
A Multi-level Constraint-based Controller for

the Dynamo98 Robot Soccer Team

Yu Zhang and Alan K. Mackworth

Laboratory for Computational Intelligence, Department of Computer Science,

University of British Columbia, Vancouver B.C. V6T 1Z4, Canada,

yzhang@cs.ubc.ca, mack@cs.ubc.ca

Abstract. Constraint Nets provide a semantic model for modeling hy-

brid dynamic systems. Controllers are embedded constraint solvers that

solve constraints in real-time. A controller for our new softbot soccer

team, UBC Dynamo98, has been modeled in Constraint Nets, and im-

plemented in Java, using the Java Beans architecture. An evolutionary

algorithm is designed and implemented to adjust the weights of con-

straints in the controller. The paper demonstrates that the formal Con-

straint Net approach is a practical tool for designing and implementing

controllers for robots in multi-agent real-time environments.

1 Background and Introduction

Soccer as a task domain is su�ciently rich to support research integrating many

branches of robotics and AI [3, 6]. To satisfy the need for a common environment,

the Soccer Server was developed by Noda Itsuki [1] to make it possible to compare

various algorithms for multi-agent systems. Because the physical abilities of the

players are all identical in the server, individual and team strategies are the

focus of comparison. The Soccer Server is used by many researchers and has

been chosen as the o�cial simulator for the RoboCup Simulation League [2].

Constraint Nets (CN), a semantic model for hybrid dynamic systems, can be

used to develop a robotic system, analyze its behavior and understand its un-

derlying physics [8{10]. CN is an abstraction and generalization of dataow net-

works. Any (causal) system with discrete/continuous time, discrete/continuous

(state) variables, and asynchronous/synchronous event structures can be mod-

eled. Furthermore, a system can be modeled hierarchically using aggregation

operators; the dynamics of the environment as well as the dynamics of the plant

and the controller can be modeled individually and then integrated [7]. A con-

troller for our new softbot soccer team, UBC Dynamo98, has been developed

using CN.

The rest of the paper describes CN and how we use it to model and build the

controller for our soccer-playing softbot UBC Dynamo98. Section 2 introduces

the CN model of the controller for our soccer-playing softbot. Section 3 discusses

constraint-based control and shows how the controller satis�es the constraints

M. Asada and H. Kitano (Eds.): RoboCup-98, LNAI 1604, pp. 402-409, 1999.
 c Springer-Verlag Heidelberg Berlin 1999

in the soccer domain. Section 4 shows our team's performance in RoboCup98.

Section 5 concludes the paper.

2 The CN Architecture of the Controller for a

Soccer-playing Softbot

2.1 Modeling in Constraint Nets

A constraint net consists of a �nite set of locations, a �nite set of transductions

and a �nite set of connections. Formally, a constraint net is a triple CN =

hLc; Td;Cni, where Lc is a �nite set of locations, Td is a �nite set of labels of

transductions, each with an output port and a set of input ports, Cn is a set of

connections between locations and ports. A location can be regarded as a wire,

a channel, a variable, or a memory cell. Each transduction is a causal mapping

from inputs to outputs over time, operating according to a certain reference time

or activated by external events.

Semantically, a constraint net represents a set of equations, with locations as

variables and transductions as functions. The semantics of the constraint net,

with each location denoting a trace, is the least solution of the set of equa-

tions. For trace and some other basic concepts of dynamic systems, the reader

is referred to [10].

GivenCN , a constraint net model of a dynamic system, the abstract behavior

of the system is the semantics of CN , denoted [[CN]], i.e., the set of input/output

traces satisfying the model.

A complex system is generally composed of multiple components. A module

is a constraint net with a set of locations as its interface. A constraint net can be

composed hierarchically using modular and aggregation operators on modules.

The semantics of a system can be obtained hierarchically from the semantics of

its subsystems and their connections.

A control system is modeled as a module that may be further decomposed

into a hierarchy of interactive modules. The higher levels are typically composed

of event-driven transductions and the lower levels are typically analog control

components. The bottom level sends control signals to various e�ectors, and at

the same time, senses the state of sensors. Control signals ow down and state

signals ow up. Sensing signals from the environment are distributed over levels.

Each level is a grey box that represents the causal relationship between the

inputs and the outputs. The inputs consist of the control signals from the higher

level, the sensing signals from the environment and the current states from the

lower level. The outputs consist of the control signals to the lower level and the

current states to the higher level.

2.2 The CN Architecture of the Controller

The soccer-playing softbot system is modeled as an integration of the soccer

server and the controller (Fig. 1). The soccer server provides 22 soccer-playing

403A Multi-level Constraint-based Controller for the Dynamo98 Robot Soccer Team

softbots' plants and the ball. Each softbot can be controlled by setting its throttle

and steering. When the softbot is near the ball (within 2 meters), it can use the

kick command to control the ball's movement. For the controller for one of the

soccer-playing softbots, the rest of the players on the �eld and the ball are

considered as its environment. The sensor of the controller determines the state

of the plant (position and direction) by inference from a set of landmarks it

`sees'. The rest of the controller computes the desired control inputs (throttle

and steering) and sends them to the soccer server to actuate the plant to move

around on the �eld or kick the ball.

U YX

ENVIRONMENT

PLANT 1

BALL

PLANT 2

PLANT 3 CONTROLLER 3

CONTROLLER 2
CONTROLLER 1

SOCCER SERVER

PLANT 22 CONTROLLER 22

Fig. 1. The soccer-playing softbot system

For the soccer-playing softbot, we have designed the three-level controller

shown in Fig. 2. The lowest level is the E�ector&Sensor. It receives ASCII sensor

information from the soccer server and translates it into the World model. It also

passes commands from the upper level down to the soccer server. The middle

level is the Executor. It tries to translate the action which comes from the upper

level into a sequence of commands and sends them to the lowest level. The

Executor also evaluates the situation and sends its evaluation up to the Planner.

The highest level is the Planner. It decides which action to take based on the

current situation and it may also consider the next action assuming the current

action will be correctly �nished on schedule.

The controller is composed of four CN modules. The E�ector module com-

bines with the Sensor module to form the lowest level E�ector&Sensor. The Ex-

ecutor module forms the middle level and the Planner module forms the highest

level (Fig. 2).

The controller is written in Java [4]. The Java Beans component architec-

ture [5] is used here to implement the CN modules. Events are one of the core

features of the Java Beans architecture. Conceptually, events are a mechanism

for propagating state noti�cations between a source object and one or more

target listener objects. Under the new AWT event model, an event listener ob-

ject can be registered with an event source. When the event source detects that

404 Yu Zhang and Alan L. Mackworth

Planner

Soccer Server

Effector Sensor

Executor

Level 0

Level 1

Level 2

Controller

Situ-
ationAction

World

ASCII
String

Com-
mand

Com-
mand

Fig. 2. The soccer-playing controller hierarchy

something interesting has happened it calls an appropriate method in the event

listener object.

CN model is a data-ow model; each CN module can be run concurrently on

di�erent processors to improve the speed of the controller. Since these modules

are event-driven and �xed-sample-time-driven, they are best implemented as

Java threads to improve e�ciency on a single CPU too. If no event arrives, they

go to sleep so the CPU can deal with other softbots. In such a multi-threaded

environment where several di�erent threads may be simultaneously delivering

events and/or calling methods and/or processing event objects and/or setting

properties, special considerations are needed to make sure these beans properly

coordinate their behaviour, using wait/notify and synchronization mechanisms.

The Sensor module wakes up when new information arrives. It then processes

the ASCII information from the soccer server, updates the world model, and

sends an event to the Executor. The Sensor goes to sleep when there is no

information waiting on its socket.

The Executor module receives the event from the Sensor, then it processes

the world model and updates the situation states. These situation states tell

the Planner if it can kick the ball, if the ball is in its sight, if it is the nearest

player to the ball, if there are obstacles on its way, whether the action from the

Planner has �nished or not, and so on. Any change of situation creates an event

405A Multi-level Constraint-based Controller for the Dynamo98 Robot Soccer Team

and triggers the higher level Planner module. This part of the Executor runs in

the same thread as the Sensor module.

The main part of the Executor executes actions passed down from the Plan-

ner. It wakes up when it receives an action event from the Planner module.

It produces a sequence of commands which are supposed to achieve goals (ac-

tions) when they are performed. Some of these commands are sent to the E�ec-

tor's Movement command bu�er. Other commands are sent to the E�ector's

Sensing command bu�ers, they are Say message bu�er, Change view bu�er,

and Sense body bu�er. The Executor goes to sleep when there is no action wait-

ing for its processing.

The Planner module wakes up when triggered by a situation-changed event

from the Executor. It then produces actions and pushes them into Executor's

action bu�er and sends an event to trigger the Executor to execute actions. Then

it goes to sleep until a new event comes.

The E�ector module is a �xed-sample-time-driven module. Every 100ms, it

gets one command from each non-empty bu�er and sends them to the soccer

server.

3 Constraint-Based Control for Soccer-playing Softbot

Constraints are considered to be relations on a set of state variables; the solu-

tion set of the constraints consists of the state variable tuples that satisfy all the

constraints. The behavior of a dynamic system is constraint-based if the system

is asymptotically stable at the solution set of the given constraints, i.e., when-

ever the system diverges because of some disturbance, it will eventually return

to the set satisfying the constraints. Most robotic systems are constraint-based,

where the constraints may include physical limitations, environmental restric-

tions, and safety and goal requirements. Most learning and adaptive dynamic

systems exhibit some forms of constraint-based behaviors as well [8].

A controller is an embedded constraint solver if the controller, together with

the plant and the environment, satis�es the given constraint-based speci�cation.

In the CN framework for control synthesis, constraints are speci�ed at di�erent

levels on di�erent domains, with the higher levels more abstract and the lower

levels more plant-dependent. A control system can also be synthesized as a hi-

erarchy of interactive embedded constraint solvers. Each abstraction level solves

constraints on its state space and produces the input to the lower level. Typically

the higher levels are composed of digital/symbolic event-driven control derived

from discrete constraint methods and the lower levels embody analog control

based on continuous constraint methods [7].

The Executor module can be seen as an embedded constraint solver on its

world state space. It solves the constraint-based requirements passed down from

the higher layer Planner module. For example, if the action from the Planner

is to intercept the ball at (xb; yb; vxb; vyb), and the state variables of the robot

soccer player are (xp; yp; vxp; vyp), the constraints are xp+ vxp � t = xb+ vxb � t
and yp + vyp � t = yb + vyb � t.

406 Yu Zhang and Alan L. Mackworth

The Planner module can be seen as an embedded constraint solver on its situ-

ation state space. The ultimate constraint here is: the number of goals scored by

its team should be more than its opponent's. To satisfy this ultimate constraint,

the robot has to satisfy a series of other constraints �rst.

These constraints have their priorities. The constraints with higher priority

must be solved earlier. The constraint of knowing its position and the ball's

should be solved �rst. Then the robot will try to solve the constraints of collision

and o�side. In order to win, the robot will consider some other constraints,

such as, its own team's time in possession of the ball should be longer than its

opponent's team, the ball should be near enough to the opponent's goal, the

ball should be as far away as possible from its own goal, and the ball should be

kicked into opponent's goal instead of its own goal.

It chooses actions to satisfy the constraints at this level. When the robot

loses its own position or the ball's position for a certain amount of time, it sends

find me or find ball actions down to the Executor. When the robot senses that

it will collide with other players, it sends avoid collision action down to the

Executor. It also sends down avoid offside down to the Executor if it �nds

itself is at o�side position. The robot tries to intercept the ball if it senses that

it is nearer to the ball than its teammates, if not, it goes to a certain position

to assist its teammate's interception. If the robot gets the ball, it has to choose

where to kick it. The action here should best satisfy the constraints listed above.

The problem is that sometimes the robot can't �nd a kick direction that satisfy

all the constraints. For example, if the robot chooses the kick direction which

can make sure that its teammates can get the ball, the ball might be kicked

away from its opponent's goal and near its own goal. We solve this by combining

these constraints into one utility constraint. This combined utility constraint is

to maximize the utility function:

U (o) =
X

i

ki � Pi(o) (1)

U (o) is the action o's utility. Pi(o) is the probability of satisfying the con-

straint i when taking the action o. ki is the weight for the constraint i. The

constraint solver for this combined utility constraint will output the action o

with the highest utility. These weights can be set by hand. They can also be

tuned by a learning method, such as reinforcement learning. Also the utility

function U (a) need not be linear; it might be obtained by using neural network

learning.

We also designed a coach program using an evolutionary algorithm to adjust

the weights of constraints and other parameters in the controller. The coach

maintains a population of individuals. Each individual consists of a pair of

chromosomes. A chromosome is an array of parameters, which we call genes.

Thus, each individual has two copies of each gene as a consequence of biparental

inheritance. The sum of each pair of genes determines one parameter in the

robot. The coach selects the �ttest individuals as parents via a tournament,

performs crossover and mutation on parent's chromosomes, then passes them

407A Multi-level Constraint-based Controller for the Dynamo98 Robot Soccer Team

down to their children. We believe this kind of simulation of natural selection

will evolve a very good robot team if enough time and supervision are given.

The robots also communicate with each other to share information and to

coordinate their actions among them. For example, if one robot comes near the

ball, it says \my ball" to its teammates, the teammate who gets the message

will send back \kick here" if it is in a good receiving position or go away from

the ball if it is also near the ball.

4 Results

To compare our approach with other teams' that di�er in models, architectures

and control methods, we took part in the World RoboCup98 which was held on

July 4-8, 1998 in Paris, France. The �rst game we played against NIT Stones

98. The opponent team had an interesting strategy with many of its players

swarming around the ball and kicking the ball forward. We won this game, with

a score of 4:1. We played against Mainz Rolling Brains in the second game.

This team's strategy was to move the full-backs up in an o�side trap to push the

opponents' forwards back. But its forwards didn't try to avoid o�side positions,

they just kept their positions near the opponent's goal. This strategy was used

by many teams in World RoboCup98. We drew this game, the score was 0:0. Our

team's advantage is that our players can sense if they are at o�side positions,

and if they are, they can try to avoid that situation by moving towards their

own side. Our players' low level skills like kicking backwards were not as good

as those of the opponent's team. Lots of shots by the opponents were saved

because their forwards were o�side. Our players advanced near the opponent's

goal many times, but their shots lacked adequate strength to score. We played

against CAT-Finland in the third game. This team's original strategy was

to keep its full-backs near its own goal and its forwards near the opponent's

goal. It's a �xed position strategy and it was also used by many teams in World

RoboCup98. When CAT-Finland competed withMainz Rolling Brains, the

disadvantage of their strategy was shown in the score 0:4. When CAT-Finland

played against our team, they changed their strategy to that used by Mainz

Rolling Brains. Some teams belonging to this category also changed their

strategy later as CAT-Finland did. We lost this game; the score was 0:1. Lots

of shots byCAT-Finlandwere also saved because their forwardswere o�side. At

one point, one of our full-backs slowed down to keep energy, so CAT-Finland's

forwards got an chance to shoot. Our goalie missed the ball.

So our team won one game, drew one game and lost one game in World

RoboCup98. Although we lost the game, we don't think our team is worse than

CAT-Finland. We know there are many random factors in the soccer server

and network communication between the server and clients is not stable either.

Winning was not our purpose. Our team was successful in the World RoboCup98

from a research point of view. It shows that constraint-based control and evolu-

tionary algorithms are e�ective methods in multi-agent real-time robot design.

It also shows that Java is fast enough to compete in a traditional C++ world.

408 Yu Zhang and Alan L. Mackworth

5 Summary and Conclusions

Constraint Nets (CN), a semantic model for hybrid dynamic systems, can be used

to develop a robotic system, analyze its behavior and understand its underlying

physics.

The soccer-playing softbot system is modeled as an integration of the soccer

server and the controller. The three-level controller is composed of four modules.

The E�ector module combines with the Sensor module to form the lowest level

E�ector&Sensor. The Executor module forms the middle level and the Planner

module forms the highest level. The controller is written in Java. The Java

Beans component architecture is used here to implement the CN modules and

we use the Java event mechanism to implement communication among these CN

modules. They are implemented in Java threads to improve e�ciency.

The controller for soccer-playing softbot is synthesized as a hierarchy of in-

teractive embedded constraint solvers. Each level solves constraints on its state

space and produces the input to the lower level. We have also designed a coach

program using an evolutionary algorithm to adjust the weights of constraints

and other parameters in the controller.

In short, we have demonstrated that the CN model is a formal and practical

tool for designing and implementing, in Java, constraint-based controllers for

robots in multi-agent, real-time environments.

References

1. Noda Itsuki. Soccer Server System. Available at http: //ci.etl.go.jp/ noda /soccer

/server.html.

2. Hiroaki Kitano. Robocup. Available at http: //www.robocup.org /RoboCup /New

/index.html.

3. A. K. Mackworth. On seeing robots. In A. Basu and X. Li, editors, Computer Vision:

Systems, Theory, and Applications, pages 1{13. World Scienti�c Press, Singapore,

1993.

4. Sun Microsystems. Java. Available at http: //java.sun.com/.

5. Sun Microsystems. Java Beans. Available at http: //java.sun.com/ beans/ in-

dex.html.

6. M. Sahota and A. K. Mackworth. Can situated robots play soccer? In Proc. Arti�cial

Intelligence 94, pages 249 { 254, Ban�, Alberta, May 1994.

7. Ying Zhang and A. K. Mackworth. Synthesis of hybrid constraint-based controllers.

In P. Antsaklis, W. Kohn, A. Nerode, and S. Sastry, editors, Hybrid Systems II,

Lecture Notes in Computer Science 999, pages 552 { 567. Springer Verlag, 1995.

8. Ying Zhang and A. K. Mackworth. Constraint Programming in Constraint Nets.

Principles and Practice of Constraint Programming, MIT Press, 1995, p.49{68.

9. Ying Zhang and A. K. Mackworth. Constraint Nets: A Semantic Model for Hybrid

Dynamic Systems. Journal of Theoretical Computer Science, Vol. 138, No. 1, 1995,

p.211{239, Special Issue on Hybrid Systems.

10. Ying Zhang. A foundation for the design and analysis of robotic systems and

behaviors. Technical Report 94-26, Department of Computer Science, University of

British Columbia, 1994. Ph.D. thesis.

409A Multi-level Constraint-based Controller for the Dynamo98 Robot Soccer Team

