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Abstract. Computer-controlled systems are becoming ubiquitous. Most
of these systems exhibit uncertainty, rendering their behaviour somewhat
unpredictable. For some systems, this unpredictability can be overlooked.
However, for many systems, such as safety critical systems, the uncer-
tainty arising can have dramatic effects. In order to handle such systems,
we need a formal modeling framework and a methodology for analyzing
them. In systems responding to users requests, for instance, an analysis
could be performed to show that a time of service property is satisfied on
average. We have developed Probabilistic Constraint Nets (PCN), a new
framework that can handle a wide range of uncertainty, whether it be
probabilistic, stochastic or non-deterministic. In PCN, we view proba-
bilistic dynamical systems as online constraint-solvers for dynamic prob-
abilistic constraints and requirements specification as global behavioural
constraints on the systems. We present verification rules, which have been
fully implemented, to perform automatic behavioural constraint verifi-
cation. Finally, we demonstrate the utility of our framework by applying
it to a simple robotic surveillance system.

1 Introduction and Motivation

Using constraints to model systems is a widely studied approach. This approach
has lead to the fruitful constraint programming paradigm. However, despite the
advances in the Constraint Satisfaction Problem (CSP) framework, one area that
still remains to be explored in depth is the constraint-based design of dynam-
ical systems. Dynamical systems cannot be handled in an offline approach, as
is often the case for CSP, but rather should be seen as online constraint satis-
fying systems. Therefore, to model dynamical systems, we must move beyond
the typical offline constraint satisfaction model and develop a paradigm where
constraints are solved dynamically as the system evolves in time. One proposed
solution, Constraint Nets (CN), was developed by Zhang and Mackworth [1,
2]. The approach describes a model for building deterministic hybrid intelligent
systems as situated agents. However, real-time dynamical systems commonly
behave unpredictably and thus often exhibit (structured) uncertainty. We have
augmented the CN framework so that we can model, and reason about, stochas-
tic constraint-based hybrid dynamical systems. We call this new framework the
Probabilistic Constraint Nets (PCN) model [3,4]. We provide, within PCN, a
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Fig. 1. The structure of a constraint-based agent system

modeling environment based on arbitrary time and domain structures, making
it suitable for modeling hybrid systems. The coupled relationship between the
constraints on an agent and its (uncertain) environment is shown in detail in
Fig. 1. As shown here, we consider three common ways in which the uncertainty
components can enter a system: uncertain dynamics, sensor noise and external
disturbance.

We model an agent as composed of two distinct constraint-based modules: a
body with its various sensors and actuators, and a controller which is the mod-
ule that controls the behaviour of the agent. The body senses the uncertain
environment and reports to the controller on the perceived state of the environ-
ment. In turn, the controller then sends appropriate control signals, based on
the updates, to the actuators of the body to perform the required actions. These
actions affect the state of the world, hence changing the agent’s environment.
The constraints imposed on the system’s dynamics represent local behavioural
constraints. However, to ensure that a certain system obeys global behavioural
constraints, we have also developed a formal behavioural constraint language,
average-timed V-automata, and a set of verification rules which enable us to per-
form global behavioural constraint satisfaction for properties of systems, such as
safety, goal reachability and bounded time response [3,4].

In the remainder of this paper, we will show that the solutions to PCN mod-
els are, in general, Markov processes. Moreover, for a class of systems where the
uncertainty diminishes as the system reaches the equilibrium, we will show that
a stochastic equivalent to the property of monotonicity of the convergence to
the equilibrium can be characterized by stochastic Lyapunov functions. Based
on ideas from Lyapunov stability, we will then introduce the global behavioural
constraint modeling language, average-timed V-automata and briefly introduce
the rules developed for constraint satisfaction. We will conclude with an appli-
cation to a mobile robotic surveillance system.



2 Modeling Stochastic Constraints within PCN

Dynamical systems have requirements imposed on their dynamics. For instance,
some given restrictions can stipulate how a mobile robot should roam around,
or which laws of physics the system should obey. In addition, to define a sys-
tem completely, one also needs to impose constraints on the system’s desired
global behaviour such as: a mobile robot should not run into human beings
when interacting in a human-populated environment. The set of constraints on
the dynamics and the behaviour defines the dynamical system as a whole.

In general, most constraint modeling frameworks fall short of being able
to model these constraints in an efficient and sound manner. Moreover, with
systems exhibiting uncertainty, the notion of stochastic constraints is usually
beyond the capability of existing frameworks. To bridge the gap between such
systems and available methodologies, we introduce a formal framework which
allows the user to model uncertain dynamics as well as behavioural constraints.
The PCN framework allows for a complete hybrid modeling approach, where one
can model time and domains as either discrete, continuous or both, and uncer-
tainty in many different forms: probabilistic as in a Markov Chain, or stochastic
as with Brownian Motion and stochastic differential equations. The flexibility
of our framework allows a designer to model a complex system while remaining
under the umbrella of a single modeling language. Let us now introduce the basic
syntax of PCN.

2.1 Syntax of PCN

Definition 21 (Probabilistic Constraint Nets) A probabilistic constraint
net PCN is a tuple (Le, Tp,Td,Cn), where Lc is a finite set of locations, each
associated with a sort; T'd is a finite set of labels of transductions, each with an
output port and a set of input ports, and associated with a sort; Tp is a finite set
of labels of probabilistic transductions, each with an output port and a set of input
ports, and associated with a sort. Fach probabilistic transduction is associated
with a given probability distribution. Cn is a set of connections between locations
and ports of the same sort, with the restrictions that: (1) no location is isolated;
(2) there is at most one output port connected to each location; (3) each port of
a transduction connects to a unique location.

A location can be regarded as a wire, a channel, a variable, or a memory
location. Its value changes over time, whether it be based on a certain reference
time, or on external events. We say that a location ! is an output location of a
transduction F' if and only if it is connected to an output port of the transduc-
tion; otherwise ! is an input location. A probabilistic constraint net is open if
it possesses an input location, otherwise it is closed. A PCN can be represented
by a bipartite graph where locations are depicted by circles, transductions by
boxes (doubled boxes for probabilistic transductions) and connections by arcs.
Individual PCN modules are denoted by rounded boxes. =

As a running example throughout this paper2#¢ will consider a museum di-
rector who wants to use a fleet of mobile robots to survey the different exposition
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Fig. 2. Dynamics of a mobile robot as a PCN

rooms in the museum. Each robot would offer surveillance in a given subset of
the rooms, ensuring that the visitors do not damage, or steal, the art work. A
precise continuous model of the (uncertain) dynamics of the mobile robot can
easily be modeled in PCN, as shown in Fig. 2, where the double-boxed integral
transduction represents an It6 integral, j;ol dW,, and W, is a standard Wiener
process. In this PCN model, the control inputs » and « dictate the velocity and
the direction to the body of the mobile robot, whose position is defined by its
(noisy) (z,y) location and its (noisy) orientation 6. '

2.2 Topological Approach to Stochastic Dynamic Systems

The PCN framework is built upon the topological structure of time, domains,
traces and transductions; each of which are basic elements of stochastic dynamic
systems. Let us now present the elementary definitions. : :

Time structures One important concept in the modeling of dynamical sys-
tems is the notion of time. Dynamical systems evolve over time, some in discrete
increments while others do in continuous or event-based fashion. Since we are-
interested in modeling and analyzing systems with discrete and continuous com-
ponents, we need to formalize time using abstract structures which capture the
important aspeets of time: linearity, metric and measure. A time structure, in-
general, can be considered as a linearly ordered set with a start time point, an
associated metric for quantifying the distance between any two time points and
a measure for estimating the duration of time. Formally, a time structure is a-
triple (T, d, 1), where -k -

— 7 is.a linearly ordered set (7, <) with O as the least element,



— (T,d) forms a metric space with d as a metric satisfying: V&g < ¢ < o,
d(to, tg) = d(to, tl) + d(tl, t2),
— (T,d, p) forms a measure space with y as a Borel measure.

Although our definition of time structures is general, discrete or continuous time
structures are most commonly used.

2,3 Domain structures

Similarly to time, we formalize domains as abstract structures. This approach
allow us to uniformly define discrete as well as continuous domains. We consider
two main types of domains: (1) a simple domain or, (2) a composite domain.

A simple domain is a pair (AU {L4},da) where A-is a set, 1 4¢ A means
undefined, and dg4 is a metric on A. A composite domain is the product of a
family of domains {{A; U{La,},da,)}2,.

2.4 Trace and event structures

A trace intuitively denotes changes of values over time, characterized by the set
of input and output locations. Formally, a trace is a mapping v: 7 x 2 — A
from time 7 to a domain A, where {2 is the event space of the system under
study. {2 may be omitted when no ambiguity arises. For example if X;(w),w € £2
is a random variable defined on a proper probability space, 7 = R*, and A = R,
v1 = At.cos(X(w)) and vy = M.e~X+®) are traces. An event trace is a trace
with a Boolean domain. An event in an event trace is a transition from 0 to
1 or from 1 to 0. Any event trace generates a sample time structure which is
semi-discrete and well-defined [1].

2.5 Deterministic and Probabilistic Transductions

Deterministic transductions are causal mapping from input traces to output
traces over time: F' : AT — AJ?, where A7 denotes a trace space. Transduc-
tions are activated either by a certain reference clock or by external events. By
causal mapping we mean that the output at any time depends only on inputs
up to that time, that is, the future cannot influence the present or the past.
In order to model the uncertainty in systems, we introduce the notion of prob-
abilistic transductions. A probabilistic transduction acts as a random number
generator, following a given probability distribution. In practice, probabilistic
transductions can be represented as discrete (e.g. Poisson, uniform) or continu-
ous (Gaussian, exponential) probability distributions. Within PCN, we consider
two distinct classes of transductions: primitive transductions and event-driven
transductions. Primitive transduction are composed of two basic types of trans-
ductions: transliteration and delays.

For a time structure 7, a transliteration fr : AT — AT is the pointwise
extension of the function f : A; — Ajs. Intuitively, transliterations can be seen as



a transformational process without internal state (memory). A simple example
of a transliteration is a combinational circuit without delay.

A delay on discrete time structure is a process where the output value at time
t is the input value at time £ — 1. The extensions to transport delays, i.e., delays
on non-discrete time structures, is straightforward. Intuitively, delays can be seen
as a unit memory. Note that although transliterations can be basic probabilistic
transductions, delays are only well-defined as deterministic transductions.

3 Semantics of PCN

So far, we have introduced the syntactical structure of probabilistic constraint
nets. However, although syntax is useful in creating a model, it does not provide
a meaning to this model. Therefore, we need to provide a proper semantics
for our modeling framework. As mentioned earlier, transductions are mappings
from input traces to output traces. By observing the relationship between each
transduction and its set of input/output locations, we can see that a PCN P
denotes a set of equations o = F(i,0) where each function F corresponds to a
transduction of P and each variables corresponds to a location in P. Hence, the
semantics of the PCN P is the solution of the set of equations, which we denote
[P].

Although the PCN framework allows for the modeling of almost any type of
uncertainty, in order to guarantee that we obtain well defined systems at all times
we need to impose some restrictions on the choice of uncertainty models. One
such restriction is the non-Zeno property. This condition is necessary to prevent
degenerate systems which produce an infinite number of transitions within a
finite interval of time. Moreover, we will assume that when modeling systems
with (stochastic) differential equations, the noise term is to be modeled via a
Wiener process (Brownian motion). In fact, this is not really a restriction since
the Wiener process is the only stochastic process, providing an adequate model
of noise, which has continuous sample paths [5].

Ezample 1. To illustrate the difference between a deterministic system and a
perturbed system, we compare in Fig. 3, the two dynamical systems with nominal
component X; = vcos(8), representing the z position of the mobile robot in the
museum surveillance example. For simplicity, we assume that the control signals
v (velocity) and @ (direction) are constant. Fig. 3(a) show a noise-free system.
In this case, we can see that the system is moving forward linearly, with slope
veos(0). In Fig. 3(b) we show what happens for a system affected by a white
noise. This system, although moving forward on average, moves unpredictably
as its progress is retarded or advanced by the noise.

We can show, under the assumptions of non-Zenoness and Brownian motion
noise, that PCN models generate equations whose solutions are stochastic pro-
cess, namely Markov processes. For PCN models on discrete or event-based time
structure and with finite memory, it is straightforward to show that the gener-
ated processes will either be Markov chains or Markov processes, depending on
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Fig. 3: (2) ODE: X, = veos(); Xo=0

(b) SDE: X; = veos(8) + Ni; X6 =10

the nature of the domains of the locations of the models. The semantics of the
PCN framework is related to the concept of labelled Markov Processes as intro-
duced in [6]; however, those authors adopt a higher level modelling approach
and focus on the notion of bisimulation for such models.

To prove the result for continuous time structures, we need to use the follow-
ing result on measurability of PCN components. Results are stated here without
proof.

Theorem 1. Let T a time structure and let F be the set of all transductions for
a given PCN, then transliterations, transport delays and event-driven transduc-
tions in F are Borel-measurable. Furthermore, if T is discrete, then all trans-
ductions in F are Borel-measurable.

Combining the result of Theorem 1 with the result arising from the well-
known Egzistence and Uniqueness Theorem for stochastic differential equations [7,
8], we obtain the main result of this section, which states that the solution of any
PCN model of stochastic differential equations is a Markov process. Furthermore,
with this result, we can show that if the transductions in F are time-invariant,
then the resulting Markov process is also a stationary process [7].

Theorem 2 (PCN Semantics as Markov Process). Let P be a PCN model
whose set of equations corresponds to

axX; = f(t, Xt)dt + G(t, Xt)th;Xto =¢t)St<T < o0, (1)

where W is an R™-valued Wiener process and c is a random variable inde-
pendent of Wy — Wy, for t > to. If the R%*-valued function f(t,z) and the
(dxm matriz)-valued function G(t,z) are defined and measurable on [to, T] x RY
and have the following properties:

(a) Lipschitz condition: 3K > 0, a constant, such that Vt € [to, T),z € R%,y €
Rd; [f(t,z) — Ft, v)| + |G(t, z) — Got, y)| < K|z —yl;

(b) Restriction on growth: 3C > 0, a constant, such that ¥t € [to, T] and z € R¢
I£(t,2)| + |G(t, )| < C(1+ |a]), ‘



then [P] = X, is the unique t-continuous solution of Equation 1. Moreover, [P]
is a Markov process on [to, T] whose initial probability distribution at the instant
to s the distribution of ¢ [7, 8].

Ezample 2 (Ezample 1 revisited). Since deterministic systems are special cases of
stochastic systems, it is not surprising that the solution to the system of Fig. 3(a)
18 & Markov process. However, the lack of uncertainty in the dynamics yields, at
each instant ¢, a probability distribution concentrated at value Xo + tveos(0),
with zero variance, On the other hand the stochastic system of Fig. 3(b) has
for solution a Markov process, which is in fact a Gauss-Markoy process, with a
Gaussian probability distribution of the form A/ (Xo + tveos(0),t).

3.1 Stability of Stochastic Dynamical Systems

An important notion of stability for stochastic systems is Lyapinov stability [9].
This type of stability can be obtained when dealing with systems whose uncer-
tainty “dies down” as the system evolves in time. Such systems are very common
in real life application. For example, remember the mobile robot whose actuators
are noisy. The uncertainty induced by the actuators will affect the robot’s travel
but this effect will gradually diminish as the robot’s speed approaches ().

Let us consider the general class of PCN inducing stochastic differential equa-
tions of the form of Equation 1, for which we assume, without loss of generality,
that the unperturbed system has an equilibrium at & = 0. We can show that if
the conditions:

1. the transductions G € F affecting the noise term satisfy the condition:
00 2
Jio 1G(s)|2ds < oo, ,
2. there exist a (Lyapunov) positive-definite function v(t, ), continuously dif-
" ferentiable with respect to t and twice continuously differentiable with re-
spect to the components z; of x
3. Lu(t,x) < 0,t > t0,0 < |z| < h, where L = %+ Ed fi(t,m)a%‘ +

i=1
1250, Y- (Gl )Gt 2) Yy g

are satisfied, then the equilibrium of Equation 1 is stochastically stable. Stochas-
tic Lyapunov stability of a system X, relies on the property that the distance,
measured by v(t, X;), of X, from the equilibrium does not increase on the av-
erage. This concept along with the notion of Lyapunov functions, are central
to the behavioural constraint satisfaction method that we present in the next
section.

4 Behavioural Constraints

Given the semantics presented above, the online satisfaction of the constraints
on the dynamics of a stochastic dynamical system ensures that its behaviour
is a stochastic process that is a solution to the set of equations it generates.
Such constraint satisfaction does not, however, guarantee that the behaviour of



the system will satisfy global temporal constraints. For example, consider once
again the dynamics of our mobile surveillance robot. Although the robot will
travel according to the laws of motion, it does not guarantee that it won’t hit or
hurt people during its travels. Such restrictions constitute global constraints on
the behaviour of the system and cannot easily be represented within the PCN
modeling language. Hence, we introduced a behavioural constraint language,
average-timed V-automata, that allows us to represent global constraints on a
system’s behaviour [3,4]. Together with PCN, these two languages will specify
the entire set of constraints on a stochastic dynamical system.

Before formally discussing the notion of behavioural constraint satisfaction,
it is necessary to discuss the relationship between stochastic dynamical systems
and their behaviours. Intuitively, the behaviour of a stochastic dynamical system
is the set of observable input/output traces of a given:system. Let P(I,0) be
a PCN module, where (I,0) is the tuple of input and output locations of the
module. Formally, an input/output pair (i,0) is an observable trace of P(I,0)
iff 3F € (T'd U T'p) such that o = F(i). We define the behaviour B of P(I,0) as
the set of all observable traces.

For the purpose of this paper, we will restrict ourselves to time-invariant
Markovian behaviours over discrete-time structures. A generalization of this ap-
proach is available in {3]. Any discrete-time, time invariant, Markovian stochastic
dynamical system corresponds to what we call a stochastic state transition sys-
tem. A stochastic state transition system is a tuple (S,P, ©) where S is a set of
states, P : S x S is an evolution kernel representing the transition probability
distribution between two states; i.e., P(s1, 82) is the probability of a transition
occurring between 51,53 € S, and © : § — [0, 1] represents the distribution of
the initial state of the system. For any discrete time 7, v : 7 — S is a trace
of (S,P,0) iff Vt > 0,P(v(pre(t)),v(t)) > 0 and O(v(0)) > 0, where pre(t) is
the time value preceding ¢. We will denote an allowed transition from v(pre(t))
to v(t) by v(pre(t)) ~ v(t). A behaviour B corresponds to a stochastic state
transition system (S,P, ©) iff B is equal to the set of all traces of (S, P, 6).

4.1 V-Automata

An important method for representing behavioural constraints (or requirements
specification) of systems is V-automata or, more precisely, the languages accepted
by aV-automata. This class of methods is well suited to the PCN framework since
we can view traces as a generalization of infinite sequences. A desired property
of the system (hence its traces) can be specified by an automaton; a trace of a
system satisfies the behavioural constraints iff the associated automaton accepts
the trace. V-automata was proposed in [10,11] as a specification language for
concurrent programs and deterministic dynamical systems, respectively.
Formally, a V-automaton A is a quintuple (@, R, S, e, c) where Q is a finite
set of automaton states, R C Q is a set of recurrent states and S C Q is a
set of stable states. With each ¢ € @, we associate a state proposition e(g),
which characterizes the entry condition under which the automaton may start
its activity in q. With each pair (¢,¢’) € Q X @, we associate a state proposition
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Fig. 4. V-Automata Constraints: (a) goal achievement (b) safety (c) bounded response

¢(q,¢"'), which characterizes the transstion condition under which the automaton
may move from ¢ to ¢’. R and $ are generalizations 'of accepting states to the
case of infinite inputs. We denote by B = Q — (RU 8) the set of non-accepting
(bad) states.

Let 7 be a discrete time structure, A be a domain and v : 7 — A be a trace.
A run of A over v is a mapping 7 : 7 — @ such that (1) v(0) k= e(r(0)); and (2)
for all ¢ > 0, v(t) |= e(r(pre(t)), 7(t)), where ¢ |= 4 denotes that ¢ satisfies ).

If 7 is a run then let Inf(r) denote the set of automaton states which appears
infinitely often in 7. Let A be a V-automaton. A run r over A is defined to be
accepting iff it satisfies at least one of the two conditions:

L. Inf(r)N R # 0; i.e., some of the states appearing infinitely many times in r
belong to R, or

2. Inf(r) C S; i.e., all the states appearing infinitely many times in ~ belong
to S.

Essentially, the notion of acceptance of traces specifies that the system either
always eventually returns to the set of recurrent states R or eventually remains
forever within the stable set S. Formally, a V-automaton A accepls a trace w,
written v |= A, iff all possible runs of A overv are accepting.

Let us now consider some typical behavioural constraints for dynamical sys-
tems, where stable and recurrent states in @ are marked with O and <, re-
spectively. In Fig. 4(a) we represent a goal satisfaction constraint which accepts
the traces of a system that will eventually always satisfy the goal condition G.
Fig. 4(b) is a global safety constraint which states that an acceptable system
should never satisfy the bad condition B. Fig. 4(c) is a constraint of bounded
response. It states that whenever event E occurs, the response A will follow in
bounded time,

4.2 Average-timed V-automata

Meaningful behavioural constraints on dynamical systems often include temporal
components such as deadlines and real-time response. Since we are interested in
solving behavioural constraints on stochastic systems, we usually cannot reason
about satisfying a given time constraint perfectly. Rather, we need to reason



about satisfying time constraints on average and thus we proposed the notion of
average-timed V-automata [3,4].

Average-timed V-automata are V-automata augmented with timed automa-
ton states and average time bounds An average-timed V-automaton A7A is a
triple (A, T,7) where A = (Q, R, S,¢,¢) is a V-automaton, T C @ is a set of
average-timed automaton states denoted by a positive real number indicating
its average time bound, and 7 : T U {bad} — R* U {00} is an average timing
function.

A run r is accepting for ATA iff

1. r is accepting for A and

2. 7 satisfies the average time constraints. If I C 7 is an interval of 7 and
q* : I — Q is a segment of run r, where ¢* = rj;, let u(q*) denote the
measure of ¢*, i.e., u(q*) =_u(I) = Y ,c; u(t), since I is discrete. Let Sg(q)
be the set of segments of consecutive ¢'s in r, i.e., ¢* € Sg(¢) implies Vt €
I,q*(t) = q. The run r satisfies the local time constraint iff Vg € T,q* €
Sg(q), E(u(g*)) < 7(a).

An average-timed V-automaton ATA accepts a trace v, written v = ATA, iff all
possible runs of ATA over v are accepting. As an example, Fig. 4(d) depicts the
real-time response constraint which states that R will be reached within 30 time
units of B.

5 Model-checking Approach to Constraint-Based
Behaviour Verification

The formal behaviour verification method consists of a set of model-checking
rules. The rules, which were introduced in [4,3], are a generalization of the
rules for deterministic dynamical systems [11]: Here we briefly summarize the
verification rules and results for the simplest possible situation: discrete time and
discrete domains. A generalization of the rules for arbitrary time and domains,
and the proofs of the following results are available in [3].

Our verification method has three categories of rules: Invariance rules (1),
Stability (Lyapunov-based) rules (S} and Average Timeliness rules (AT). As-
sume A7A is an average-timed V-automaton (A, T, 7). which represents the be-
havioural constraints for a stochastic state transition system (S, P, ©). Moreover,
let {¢}B{¥} denotes the consecutive condition: ¢(s) A (s ~ s') — %(s’).

(I) Invariance Rules We define the set of propositions {ag}4eq as a set of
invaeriants for the behaviour B and specification A iff

1. Initiality: Vg € Q, © A e(q) — aq, and
2. Consecution: ¥q,q' € Q, {ag}B{c(¢; ¢') — oy},



(S) Stability Rules Let {ag}qeq be a set of invariants for B and A as defined
above. A set of partial functions {Pq}qeq is called a set of Lyapunov functions
for B and A iff p, : Sg — R satisfies the following conditions:

1. Definedness: Vg € Q, g — Jw € R, p, = w,
2. Non-increase: Vq € S,q' € Q, {0g A pg = w}B{c(q,q') — E(py) < w}, and
3. Decrease: 3¢ > 0,VYg € B,3¢’ € Q, {aq A pg = w}B{c(q, g} — py —w < ~¢}.

(AT) Average-Timeliness Rules Let ATA = (A, T, 7) be an average-timed
V-automaton. Assume, without any loss of generality, that time is encoded in
the stochastic state transition system. We now define local timing functions,
associated with the local average time bounds. Once again, let {ag}eeq be a set
of invariants for B and A. A set of partial functions {~,},er is called a set of
local timing functions for B-and ATA iff 4, : Sg — R* satisfies the following
conditions: -

— Boundedness: Vg € T, ag — A < 74 < 7(q).
— Decrease: Vg € T, {ag A yg = w AE(X) = 1}B{c(g, ¢) — E(vq) —w < —1}.

The following theorem stipulates that if we satisfy rules (I), (S) and (AT), then
the behaviour verification is sound and complete. :

Theorem 3 (Verification Rules). For any state-based and time-invariant be-
haviour B with an infinite time structure and a complete average-timed Y-auto-
maton ATA, the verification rules are sound and complete; i.e., B E ATA iff
there ezist a set of invariants, Lyapunov functions and local timing functions.

The above rules, however, do not guarantee the existence of an automatic
verification method. Nevertheless, for PCNs with finite domains we can fully
automate the verification of an average-timed V-automata constraint on the be-
haviour. We have implemented an automatic verification algorithm which we
apply to our robotic surveillance system in the next section. Details of the algo-
rithm are omitted here but_presented in [3]. :

6 Modeling and Analyzing a Robotic Surveillance System

To demonstrate the utility of our approach, we analyze a simple version of the
museum surveillance task introduced earlier. For the sake of simplicity, we will,
in this example, model a lone mobile robot surveying two of the museum rooms,
trying to ensure that the many works of art are not being damaged or stolen by
the visitors. We emphasize the behavioural constraint satisfaction problem, i.e.,
show that the safety of the work of art will be ensured. For a complex example
of an hybrid elevator system where the modeling and the constraint satisfaction
tasks are presented in detail, the reader is referred to [3].

In Fig. 5, we depict the environment in which the mobile surveillance robot
(located on square 1) must operate. The environment is made up of two rooms,
Regular Exposition and Main Showroom. We will assume that the limitations on
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Fig. 5. Museum Environment in the Surveillance Task

the vision system of the robot are such that, the robot can only survey elements
located in the same subdivision as itself. These subdivisions are numbered from
1 to 10 in Fig. 5. In addition, we will assume that the velocity of the robot is such
that movement from one square to another takes constant time, § = 3 minutes.

Let us consider the scenario where the museum director is interested in en-
suring that the main showroom (room 10 in Fig. 5) is surveyed regularly by the
mobile robot. Specifically, the robot should come back to the main showroom
every 7 = 30 minutes, on the average. This behavioural constraint can be repre-
sented by the average-timed V-automaton of Fig. 6(a). In addition, the director
decides to adopt the strategy for the dynamics that entails the robot to move
clockwise (going from square 1 -2 —+3 —4 —7—8 —» 9 — 10 — 1 as shown
in Fig. 5). However, the entrance to the main showroom can be obstructed (like
it is the case in Fig. 5 where the entrance from square 9 to 10 is blocked by
a visitor). In this case, the robot, rather than pushing the visitor aside, would
simply change its trajectory and move toward square 6, then 1, and then resume
a tour of the museum. We will assume that the robot can only enter the main
showroom via square 9, the other access being reserved exclusively for exiting
the main show room.

One non-desirable situation is the one where visitors obstruct the entrance
to the main showroom permanently. In this case, the robot would never access
the room, hence never offering surveillance in that room. However, this situation
is quite unlikely. Rather, a more realistic scenario would be that there is some
probability, say p = 0.2, that the entrance is blocked at any given time. More
complex models for uncertainty such as a Poisson process could be used to
model the arrivals of visitors at the entrance door [3]. Given the dynamics of our
system and the specification of the behavioural constraints, we can associate the
behaviour of our system with the stochastic transition system shown in Fig. 6(b).



(a) (b)

Fig. 6. Robotic Surveillance System: (a) Average-timed V-automata Behavioural Con-
straint; (b) Stochastic State Transition System of the Behaviour '

The corresponding state space consists solely of the square on which the
robot is located: S = {loc}. The evolution kernel PP is very simple as most
transitions are deterministic, except for the one leading to the main showroom,
which is uncertain due to the possible presence of visitors blocking the entry.
Nevertheless, the transition probability values are depicted beside the head of
the arrows in Fig. 6(b).

The verification rules presented previously require that we find invariants
values, Lyapunov functions and timing functions:

I: To find the set of invariants for the average-timed V-automata in Fig. 4(d),
let us define I : loc # 10 and I : loc = 10. It is easy to see that Ip and
Ip are invariants for states B and R, respectively. Note that § = @ in our
example. In Fig. 6(b), bad states B are denoted by white nodes while the
only recurrent state R is denoted by a filled node.

S: Given the invariants constructed above, we define a set of Lyapunov functions
p; whose value is the average number of transitions for reaching state R. It
is easy to show that these Lyapunov functions satisfy the Stability rules.

AT: Given the invariants and the Lyapunov functions, we need to choose a set
of local timing functions «. It is easy to show that a set of functions which
corresponds to the average time to reach the recurrent state R satisfies the
average-timeliness rules. The values of v are shown for each state as the
number in the state nodes in Fig. 6(b).

Therefore, using the rules, we have shown that the average time for the surveil-
lance robot to perform a round and come back to the main showroom is 30 < 30
minutes, which satisfies the behavioural constraint. Note that this is not an ab-
solute bound on the value. The completion time of an instance of the request
may exceed 30 minutes. With our method, we can additionally obtain proba-
bility bounds on possible times of service. For our surveillance example we can
show that the probability that the time for the mobile robot to return to main
showroom be greater than 120 minutes is less than or equal to 0.075. This pro-
vides the museum director valuable additional knowledge about the safety of the
surveillance system.



7 Conclusion

In this paper, we have provided the formal syntax and semantics for a useful
framework, PCN, for constraint-based modeling of the dynamics and behaviours
of systems exhibiting uncertainty. We show that the semantics lead to Markov
processes, and in many cases to stable probabilities on the state space. The PCN
framework abstracts the notions of time and domains for a general approach
while allowing the user to model uncertainty of several different types. To allow
the expression of constraints on both the dynamics and behaviours of systems,
we provide two modeling languages: PCN and average-timed V-automata. PCN
is based on a data-flow model and provides a graphical and modular representa-
tion which simplifies the task of modeling complex uncertain dynamical systems.
Average-timed V-automata are non-deterministic automata augmented with av-
erage time bounds. Finally, we provide a set of rules, which in some cases can
be fully automated, to verify the satisfaction of global behavioural constraints.
We demonstrate the use of the method on a simple hybrid robotic system for
surveillance.

Future directions for this work include the modification of our behavioural
constraint satisfaction methodology to allow for probabilistic satisfaction, that is,
satisfying the constraints not on average but with a given probability threshold.
In addition, we are also investigating the use of the stochastic Lyapunov stability
method for performing control synthesis for PCN models.
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