and domain structures can be either continuous or discrete. Table 1 shows examples
of four basic types of models of dynamic systems.

We call a dynamic system composed of components of more than one basic type a hybrid system,
for example, a controller realized by a combination of digital and analog circuits, a robot composed
of a digital controller and a physical plant, and a robotic system consisting of a computer-controlled

robot coupled to a continuous environment. Hybrid dynamic systems are more general than traditional
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Table 1: Examples of the basic types of models of dynamic systems

‘ Dynamic Systems H Discrete Time ‘ Continuous Time ‘

Discrete Domain Finite State Machines | Asynchronous Circuits

Continuous Domain || Difference Equations | Differential Equations

real-time systems. The former can be composed of continuous subsystems in addition to discrete and
event-controlled components.

The development of models for hybrid systems has been very active over the last two years [20, 15,
21, 3]. We take a different approach to the study of hybrid systems. Our approach is motivated by the
following arguments. First, hybrid systems consist of interacting discrete and continuous components.
Instead of fixing a model with particular time and domain structures, a model for hybrid systems should
be developed on both abstract time structures and abstract data types. Second, hybrid systems are
complex systems with multiple components. A model for hybrid systems should support hierarchy
and modularity. Third, hybrid systems are generalizations of basic discrete or continuous systems. A
model for hybrid systems should be at least as powerful as existing computational models. In short,
the model should be unitary, modular, and powerful.

We start with a general definition of time as a linearly ordered set with an initial time point,
a metric space and a measure space. Then we examine domain structures in abstract algebra and
topology. With any time structure and domain structure, we can define basic types of elements in
dynamic systems: traces, which are functions of time, and transductions, which are mappings from
traces to traces. The constraint net model (CN) is then developed on an abstract dynamics structure
composed of a trace space and a set of basic transductions: transliterations, which are memory-
less combinational processes, unit delays and transport delays, which are for sequential processes,
and event-driven transductions. Event-driven transductions play an important role in this model as
channels between continuous and discrete time components, or as synchronizers among asynchronous
components.

The syntax of a constraint net is a bipartite graph with two types of nodes: locations and transduc-
tions, and a set of connections between locations and transductions. A constraint net can be composed
hierarchically via modular and aggregation operators. Semantically, a constraint net represents a set of
equations, with locations as variables and transductions as functions. The semantics of the constraint
net, with each location denoting a trace, is the least fixpoint of the set of equations. The semantics of a
system can be obtained hierarchically from the semantics of its components and internal connections.

In this model, temporal integration is defined on vector spaces using infinitesimal transport delays.



CN is a deterministic dynamic process model; nondeterminism can be modeled via hidden or
uncontrolled inputs. Thus, while more powerful, and simpler, than most inherently nondeterministic
models, probabilistic and stochastic analysis can be incorporated. CN is also an abstract and general
dynamic process model, while discrete state machines and differential state equations are particular
instantiations of the model.

In summary, CN satisfies our objective which is to provide a model that is formal and general,
modular and composite, as well as powerful and practical.

The rest of the paper is organized as follows. Section 2 introduces the syntactic structure of
constraint nets. Section 3 develops the topological structure of dynamic systems. Section 4 presents the
semantics of constraint nets using fixpoint theory and defines temporal integration using infinitesimal
transport delays. Section 5 discusses modeling in constraint nets. Section 6 surveys the existing hybrid
system models. Section 7 concludes this paper and points out related research. Appendix A presents

the mathematical preliminaries; the proofs of theorems and propositions are in Appendix B.

2 Syntactic Structure of Constraint Nets

In this section, we introduce the syntax of constraint nets and characterize the composite structure

and modularity of the model.

2.1 Syntax

Intuitively, a constraint net consists of a finite set of locations, a finite set of transductions and a finite
set of connections. Fach location is of fixed sort; a location’s value typically changes over time. A
location can be regarded as a wire, a channel, a variable, or a memory location. Each transduction is
a causal mapping from inputs to outputs over time, operating according to a certain reference time
or activated by external events. Connections relate locations with ports of transductions. A clock is
a special kind of location which connects to the event port of an event-driven transduction.

Syntactically, a constraint net is a triple CN = (Le¢,T'd,Cn), where Le is a finite set of locations,
each of which is associated with a sort; T'd is a finite set of labels of transductions, each of which is
associated with a set of input ports and an output port and each port is associated with a certain sort;
C'n is a set of conneclions between locations and ports of transductions of the same sort, with the
following restrictions: (1) there is at most one output port connecting to each location, (2) each port
of a transduction connects to a unique location and (3) no location is isolated.

A location [ is an output location of a transduction F iff there is a connection between the output

port of F and [; [ is an inpul location of F iff there is a connection between an input port of F" and /.



A location is an output of the constraint net if it is an output location of a transduction otherwise it
is an input. The set of input locations of a constraint net C'N is denoted by I(C' N ), the set of output
locations is denoted by O(C'N). A constraint net is open if there is an input location otherwise it is
closed.

A constraint net is represented by a bipartite graph where locations are depicted by circles, trans-
ductions by boxes and connections by arcs. For example, Figure 1, where f is a transliteration of a
state transition function and ¢ is a unit delay, is an open net, which can represent a state automaton:

s(0) = sp,s(n+ 1) = f(i(n),s(n)), given time as the set of natural numbers. Figure 2 is a closed net,
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Figure 1: The constraint net representing a state automaton

which can represent a differential equation § = f(s), given time as a left-closed real interval.
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Figure 2: The constraint net representing § = f(s)

2.2 Modules

A module is a triple (CN,I,0), denoted by CN(I,0), where C'N is a constraint net, I C I(C'N) and
O C O(CN) are subsets of the input and output locations of C'N, respectively; IUQ defines the inter-
face of the module. A module CN(I,0)is closedif I = () otherwise it is open. Locations in I(CN)—1T
are hidden inputs and locations in O(CN) — O are hidden outputs. A module is nondeterministic iff
I C I(CN). Graphically, a module is represented by a box with rounded corners.

A compound module can be constructed from simple ones. There are three basic operations that
can be applied to modules to obtain a new module. The first is unton, which generates a new module
from two modules, with these two modules side by side. The second is coalescence, which coalesces

two locations in the interface of a module into one location, with the restriction that at most one



of these two locations is an output location. The third is hiding, which deletes a location from the
interface.

In addition to the three basic operations, we can define three combined operations. The first is
cascade connection which connects two modules in series. The second is parallel connection which
connects two modules in parallel. The third is feedback connection which connects an output of the

module to an input of its own (Figure 3).
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Figure 3: Cascade, parallel and feedback connections

There are three reasons for introducing modules.
First, modules create a hierarchical composition structure for complex systems. For example, a
state automaton module S A is created if we select locations 4, s or 4, s’ of the constraint net in Figure

1 as the interface. An input/output automaton IO A is then developed using a cascade connection of



S A and a transliteration ¢ (Figure 4). 1O A defines a transduction from input traces to output traces.

Figure 4: An input/output automaton (s* denotes either s or s')

Second, modules provide a flexible way for generating different systems from the same set of
components. To illustrate this idea, we again look at input/output automata. There are two types
of input/output automata: Mealy machines [17] or Moore machines [19]. In general, an input/output
automaton is a tuple (Z, S, so, fs, O, f,) where 7 is the set of input values, S is the set of states with
sg € & as the initial state, fs : 7 X § — § is a state transition function, @ is the set of output
values and f, is an output function. However, there are two ways to define an output function:
Jo : I xS — O for Mealy machines and f, : § — O for Moore machines. For a constraint net model
of an input/output automaton, a Mealy or Moore machine is deduced by selecting different output
locations as the interface of its state automaton module. If s’ is selected, IO A is a Mealy machine
with fs = fand f, = go f; il s is selected, IO A is a Moore machine with fs = f and f, = g.

Third, modules capture the notion of abstraction via hidden locations. Clearly, hidden outputs
encapsulate internal states of a system. However, the role of hidden inputs is not obvious. Consider
again the state automaton in Figure 1. If the only input location ¢ is chosen to be hidden, a module
of a closed nondeterministic state transition system is generated. In particular, the state transition
function f defines a state transition relation R C S X S, (s,s") € Riff i € 7,5 = f(1,s), or equally,
the set of next possible states of a state s is {f(¢,s)|¢ € Z}. In general, any module CN(I,0) with
I C I(CN) defines a nondeterministic system. Thus, while more powerful, and simpler, than most
inherently nondeterministic models, probabilistic and stochastic analysis can be incorporated. Similar

concepts have been explored earlier in general systems theory [18].

3 Topological Structure of Dynamic Systems

In this section, we discuss the topological structure of time, domains, traces and transductions, which
are basic elements of dynamic systems. The mathematical preliminaries on general topology, partial

orders and metric spaces are presented in Appendix A.



3.1 Time structures

Understanding time is the key to understanding dynamics. We formalize time using abstract structures
which capture the important aspects of time: linearity, metric and measure. A time structure, in
general, can be considered as a linearly ordered set with a start time point, an associated metric for
quantifying the distance between any two time points and a measure for estimating the duration of

time. Formally, a time structure is a triple (7, d, u), where

e 7 is a linearly ordered set (7, <) with 0 as the least element,

e (7,d) forms a metric space with d as a metric satisfying: Vip < t; < {3,
d(to, t2) = d(to,t1) + d(t1,12),

e (7,d,p) forms a measure space with u as a Borel measure.

Let [t1,t2) = {t|t1 <t < t3}. Clearly p is defined for all sets with form [0,¢) and for the total set 7.
Furthermore, we let p([t1,%2)) = p([0,%2)) — p([0,%1)) and m(t) = d(0,t). For simplicity, we will use
7 to refer to time structure (7, d, u) when no ambiguity arises.

A time structure 7 is discrete iff 7 has no Cauchy sequence. 7 is dense iff for all t; < t5, there
exists {g, such that t; < tg < tg; it is continuous ifl its metric space is connected. Clearly, a continuous
time is also dense, but not vice versa. For example, A/, the set of natural numbers, and R, the set of
nonnegative real numbers, with d(ty,1;) = [t; — 2| and p([0,1)) = ¢, are time structures. A is discrete
and Rt is continuous. The set of rational numbers Q with the same metric and measure forms a

dense time structure. The set {£=L|n € N} U {1} or {0} U {Z|n € N} with the same metric and

measure defines a time structure which is neither discrete nor dense. Even though our definition of
time structures is extremely general, discrete or continuous time structures are most commonly used.
A time structure 7 may be related to another time structure 7, by a reference time mapping

h: 7T — 7, where

e the order among time points is preserved: ¢ < ' implies h(t) <, h(t'),
o the least element is preserved: h(0) = 0,,
e the distance between two time points is preserved: d(t1,%2) = d,(h(t1), h(t2)), and

e the measure on any finite interval of time points is preserved: u([0,?)) = u,([0,, h(1))).

7, is a reference time of 7T, and 7T is a sample time of 7,. For example, if h : N' — R7T is defined as

h(n) = n, RT is a reference time of /. For any time structure 7, a reference time of 7 is as “dense”

as 7.



3.2 Domain structures

As with time, we formalize domains as abstract structures so that discrete as well as continuous
domains are defined uniformly. A domain can be a simple domain or a composite domain.

A simple domain is a pair (AU {La},ds) where A is a set, L 4¢ A means undefined, and dy4 is
a metric on A. Let A = AU {14}. For simplicity, we will use A to refer to simple domain (A, d4)
when no ambiguity arises. For example, let R be the set of real numbers, R is a simple domain with
connected metric space; let B = {0,1}, B is a simple domain with discrete topology on B.

Any simple domain A is associated with a partial order relation <7 (A, <) is a flat partial order
with 14 as the least element, i.e., if a; <5 ag, then either a; = a3 or ¢y =14. In addition, A is
associated with a derived metric topology 7. Let the metric topology on A induced by the metric dg
be 74, 7 is 74 U {A}. A simple domain can also be represented as a triple (4, <4, 7) where < is the
partial order relation and 7 is the derived metric topology.

A domain is defined recursively based on simple domains. (A, <4, T), with <4 as the partial order

relation and 7 as the derived metric topology, is a domain ifl:
e it is a simple domain; or

e it is a composite domain, i.e. it is the product of a family of domains {(A4;, <4,, ;) }ier such that
(A, <4) is the product partial order of the family of partial orders {(A4;, <4,)}icr and (A4,7) is

the product space of the family of spaces {(4;, ;) }ier-

Note that we have no restriction on the index set I which can be arbitrary (finite or infinite, countable
or uncountable etc.). For simplicity, we will use A to refer to domain (A4, <4,7) when no ambiguity
arises. For example, let n € A be some natural number, R” is a composite domain with n components;
N — B, or equally, EN, is a composite domain with infinitely many components.

We take a signature as a syntactical structure of a class of multi-sorted domains with associated
functions defined on these domains. Let ¥ = (5, F) be a signature where § is a set of sorts and F
is a set of function symbols. F is equipped with a mapping type: F — 5% x S where §* denotes the
set of all finite tuples of S. For any f € F, type(f) is the type of f. We use f :s* — s to denote
f € F with type(f) = (s*,s). For example, the signature of Boolean algebra can be described as:
¥y = (b,{0,~,A,V}) with 0 :— b, = : b — b, A :b,b — b, and V : b,b — b. ¥} has one sort with a
constant 0 (nullary function), a unary function -, and two binary functions A and V.

A domain structure of some signature is defined as follows. Let ¥ = (S5, F) be a signature. A
Y-domain structure A is a pair ({As}ses, {f*}ser) where for each s € S, A, is a domain of sort s,

and for each f:s* — s¢€ Fwiths*: ] — Sandse S, f4: XjAsr — As is a function denoted by



f. For example, (B,{0,-,A,V})is a ¥}-domain structure where =, A and V are negation, conjunction

and disjunction, respectively.

3.3 Trace and event structures

A trace v : T — A is a mapping from time 7 to domain A. For example if 7 = Rt and A = R,
vy = Al.sin(t) and vy = Al.e™! are traces.

A trace provides complete information at every finite point of time. Values at infinite time points
are not represented explicitly, however, they can be derived when limits are introduced. For example,
lim;_, sin(t) =Lz and limy_ ., e~* = 0.

Given any linear order L and a domain A, v : L — A is a linear set of values. A value v* € A is
a limit of a linear set of values v, written v — v*, iff v* is a limit of v in the derived metric topology.

With this definition, the set of limits of v has the following properties.

Proposition 3.1 Ifv: L — A, then
(1) v — L4, and

(2) v — v} and v — v3 imply thal either vy <5 vy or vy <7 v}.

Proposition 3.2 [fv: L — A for A= x7A;, then
(1) v — v* iff v, = v} foralli € I, and
(2) the sel of limils {v*|v — v*} is a directed subset in (A, <4) and has a least upper bound.

Therefore, we can define the limit of a linear set of values as follows. Let v : L — A, the limit of v,
written lim v, is defined as the least upper bound of the set of limits of v, i.e. limv =/ 4{v*|v — v*}.

The limits have the following properties.

Proposition 3.3 Ifv: L — A for A= xA;, then (limv); = limv;, Vi € I.
Proposition 3.4 If vy,v3: L — A and vi(l) <4 va(l) for alll € L, then lim vy <4 lim v,.

Given a time structure 7, let 7° be the set of downward closed intervals, i.e. for any 7' € 7°°,
t € T implies that for all ¢’ < ¢, ¢’ € T. Obviously 7 € 7°°. A trace v:7 — A can be extended to
its completion v : T — A as: v*°(T) = lim vjp where vy denotes the restriction of v onto 7. A
trace completion provides values at infinite as well as finite time points. For any trace v : 7 — A,
v>°(7) = limv can be considered as the “final” value. For simplicity, we will use v to refer to
both v and its completion v*° when no ambiguity arises. Furthermore, let pre(t) = {¢'|t’ < t} and

t—7 ={U|t < t,d(t,t') > 7} for 7 € R*. Clearly, pre(t) € 7° when t > 0, t — 7 € 7° when



m(t) > 7 >0, and pre(t) = ¢ —0. A time structure 7 is semi-discrete iff Vt > 0, pre(t) has a greatest
element; 7 is well-defined iff VO < 7 < \/ m(7),{t|m(t) < 7} has a greatest element.

Trace structures are derived as follows. Given a time structure 7 and a domain (A4, <4, 7), the
trace space is a triple <AT, <47,T') where AT is the product set, i.e. the set of all functions from 7
to A, <, 7 is the product partial order relation of the partial order relation <4 and I' is the product
topology of the derived metric topology 7. For simplicity, we will use A7 to refer to trace space
(AT, <,7,T) when no ambiguity arises.

Given a linear set of traces V : L — A7, limits and the limit of V are defined as follows. A trace
V* € AT is a limit of V, written V. — V*, iff V* is a limit of V in the derived metric topology. Similar
to the properties with limits of a linear set of values, the properties of limits of a linear set of traces

are as follows.

Proposition 3.5 IfV : L — A7 for a linear order L and a trace space AT, then
(1) V = V*iff V(L) = V*(t) for allt € T, and
(2) the set of limits {V*|V — V*} is a directed subset in (AT, <,7) and has a least upper bound.

Therefore, we can define the limit of a linear set of traces as follows. Let V : L — A7, the limitof V/,

written lim V', is defined as the least upper bound of the set of limits of V, lim V = \/ 4,7 {V*|V — V*}.
Proposition 3.6 IfV : L — AT, (lim V)(¢) = lim V(1),¥t € 7.

An event trace is a special type of trace which is nonintermittent and whose domain is B. A
nonintermittent trace is defined as follows. A trace v : 7 — A is nonintermittent iff for any T € 7°°,
v(T) =L 4 implies that V17 O T, v(T') =L4. A trace v : 7 — XjA; is nonintermittent iff v; is
nonintermittent for all = € 1.

An event trace e : 7 — B with e # M. L generates a sample time structure (7, d., p.) of (7 ,d, u)

where:

o 7. C 7 is defined as: 7. = {0} U{t > 0le(t) #Lg,e(t) # e(pre(l))}, i.e., each transition point of

the event trace defines a time point (Figure 5).

[ ] de:du—eXTe'

o Vi€ To p1e([0,0)) = p([0,0)). Let T = {t]e(t) £L5}. pe(T2) = u(T).

Proposition 3.7 The sample time structure generated by any event trace is semi-discrete and well-

defined.
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Figure 5: An event trace: each dot depicts a time point

An event space is a triple <ET, <gr,I") where 7 is a time structure, T ¢ B7 is the set of all event
traces on the time structure 7, <g7 is the subpartial order relation of the partial order relation <gr

and T” is the subspace topology of T.

3.4 Transductions

A transduction is a mapping from input traces to output traces which satisfies the causal relationship
between its inputs and outputs, i.e. the output value at any time depends only on inputs up to that
time. Formally, given vy,vy € A7 and 7 € R, vy and vy are coincident up to 7 iff Vi,m(t) <1 —
v1(t) = va(t). A mapping from a trace space to a trace space F': A7 — AT is causal iff for any
e T, F(v1)(t') = F(vg)(l') whenever v; and vy are coincident up to m/(¢'). A causal mapping on
trace spaces is called a transduction. For instance, a state automaton with an initial state defines a
transduction on a discrete time structure; a temporal integration with a given initial value is a typical
transduction on a continuous time structure. Just as nullary functions represent constants, nullary
transductions represent traces. Obviously, transductions are closed under functional composition.

We characterize two classes of transductions: primitive transductions and event-driven transduc-
tions. Primitive transductions are defined on a generic time structure 7. Primitive transductions are
functional compositions of two types of basic transductions: transliterations and delays.

A transliteration is a pointwise extension of a function. Given f: A — A’, fr : AT — A7 is the
pointwise extension of f onto a time structure 7: fr(v) = AL f(v(1)). We will also use f to denote
transliteration fr if no ambiguity arises. Intuitively, a transliteration is a transformational process
without memory or internal state, such as a combinational circuit.

Let A be a domain, vg € A be an initial output value and 7 be a time structure, a unit delay
64 (vg) : AT — A7 is a transduction defined as:

., o w ifr=0
87(vo)(v) = At-{ v(pre(t)) otherwise.

A unit delay (5%4-(710) acts as a unit memory for data in domain A, given a semi-discrete time structure 7.

11



We will use 6(vg) to denote unit delay 84 (vg) if no ambiguity arises. Unit delays are not meaningful for
non-semi-discrete time structures. Transport delays are essential for sequential behaviors in dynamic
systems. Let A be a domain, vg € A be an initial output value, 7 be a time structure and 7 > 0 be
time delay, a transport delay A%(1)(vo) : A7 — AT is a transduction defined as:

if m(t) <t
otherwise.

AA(7)(wo)(v) = /\t.{ z((Jt 9

We will use A(7)(vg) to denote transport delay A% (7)(vp) if no ambiguity arises.

Primitive transductions are functional compositions of basic transductions, namely transliterations
and delays, with all the input/output traces sharing the same time structure. However, a hybrid
system consists of components with different time structures. In the rest of this section, we consider
event-driven transductions which constitute an important aspect of our model.

First, we consider the types of transductions which map traces of one time structure into those
of another. Let 7, be a reference time of 7 with reference time mapping h. The sample trace of
v:7, — Aonto7 is atrace v : 7 — A, v = At.w(h(t)). On the other hand, the eztension trace of

v:7T — Aonto 7, is a tracev : 7, — A,

Xt.. { o(h7X(1,)) if 3t € T, 1,([0,,1,)) < u([0,1)) or p1,([0,,4,)) < p(T)

T = .
Ly otherwise

where A71(t,) = {t|h(l) <, t,} € T*°. Sampling is a type of transduction whose output is a sample
trace of the input. FEztendingis a type of transduction whose output is an extension trace of the input.

An event-driven transduction is a primitive transduction augmented with an extra input, an event
trace; it operates at each event point and the output value holds between two events. The additional
event trace input of an event-driven transduction is called the clock of the transduction. An event-
driven transduction works as follows. First, sample the input trace from the reference time 7 onto
the sample time 7. generated by the event trace e. Then, perform the transduction in 7;. Finally,
extend the output trace from 7, back to 7. Let £7 be the set of all event traces on time structure

T, and Fr : AT — A7 be a primitive transduction. We define an event-driven transduction on time
structure 7 as F2 : 7 x AT — AT

M. Ly ife=\. Lg
Fi(e,v) =
Fr(v) otherwise.

We will use F° to denote event-driven transduction F7 if no ambiguity arises.

12



3.5 Dynamics structures

Finally, with preliminaries established, we can characterize the abstract structures of dynamics. Let

Y = (S5, F) be a signature. Given a Y-domain structure A and a time structure 7, a X-dynamics

structure D(7, A) is pair (V, F) where
o V={A47},c5UET is an S-sorted set of trace spaces together with the event space;

o F =FrUFF where Fr = {f{l}fep U {(534-5(?)5)}5657%6,45 U {Aés(T)(@s)}seS,T>0,vseAs is the set

of basic transductions, 3 = {F°|F € Fr} is the set of event-driven transductions.

So far we have presented a topological structure of dynamics by formalizing time, domains and
traces in topological spaces and by characterizing primitive and event-driven transductions. With such
a topological structure, continuous as well as discrete time and domains can be represented uniformly,
and a hybrid dynamic system can be studied in a unitary model.

The advantages of developing an abstract dynamics structure are the following:

Algebraic specification for the domain structure can be extended to the dynamics structure.

Algebraic transformation can be applied to control synthesis.

A real-time programming semantics can be developed on a sound mathematical base.

e A dynamic system can be analyzed at different levels of abstraction in topological spaces.

4 The Semantics of Constraint Nets

So far we have presented the syntactical structure of constraint nets, which is graphical and modular.
However, syntax only serves as a mechanism for creating a model, the meaning of the model is not
provided. There are many models with syntax similar to constraint nets (Petri nets [23] for example)
that have totally different interpretations.

Since transductions are mappings from traces to traces, one direct interpretation of a constraint
net is to denote by each location a trace of the right sort. Thus, a constraint net denotes a set of
equations with locations as variables and transductions as functions; the semantics of the constraint
net is a (the) solution of the set of equations.

Given a set of equations, there are only three possibilities: the set of equations has (1) no solution,
(2) exactly one solution and (3) more than one solution. For example, if 2 € R, 2 = z — 2 has no

solution, z = 0.5z — 2 has one solution —4, and z = z? — 2 has two solutions, —1 and 2. A common
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technique is to define the semantics to be the least element in the solution set w.r.t. a partial order.
Even though we have defined a partial order for any trace space, it is not guaranteed that the least
solution exists for any set of equations and it is not clear how to solve the set of equations.

In this section, we first present fixpoint theorems in partial orders and then examine the properties
of a dynamics structure in partial order topologies. With these established, we can define the semantics

of constraint nets using fixpoint theorems in partial orders.

4.1 Fixpoint theorems and continuous domain structures

The fixpoint theorems used here are for complete partial orders (cpo’s). Continuous functions are

functions which are continuous in partial order topologies.

Theorem 4.1 (Fixpoint Theorem I) Let A be a cpo. Every continuous function f: A — A has a
least fizpoint p.f. In particular, p.f =V 4{f"(La)}.

By extending f to a function of two arguments, we have the following theorem.

Theorem 4.2 (Fixpoint Theorem II) Let A and A’ be two cpo’s. If f : Ax A — A is a
continuous function, then there exists a unique continuous function u.f : A — A', such that for
all a € A, (u.f)(a) is the least fixpoint of f, : A" — A', where f, = Az.f(a,2), or equally, Ya €
A, 1)(@) = Fa (1.F)(a).

It is becoming clear that if the partial orders of the set of multi-sorted trace spaces and the event
space are cpo’s, and the set of basic transductions and their event-driven extensions are continuous
in partial order topologies, the semantics of constraint nets composed of primitive and event-driven
transductions can be provided and constructed using the fixpoint theorems.

The fact that the partial orders of multi-sorted trace spaces are indeed cpo’s is established by the

following propositions.
Proposition 4.1 The partial order of a simple domain is a cpo.
Proposition 4.2 The partial order of a domain is a cpo.
Proposition 4.3 The partial order of a trace space is a cpo.
Proposition 4.4 The partial order of an event space is a cpo.
The following propositions characterize the continuity of basic transductions in partial order topolo-

gies.
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Proposition 4.5 If f : A — A’ is continuous, then for any time structure T, fr : AT — AT is

continuous.
Proposition 4.6 Unit delays are continuous given semi-discrete time structures.
Proposition 4.7 Transport delays are conlinuous given well-defined time structures.

The following property characterizes the continuity of event-driven transductions.

Proposition 4.8 If a primitive transduction F is continuous, then the event-driven transduction F°

18 continuous.

We conclude this section by introducing continuous domain structures. Let ¥ = (5, F') be a signature.
A Y-domain structure ({A,}ses,{f4}ser) is continuous iff f4 is continuous in the partial order
topology on A, for all f € F.

In fact, to be continuous on a domain w.r.t. a partial order topology is not a real restriction. Given

any partial or total function f: x;4; — A, a continuous function f: x;4; — A can be defined as:

f(a) = f(a) ifa € x7A; and f(a) is defined
@)= 14 otherwise.

We call f a sirict extension of function f, or a strict continuous funclion. For example, let ¥, =
(r,{0,4,-}) with 0 :— r, + : 7,7 — r and - : 7,7 — r. Then (R,{0,+,-}) is a continuous 3,-domain
structure, where 4+ and - are addition and multiplication on R. We will also use f to denote its strict
extension if no ambiguity arises.

Finally, we come to the theorem on Y-dynamics structures.

Theorem 4.3 (Continuous Y-dynamics structure) If A is a continuous YX-domain structure and
T is a well-defined time structure, the X-dynamics structure D(T,A) = (V,F) satisfies (1) V is a
multi-sorted set of cpo’s and (2) all transductions except unit delays in F are continuous in the partial

order topology. If T is also semi-discrete, all transductions in F are continuous.

4.2 Fixpoint semantics of constraint nets

In this section, we come to the semantics of constraint nets composed of primitive transductions and
event-driven transductions. Intuitively, a constraint net is a set of equations, with locations as variables
and transductions as functions. We take the least fixpoint of the set of equations as the semantics of

the net.
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Let ¥ = (5, F) be a signature. A constraint net with signature ¥ is a triple CNy = (L¢, T'd,Cn),

o cach location [ € Lc is associated with a sort s € 5, where ¢ € 5 is a special sort denoting clocks:

the sort of location [ is written as s

e each transduction F € T'd is a primitive transduction or an event-driven transduction. There

are three types of basic transductions:

1. transliteration f with a set of input ports Iy and an output port oy for f: s* — s € F
where s* : Iy — S: the sort of an input port ¢ € Iy is s7 and the sort of the output port is
5

2. unit delay ¢° with one input port and one output port for s € §, whose input and output

ports are associated with sort s;

3. transport delay A® with one input port and one output port for s € S, whose input and

output ports are associated with sort s.

If Fis a primitive transduction, with a set of input ports Ir and an output port op, let F° be
the event-driven extension of F', with the set of input ports {e} U Iy and the output port op:

the sort of the event input port e is c.

Let C' Ny, be a constraint net with signature ¥ and D(7,A) = (V,F) be a continuous ¥-dynamics
structure. C'Ny denotes a set of equations {0 = FO(D}OEO(CN) where F), is either a primitive trans-
duction composed of corresponding continuous transductions in F, or an event-driven transduction,
0o € O(C'N) is the output location of F,, and i Iy, — Lc is the tuple of input locations of F,. The
semantics of a constraint net is defined using Fixpoint Theorem II.

The semantics of a constraint net C'Ny, defined on a continuous X-dynamics structure is the least
fixpoint of the set of equations {o = FO(Z)}OGO(CN); it is a transduction from the input trace space to
the output trace space, i.e. [CN]: XI(CN)AsTi — XO(CN)AZ;.

If we consider the semantics of a constraint net as a transduction, then the semantics of a module
will be defined as a set of transductions. Given that the semantics of a constraint net CN is [CN] :
XI(CN)AsTi — XO(CN)Az;a the semantics of a module CN(1,0) is [CN(I,0)] = {Fy, : XIASTi —
XOAZ;}ueU where F,, (i) = [CN]o(u,7) and U = XI(CN)—IAsTi is the set of hidden input traces. The
semantics of a composite module can be derived from the semantics of its components [31].

A module describes a relation between inputs and outputs. If we take the union of the set of
transductions in the semantics of module CN(/,O), noting that each transduction is a set of pairs,

we obtain a relation on the relation scheme I'UQ; each relation tuple is a mapping from input/output
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locations to traces, which satisfying all the equations of the net. If we represent the semantics of C'N
also as a relation on the relation scheme Lc = I(C'N)U O(CN), noting that functions/transductions
are a special type of relations, we have [J[CN(1,0)] = U uo[C N], where Ilx denotes the projection
of a relation onto the relation scheme X. If I C I(CN), U[CN(L,0)] is a relation in general, rather
than a function/transduction. Therefore, nondeterminism can be modeled via hidden inputs. Two
modules CN(1,0)and CN'(1,O) are nondeterministically equivalent, written CN(1,0)~ CN'(1,0),
iff UICN(I,0)] =UICN'(1,0)].

Even though every constraint net defined on a continuous dynamics structure has a least fixpoint,
the least fixpoint may not be well-defined. For example, z = 0.5z — 2, = € R, has Ly as its least
fixpoint, and —4 as another fixpoint. The relationship among well-definedness of constraint nets, strict

continuous functions and algebraic loops has been studied [31].

4.3 Parameterized nets and temporal integration

Finishing up this section, we introduce parameterized nets, a net associated with a set of parameters,
then discuss limiting behaviors of parameterized nets, which will be used for providing a semantics of
constraint nets with temporal integration.

Many systems share the same structure or follow the same law, while exhibiting different behaviors
w.r.t. different parameters. A parameler is a variable whose value does not change with time, but
differs from system to system, for example, mass, friction coefficient, initial state, time delay, gain,
threshold, etc. Let P be a set of parameters, associated with each parameter p € P is a set of
values D,. CNP is a parameterized net iff CN is a constraint net and P is a set of parameters in
CN. The semantics of C NP, denoted [C NF], is a mapping from the parameter space to the set of
transductions, i.e. [CNT]: xpD, — (XI(CN)AsTi — XO(CN)AZ;) such that for any parameter tuple
v € xpD,, [CNT](v) = [CN[v/P]] where C N[v/P] denotes that each p € P in C'N is replaced by
its corresponding value v(p).

Infinitesimals are an important class of parameters for limiting behaviors. Let € be a parameter
with D, = (0,1) C R. Let <p_ be a partial order relation such that ¢; <p_e; iff € <r 1. (D, <p.)
is a linear order. We call such a parameter ¢ an infinitesimal. The limiting semantics of a closed

constraint net C' N with an infinitesimal ¢, written [CN*], is defined as the limit of the linear set of

traces [CN€], i.e. [CN*] = im][C'N].
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So far we have no definition for temporal integration, the most important type of transduction
for continuous time structures. We now define temporal integration on vector spaces and provide the
semantics of constraint nets with temporal integration using limiting semantics.

Let U be a topological vector space [29], which is a special class of domain structures, with functions
+:UxU — Uand-: RxU — U continuous in both the partial order and the derived metric topology.
A temporal integration [(so): U7 — U7 with an initial state sy € U can be defined as follows.

First, consider the case where 7 is a discrete time structure. Given 7 discrete, pre(t) has a greatest

element for any ¢ > 0, which will also be denoted by pre(t). Temporal integration is as follows:

/(50)(u) _ /\t.{ 5o =0

Yoco<tpt([pre(t’),t')) - u(pre(t’)) otherwise.

Clearly, the transduction [(sg) is the least fixpoint of equation
s=106(s0)(s)+dt-6(0)(u)

where

0 ift=20
dt = /\t.{ w([pre(t),t)) otherwise.

Now given that 7 is an arbitrary time structure, let 7. be a discrete sample time of 7, generated
by an event trace e. In particular, let e be the solution of e = A(¢)(0)(—e) for an infinitesimal e. Let
ints,(u,s) = 6(so)(s)+ dt - 6(0)(u), a temporal integration [(sg) corresponds to a module CN(u,s)

where C'N is represented by following two equations:
s = inie, (e, 4, 5), € = A(€)(0)(e)

with € > 0 as an infinitesimal. This definition can be considered as derived from the forward Euler
method; however, we are interested in semantics, rather than numerical simulation of differential
equations.

For example, let us investigate the limiting semantics of the net in Figure 2 with U as R, 7 as R™T

and f: R — R where f = As.(—s). This closed net is represented by three equations:
s = 1nty (e, u,s),e = A(€)(0)(-e), u = —s.
The solution for e is:

1 otherwise.

. i .
o /\t.{ 0 if |£] is even

The solution for s can be computed as the least fixpoint of s = int3 (e, —s,s). According to Fixpoint

Theorem I, let sY = M. L, the least element, we have
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1 . 0 0 0 S0 if ¢ < €
N it (e, =57, 57) { 1 otherwise,
So ift <e
s? = intg, (e, —51,51) =A.{ sp—e€sg He<t<2e
1r otherwise,
S0 ift <e
So — €S0 if e <t < 2e

FLARJ intg (e, —sF, sF) = At

(SE_o(=1)iCiet)sg if ke <t < (k+1)e
1z otherwise.
Let s = \/ﬁR+ {s*}; s is the least fixpoint of the equation; s = /\t.sL%J‘H(t). The limiting se-
mantics of the net ‘is s = A.lim.gs(t) = /\t.limEﬁO(Efzo(—l)i“(]f—ii)lei)so where k = |%], ie.
s = M.(E20(—1)5)s0 = Al.spe™*, which is the solution of § = —s.
Using limiting semantics, other forms of temporal integration, such as temporal integration with

bounded state/output values or with a reset input, can also be defined [31].

5 Modeling in Constraint Nets

We have presented a formal model, constraint nets (CN), for hybrid dynamic systems: the syntax
of CN is graphical and modular, the semantic of CN is denotational and composite. The modular
aspect of CN not only provides hierarchical structures of system composition, but also provides a
simple and general concept for nondeterminism. The denotational semantics using fixpoint theorems
in partial orders provides a rigorous and straightforward interpretation for the meaning of CN. Finally,
parameterized nets and temporal integration increase the representation power of CN. As a result,
CN can be used to model hybrid discrete/continuous dynamic systems with various event-driven
components, while events can be generated in the feedback loop of other computations.

A hybrid dynamic system consists of modules with different time structures, with its domain
structure multi-sorted. A typical hybrid domain structure would include a continuous domain, the set
of real numbers R, and a discrete or finite domain, S, with associated functions. A typical reference
time for a hybrid dynamic system is the set of nonnegative real numbers R*. Event-driven modules
can be associated with different clocks, characterizing different sample time structures generated by
event traces. An event trace can be either with fixed sampling rate ¢, generated by e = A(¢,)(0)(—e),

or created by some discrete event generator, for instance, a transition is generated whenever the system
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enters (leaves) a predefined set of states. Multiple event traces can also be combined to generate other
event traces. Typical event interactions are “event or”, “event and”, and “event select” which can
be defined in terms of event logics [25]. With event logic modules, asynchronous components can be
coordinated.

A typical hybrid system is a robotic system which consists of a robot coupled to a continuous
environment, while the robot itself is an integration of a continuous plant with a discrete controller.
This hybrid system consists of three subsystems: the plant, the controller and the environment, each

of which can be modeled as a constraint net (Figure 6).

CONTROLLER

ENVIRONMENT

Figure 6: A robotic system where X, U,Y are state, control and sensing variables, respectively

We have been able to model hybrid systems such as an elevator system [33], with an event-driven
control structure, and a robot car soccer player [14], with both discrete and continuous components.

Unlike most computational models which are developed on a particular algebra, the constraint net
model is an abstraction. However, we have been able to prove that constraint nets can compute any
partial recursive function, given a simple domain structure [31]. Traditional analog computation [24]
fits this model as well.

Since we define both time and domains as topological spaces, we can study various levels of
abstraction via homomorphisms. We have studied time and domain abstraction and refinement,
trace and transduction abstraction and equivalence, behavior specification, robustness and complexity

within this framework [31].

6 Models for Hybrid Systems

Research on hybrid systems has been carried out for several years. In this section, we survey some

typical models for hybrid systems from an historical point of view.
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One branch of interest in hybrid system models originated from concurrency models and evolved
to timed concurrency models. For example, Alur and Dill [1] developed the theory of timed automata
to reason about timed behaviors. Henzinger et al. [12] incorporated time into an interleaving model
of concurrency in which upper and lower bounds on time delay are associated with each transition.
Various real-time extensions of process algebras [22] have been proposed to model the relative speed of
processes. The time Petri net model [5] was introduced to specify and verify real-time systems. None
of these models, however, are able to represent continuous change.

Some effort has been made recently to develop models for hybrid systems by generalizing timed
transition systems to phase transition systems [15, 21] in which computations consist of alternating
phases of discrete transitions and continuous activities. A hybrid system specification using 7 was
described in [30]. A duration calculus based on continuous time was developed [10] in which inte-
grators can be applied to predicates over a time interval. The use of weakest-precondition predicate
transformers in the derivation of sequential, process-control software was discussed in [16].

The constraint net model is more closely related to dataflow-like models and languages, such as
the operator net model, LUSTRE, SIGNAL and temporal automata.

The operator net model [2], abstracted from Lucid [28], is defined on continuous algebras using
fixpoint theory. The most attractive feature of this model is its independence of any particular algebra.
Given a continuous algebra which specifies data types and basic operations, a sequence (continuous)
algebra is obtained on which an operator net can be defined. (This idea was used in the development
of the constraint net model.) LUSTRE [6], a development based on Lucid, is a real-time programming
language, in which sequences are interpreted as time steps. In addition, LUSTRE introduces clocks,
so that any expression is evaluated at its clock’s sampling rate. However, time structures in LUSTRE
are discrete, rather than continuous.

SIGNAL [4, 3], similar to LUSTRE, is a real-time (reactive) programming language. As in LUS-
TRE, clocks are introduced to trigger various components. Again, the semantics of SIGNAL is based
on discrete time structures.

The temporal automaton model [13] is a step towards modeling causal functions in multiple time
domains. The temporal automaton model provides explicit representation of process time, symmetric
representation of a machine and its environment, and aggregation of individual machines to form a
machine at a coarser level of granularity. Even though time can be continuous in this model, there
remain untackled problems in modeling continuous change and event control.

A standard hybrid systems modeling language (SHSML) was proposed recently [26]. SHSML is
based mostly upon the conceptual definition of a hybrid system that underlies hybrid DSTOOL [9]
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and on the modeling and simulation environment provided by SIMNON [7]. A system modeled by
SHSML consists of continuous (continuous time and domain, for example, differential equations),
discrete (discrete time and continuous domain, for example, difference equations) and logic (discrete
time and domain) components. SHSML can be considered as an architecture definition language for
software and hardware codesign. However, there is still no formal semantics for this language.

A topological structure for hybrid systems has been studied recently by Nerode and Kohn [20].
Continuity in hybrid systems can be represented via the introduction of small topologies. The topology

of domains in the constraint net model has been influenced by this development.

7 Conclusion and Related Work

We have developed a unitary model, constraint nets (CN), for hybrid dynamic systems. In order to
make the model general, we have studied abstract time and domain structures, from which abstract
dynamics structures are derived. The syntactic structure of the model is graphical and modular, while
the semantics is denotational and composite.

In summary, the major contributions of CN are: (1) CN models asynchronous and synchronous
components, as well as coordination among components with different time structures; (2) CN supports
abstract data types and functions, as well as algebraic specifications; (3) CN provides a programming
semantics for the design and analysis of hybrid real-time embedded systems; (4) CN serves as a
foundation for the specification and verification of hybrid systems.

While modeling focuses on the underlying structure of a system as well as the organization and
coordination of its components, global behaviors of the system are not explicitly represented. We have
developed a timed linear temporal logic and timed V-automata [31] as specification languages [34].
Formal, semi-automatic and automatic verification methods for timed V-automata are developed by
integrating a generalized model checking technique for V-automata with a generalized stability analysis
for dynamic systems [34, 35, 31].

A good design methodology can simplify the verification of a robotic system. Control synthesis
and system verification can be coupled via requirement specifications. We have explored a relation
between constraint satisfaction and dynamic systems via constraint methods [32], and proposed a
systematic approach to control synthesis from requirement specifications [31].

The goal of this research is to provide theoretical underpinnings for robot engineering and the

systematic development of real-time, hybrid, embedded control systems.
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A Mathematical Preliminaries

In this appendix, we summarize the mathematical preliminaries required for this paper, based on
[8, 29, 27, 11]. We start with general topologies, and then focus on two special kinds of topologies:
partial order topologies and metric topologies. Some related concepts will also be stated.

A.1 General topology

Let X be any set. A collection 7 of subsets of X is said to be a topology on X if the following axioms
are satisfied:

e Xcrand(er.
e If Xy €7, Xo€ 7, then XyN Xy €7,
o If X; € 7 for all 7, then U; X; € 7.

The members of 7 are said to be T-open subsets of X, or merely open if no ambiguity arises. A subset
S of X is closed iff X — 5 is open. (X, 7) is called a topological space. We will use X to denote (X, )
if no ambiguity arises.

A topology 7 on X is trivial iff 7 = {X,0}. A topology 7 on X is discrete iff 7 = 2.

A topological space is separated if it is the union of two disjoint, non-empty open sets; otherwise,
it is connecled.

Let (X,7) be a topological space and z € X. A subset N(z) of X is called a neighborhood of
z iff + € N(z) and N(z) is 7-open. X is a Hausdorff space iff Vaq,22,3IN(z1), N(23), such that
JV(.’El) N JV(.TQ) = @

Let (X, 7) and (X', 7') be topological spaces. A function f : X — X' is continuous iff for any
7'-open subsets Y of X', f71(Y) is r-open. Clearly, continuous functions are closed under functional
composition.

A subset B of 7 is said to be a basis for the topology 7 iff each member of 7 is the union of members
of B. A subset § of 7 is said to be a subbasis for 7 iff the set

B = {B|B is the intersection of finitely many members of S}

is a basis for 7.
Let (X;,7i),i € I be a family of topological spaces, and let x;X; be the product set. Let

S = {x1Vi|[V; = X; for all but one i € I and each V; is an open subset of X;}.

A topology 7 on x;X; is the product topology iff S is a subbasis of 7. (x;X;, 7) is called the product
space of the spaces (X;, 7). If X; = X with the same topology for all 7 € I, x;X; is denoted by X1

Let X' C X, 7' ={W|W = X'nU,U € 7}. It is easy to check that 7’ is a topology on X'; 7/ is
called the subspace topology on X'. (X' 7'} is called the subspace of (X, 7).

Two topologies on a set can be compared in the following sense: 7 is a finer topology than 7y iff
71 2 72. The trivial topology is the coarsest and the discrete topology is the finest.

In the next two sections, we will introduce two important types of topologies which are between
these two extremes: partial order topologies and metric topologies. Partial order topologies are typical
non-Hausdor{l topologies and metric topologies are typical Hausdorff topologies.
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A.2 Partial order topology

A binary relation on a set is called a partial order relation iff it is reflexive, transitive and anti-
symmetric. Let X be a set, <x be a partial order relation on X, (X, <x) is a partial order. X is a
linear order iff Va1,x9 € X, either 21 <x x5 or 9 <x x1. For any partial order relation <y, let >x
denote the inverse of <x, and let <x (>x) denote the strict relation of <y (>x). We will use X to
denote partial order (X, <x) if no ambiguity arises.

An element Lxy€ X is a least element iff for all € X, L x<x . Least elements, if they exist, are
unique.

A partial order X is flat iff there is a least element L x and for any z,y € X, ¢ <x y implies that
either x =y or z =1x.

An element u € X is an upper (lower) bound of a subset Y C X iff forall y € YV, y <x u (u <x y);
u is a least upper (greatest lower) bound of Y iff for any upper (lower) bound v of Y, v <x v (v <x u).
Least upper (greatest lower) bounds of Y, if they exist, are unique and will be denoted by VY
(Ax V).

A subset D of X is directed iff Ve, y € D, 3z € D,x <x z,y <x 2.

A partial order (X, <x) is a complete partial order (cpo) iff there is a least element Lxé€ X, and
every directed subset of X has a least upper bound.

Proposition A.1 A flat partial order is a cpo.

Let {X;}icr be a set of partial orders. The product partial order relation on X = x;X; is defined
as ¢ <y z' iff ; <x, z! forall i € I. (X, <x) is called the product partial order of {(X;, <x,)}ier-

Proposition A.2 The product partial order of cpo’s is a cpo.

Let X be a partial order. The subpartial order relation on X' C X is defined as z1 <x/ z9 iff
1 <x @2, and z1,22 € X'. (X', <x/) is called the subpartial order of (X, <x).

Given any partial order (X, <x), the partial order topology is induced as follows. A subset Y of
X is open iff (1) Y is upward closed, i.e. y € Y implies that Vz,y <x 2z — 2 € Y, and (2) Y is
inaccessible from any directed subset, i.e. if \/x D € Y, then dz € D, such that z € Y. The set of
open sets on X forms the partial order topology.

A partial order X is non-triviel iff 3z, 2", 2 <y z'.

Proposition A.3 A non-trivial partial order topological space is non-Hausdorff.

Proposition A.4 Let X and X' be cpos. A function [ : X — X' is continuous in the partial order
topology iff (1) for any directed subset D of X, f(D) is a directed subset of X', and (2) \/x, f(D) =

f(Vx D).

A function f : Xy x X3 — X is right continuous iff Va1 € Xq,Az.f(x1,2) is continuous. A left
continuous function is defined similarly.

Proposition A.5 A function f: X7 x X9 — X is continuous iff it is both left and right continuous.

Let f: X — X be a function. A point z € X is a fizpoint of f iff # = f(z); x is a least fixpoint iff
for any fixpoint y of f, v <x y. Least fixpoints, if they exist, are unique.

Theorem A.1 Let f: X — X be a continuous function on a cpo X. [ has a least fizpoint p.f =
Vx{/"(Lx)}.
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A.3 Metric topology

A function d : X x X — R™T is a melric on X iff
o d(z,y)=d(y,z).
o dlz,y)<d(z,z)+d(z7y).
o dz,y)=0iff z = y.

(X,d) is a metric space. A subbasis of the metric topology is {N°(z)}c>0-ex where N¢(z) denotes
the e-neighborhood of z, i.e. N(z) = {a'|d(z,2") < €}.

Proposition A.6 Melric topologies are Hausdorff.

A family o of subsets of X is a o-field iff it contains the empty set, the complement in X of every
element in ¢ and the union of every denumerable subcollection. A function g : ¢ — R is a measure ifl
©(0) = 0 and p(USZ, X;) = %52, u(X;) if X;N X; =0 for any i # j. If (X,7) is a topological space,
then the smallest o-field containing 7 is called the Borel field of sets, and denoted by Xp,re(X). A
measure defined on X pg,..(X) is called a Borel measure.

A.4 Limit

Let L be a linear order, X be a topological space, and v : L — X be a mapping. A point v* € X is a
limit of v, written v — v*, iff YN (v*), 3y, VI >, lo, v(I) € N(v*).

Proposition A.7 Ifv: L — X and L has a greatest element ly, v — v(lp).
Proposition A.8 If X is Hausdorff and v : L — X, then v — v and v — v} imply that v = v3.

Proposition A.9 Let L be a linear order, v : L — x1X;. If x1X; is with the product topology, then
v—v* iff foralli e I, v; — v}.

Let X be a metric space. A sequence v : N — X is Cauchy iff d(v(n),v(m))— 0 when n,m — oco.

A.5 Vector space

A wector space is a set X for which are defined the functions: + : X x X — X and - : R x X — X
and with an element Oy € X satisfying the following conditions:

cty=y+a,(z+y)+z=a+(y+2),

a(z +y) = az + ay, (e + f)z = az + B,
a(fz) = (af)z,z+0x = 2,0z = 0x, 1z = z.

Let Yjz; denote the sum of all elements z;,¢ € I. A topological vector space is a vector space with a
topology such that + and - are continuous functions.
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B Proofs of Theorems and Propositions

Proof of Proposition 3.1: (1) The only neighborhood of 14 is A, so v(l) € N(L,) for all I. (2)
If v # v}, one of them must be L 4, since A is Hausdorff with unique limits (Propositions A.6 and A.8).

Proof of Proposition 3.2: (1) Follows from Proposition A.9. (2) For any two limits » and ¢/,
the least upper bound of v and v’ is also a limit.

Proof of Proposition 3.3: (\/4 D); = \/4, D; where D; = II;D.

Proof of Proposition 3.4: If A is flat, v] #1 4 implies that v5 #1 4. If A is a product, lim v]; <y,
lim v3,. Therefore lim v} <4 lim v3.

Proofs of Propositions 3.5 and 3.6: Proofs are similar to Proposition 3.2, 3.3.

Proof of Proposition 3.7: If 7. is not semi-discrete, there is ¢t € 7., pre(t) C 7. has no great-
est element, i.e. for any t' <. t, there is t",t' <. t" <. t, which means there is infinitely many
transitions between ¢’ and ¢, then e(pre(t)) will not be defined. Similarly, 7. is well-defined.

Proofs of Propositions 4.1 — 4.3: Follows from Propositions A.1 and A.2.

Proof of Proposition 4.4: Let V C A7 be the set of nonintermittent traces. The least element in
Vis At. L4. The least upper bound of a directed subset D of V is \/y, D = At.\/ 4 D(t) which is also
in V since (\/ 47 D)(T') >4 V4 D(T) (Proposition 3.4), if (\V 47 D)(T)is L4, d(T)is L4 forall d € D.

Proof of Proposition 4.5: Let D C A7 be directed and v* be the least upper bound of D. We will
prove that fr(\/ 47 D)=\ 47 fT(D) i.e. forany t, fr(v*)(t) = (V407 fr(D))(1).
Jr(eM)(t) = \/{v (t)]v € D})

— \/{f t))lve D} since f is continuous

= \/{fT (HveDy=\/ fr(D

AT

Proof of Proposition 4.6: For any unit delay 634-(1)0) : AT — A7 let D C A7 be directed and v*
be the least upper bound of D. Since 7 is semi-discrete, pre(t) has a greatest element, which will also
be denoted by pre(t).

§ B vo ift=0
634'(710)(71 ) = { v*(pre(t)) = Va{v(pre(t))|v € D} otherwise

Vis4(wo)(0)0)lo € D)
A

(\/ 6(w0)(D

AT
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Proof of Proposition 4.7: Since 7 is well-defined, ¢ — 7 has a greatest element when m(t) > 7

Proof of Proposition 4.8: First we prove sampling and extending are continuous. Let 7 be a
time structure and 7, be a reference time structure of 7 with a reference time mapping h. Sampling
is a transduction S7 7, : AT — AT, We prove that it is continuous.

Let D € A7 be directed and v* be the least upper bound of D. Let v be S7.7,(v).

v(t) = \/{v ))lve D} = \/{v lve D} = (\/{zlv € DH)(1).
AT

Therefore \/ 47 D = \/ 47 D.

Similarly, extending is continuous, given the sample time structure well-defined.

The proof is divided into two steps. First, F° is right continuous if F is continuous. Second, F° is
left continuous. Therefore, according to Proposition A.5, F° is continuous.

For any time structure 7 and any fixed event trace e, sampling to 7 is continuous and extending
to 7 is also continuous. If F' is continuous, F° is right continuous since continuous functions are closed
under functional composition.

Now we prove that it is left continuous. Let 7 be any time structure and v € A7 be fixed. For
any directed subset D of €7, D is a chain. According to the definition, F3(D,v) is a chain too, i.e.
a directed subset. Furthermore for any ¢ if (\/er D)(t) #Lp, there is d € D such that for all ¢ <
t,d(t") = (Ver D)(t'),1e. \V 47 F3(D,v) > F2(\ g7 D,v). On the other hand, F3 is monotonic w.r.t.
the left argument, i.e., \/ 4,7 F3(D,v) < F3(\gr D,v). Therefore \/ ,,7 F7(D,v) = F3(\Ver D,v), it
is left continuous.

Proof of Theorem 4.1: By Theorem A.1.

Proof of Theorem 4.2: Let F%(a) = f(a, Ly) and F¥*1(a) = f(a, F*(a)). Since f is continu-
ous, it is right continuous. A continuous function in any partial order is also monotonic. Therefore,

F%a) <4 FYa) <pg F¥a)... <y F*(a) <
Let p.f(a) = V4 {F¥(a)|k > 0}. Clearly u.f(a) is the least fixpoint of f, : A" — A’.

Next we prove that p.f is continuous. Clearly for every k, F* is continuous since f is continuous
and continuity is closed under functional composition. Therefore, for any directed subset D of A,

n-f(\/ D) = \/{F’“ \/D |k >0}
' = \/,{\/,{Fk )}k > 0}
= \/I{\//{Fk a)lk > 0}a € D}
= \/uf(D)
p

Proof of Theorem 4.3: Follows from Propositions 4.1-4.8.
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