
Multi-Robot Repeated Boundary
Coverage Under Uncertainty

Pooyan Fazli, Alireza Davoodi, Alan K. Mackworth
Department of Computer Science
University of British Columbia

Vancouver, BC, Canada V6T 1Z4
Email: {pooyanf,davoodi,mack}@cs.ubc.ca

Abstract—This paper describes work in progress addressing
the problem of repeated coverage by a team of robots of the
boundaries of both a target area and the obstacles inside it.
Events are generated randomly on the boundaries and may have
different importance weights. In addition, boundaries of the area
and the obstacles are heterogeneous, in that events might appear
with varying probabilities on different parts of the boundary.
The goal is to maximize the reward by detecting the maximum
number of events, weighted by their importance, in minimum
time. The reward a robot receives for detecting an event depends
on how early the event is detected. To this end, a Markov Decision
Process (MDP) formalism is used to model the coverage problem
and capture the uncertainties in the scenario. The performance
of the algorithm proposed to solve the MDP will be compared
with two static algorithms on the basis of the total reward gained
during a repeated boundary coverage mission.

I. INTRODUCTION

Multi-Robot Boundary Coverage is a challenging problem
with different applications such as surveillance and monitor-
ing, cleaning, intrusion detection, facility inspection, and so
on. In this task, a team of robots cooperatively visits (observes
or sweeps) the boundaries of a target area and the obstacles
inside it. The goal is to build efficient paths for all the robots
which jointly ensure that every point on the boundaries is
visited by at least one of the robots. The Boundary Coverage
is a variant of the Area Coverage [3], [8]–[10] problem, in
that, the aim is to cover just the boundaries, not the entire
area.

There are two classes of boundary coverage problems:

• Single Coverage: The aim is to cover the boundary
until all its accessible points of interests have
been visited at least once, while minimizing
the time, the distance traversed by the robots,
or the number of visits to the points [4], [19].

• Repeated Coverage: The goal is to cover all the acces-
sible points of interest on the boundary repeatedly over
time, while maximizing the frequency of visiting points
on the boundary, minimizing the weighted average event
detection time, minimizing the sum/maximum length of

the paths/tours generated for the robots, or balancing
the workload distribution among the robots. Visiting the
points on the boundary can be performed with uniform
or non-uniform frequency, depending on the priorities of
different parts of the boundary1 [1], [2].

II. PROBLEM DEFINITION AND PRELIMINARIES

In this paper, we address the Multi-Robot Repeated
Boundary Coverage problem with the following specifications:

• The environment is a simple polygon including rectilinear
or non-rectilinear polygonal obstacles.

• The 2D map of the environment is known a priori.
• An arbitrary number of homogeneous robots is involved

in the coverage mission. The robots are assumed to move
at the same unit speed.

• The robots are equipped with a panoramic visual sensor
with limited visual range. The sensors are ideal and
without noise, that is, they guarantee the detection of
an event occurring within the visual range of the robot.

• The events are generated randomly and might occur on
any part of the boundaries.

• The events can have different types, and each
event type has its own importance weight.

Definition 1. Event Type: m types of events
might happen in the environment which are
of interest to the robots. The set of all event
types is represented by E = {E1,E2, ...,Em}.
Similarly, an event of type Ei is denoted as ei.

Definition 2. Event Importance: A degree of importance
is defined for each event type E. The importance of
an event type E is given by weight(E). It is assumed
that weight(E) ∈ (0,1] such that 1 is the highest degree
of importance. The importance can also be referred
to as the priority, meaning that an event of higher

1In this paper, we use the terms ‘Coverage’ and ‘Repeated Coverage’
interchangeably.

(a) Original Map (b) Trapezoidation (c) Area Guards

(d) Boundary Guards (e) Visibility Graph (f) Boundary Graph

Fig. 1: Sequential Stages of Building the Boundary Graph

importance should have higher priority of being detected.

• The reward a robot receives for detecting an event
depends on how early the event is detected. At each time
step after the event occurrence, the detection reward of
the event is decreased by a multiplicative discount factor.

• The boundaries are heterogeneous, in that,
events of one type might appear with varying
probabilities on different parts of the boundary.

Two types of approaches are proposed to handle the prob-
lem: (1) Uninformed Boundary Coverage and (2) Informed
Boundary Coverage algorithms.

Uninformed Boundary Coverage, consisting of two static
algorithms, ignores the uncertainties in the coverage mission.
In this approach, the robots presume that the events are all
of the same importance value and the boundaries are homo-
geneous. On the other hand, Informed Boundary Coverage
is primarily based on the Markov Decision Process (MDP)
formalism in which the robots try to cooperatively maximize
the reward function by detecting the maximum number of

events, weighted by their importance values, in minimum time.
To this end, the robots learn the expected reward of visiting
a state in the target area at each time step, and based on that,
they plan to select the best possible path to visit the most
promising state at the time in the target area.

The performance of the proposed approaches will be eval-
uated on the basis of the total reward gained during a finite
repeated boundary coverage mission.

III. ENVIRONMENT MODELING

The Uninformed Boundary Coverage and Informed Bound-
ary Coverage algorithms both require that a roadmap is built
within the target area, capturing the connectivity of the free
space close to the boundaries while taking into account the
limited visual range of the robots. To this end, a graph-based
representation called the Boundary Graph is constructed on the
target area. The Boundary Graph provides a roadmap for the
robots, enabling them to move throughout the environment to
monitor the boundaries of the area and the obstacles. In order
to construct the roadmap, a sufficient number of control points,
called the boundary guards, are placed within the environment,
considering the limited visual range of the robots.

A. Locating Guards with Limited Visual Range

In our problem definition, we presume the robots are
equipped with panoramic cameras with a 360 ◦ field of view.
However, the cameras’ visual range is limited. The proposed
approach initially locates a set of area guards required to
visually cover an entire area. The term guard is taken from the
Art Gallery Problem [17]. These static area guards are control
points that can jointly cover the whole environment while
satisfying the limited visual range constraint of the robots.
In other words, if we had as many robots as the number of
guards, and each robot was stationed on a guard, the entire
area would be covered visually by the robots.

To locate the guards, the algorithm decomposes the initial
target area, a 2D simple polygon with static obstacles, into a
collection of convex polygons using a Trapezoidal Decomposi-
tion method [20], and then applies a post-processing approach
to eliminate as many trapezoids as possible (Figure 1b). The
post-processing step is more effective in cluttered areas, and
since the number of guards located by the algorithm is directly
correlated to the number of trapezoids, fewer trapezoids will
result in fewer guards.

At the next step, a divide-and-conquer method similar to
that in [12] is used to successively subdivide each of the
resulting convex polygons (trapezoids) into smaller convex
sub-polygons until each of them can be covered visually by
one guard (Figure 1c).

Since, in the current problem, we are interested in moni-
toring just the boundaries, not all the computed area guards
are necessary. So, all the guards whose visual area does not
intersect the boundaries are removed from the set of area
guards. Figure 1d illustrates the boundary guards computed
on the sample environment.

B. Building the Graph

Once the boundary guards are located in the target area,
a graph called the Visibility Graph (VG) [13] is constructed
on the guards and the corners of the obstacles (Figure 1e). In
order to build the Visibility Graph, any two points of interest
(a boundary guard or an obstacle corner) which are mutually
visible are connected by an edge. Two points are mutually
visible if the edge connecting them does not intersect any
obstacles in the environment.

C. Boundary Graph

Algorithm 1 describes the steps of the construction of the
Boundary Graph on a given environment. The input of the
algorithm is the Visibility Graph made on the map of the area.

The method starts by using the Floyd-Warshall algorithm
to find the set MD =

{
(ci j,vi,v j)|vi,v j ∈Vvis

}
of minimum

distances, ci j, and the set SP =
{
(ri j,vi,v j)|vi,v j ∈Vvis

}
of

shortest paths, ri j, between any pair of vertices vi and v j of
the input graph (line 4).

The minimum value of all the minimum distances in MD
is then selected provided that both the endpoints of the

Algorithm 1: Boundary Graph
Input:
Graph Gvis(Vvis,Evis), where Vvis = SG

⋃
P /* VG */

SG = {g1,g2,,gm} /* Boundary Guards */
P = {p1, p2,, pn} /* Endpoints of Obstacles */

Output:
Gboundary(Vboundary,Eboundary) where Vboundary = SG

⋃
P̃,

P̃⊂ P /* Boundary Graph */

1 begin
2 Vboundary←− φ

3 Eboundary←− φ

4 (MD,SP)←− FloydWarshall(Gvis)
5 (i, j)←− argmin

(i, j)
{ci j|(ci j,vi,v j) ∈MD & vi,v j ∈ SG}

6 ri j←− GetCorrespondingShortestPath(i, j)
7 Gboundary(Vboundary,Eboundary)←−

InitialBoundaryGraph(ri j)
8 while ¬ all the guards added do
9 g←− FindClosestGuardTo(Gboundary)

10 Expand(Gboundary,g)
11 end
12 return Gboundary(Vboundary,Eboundary)
13 end

corresponding shortest path in SP belong to the set of boundary
guards, SG, computed in section III-A (line 5). The chosen
path (line 6), including all its nodes and edges, forms the
initial component of the Boundary Graph (line 7).

Next, among all the guards that have not yet been added to
the graph, the algorithm finds the closest guard to the current
component (line 9), merging the corresponding shortest path
with it (line 10). Following the same process, the algorithm
keeps expanding the Boundary Graph until there are no more
boundary guards to be added to the graph (lines 8-11). The
resultant graph is the final Boundary Graph (line 12). The
nodes of the Boundary Graph includes all the boundary
guards (SG) and the subset of the obstacles’ nodes (P̃ ⊂ P),
collectively referred to as Points of Interests (PoI = SG

⋃
P̃).

Traversing the Boundary Graph guarantees complete coverage
of the boundaries given the limited visual range of the robots.

Figure 1f illustrates the Boundary Graph built on the
Visibility Graph of figure 1e.

D. Boundary Segmentation

The boundaries of the area and the obstacles are divided into
identical length segments, each of which is small enough to
be completely visible by a guard, and such that the probability
of event occurrence is uniform along the segment.

Definition 3. Visual Area of a Guard (VAg): The visual area
of a guard, VAg, is the set of all the segments which are visible

to the guard g, i.e. VAg =
{

seg1
g,seg2

g, ..., .segp
g
}

.

Definition 4. Shared Segment: A shared segment is common
to the visual area of two or more guards.

Assumption 1. The events occurring within the visual area
of a guard are detected only when the robot is located on the
guard.

IV. UNINFORMED BOUNDARY COVERAGE

Uninformed Boundary Coverage ignores the presence of
uncertainties in the coverage mission. In this approach, the
robots assume that the events are all of the same importance
value and the boundaries are homogeneous. We suggest two
algorithms for Uninformed Boundary Coverage: (1) the Cyclic
Boundary Coverage and (2) the Cluster-based Boundary Cov-
erage algorithms.

A. Cyclic Boundary Coverage

In Cyclic Boundary Coverage (Algorithm 2), a tour is
constructed on the Boundary Graph using the Chained Lin-
Kernighan algorithm.

Chained Lin-Kernighan (CLK), a modification of the Lin-
Kernighan algorithm [14], is generally considered to be one
of the best heuristic methods for generating optimal or near-
optimal solutions for the Euclidean Traveling Salesman Prob-
lem [6]. Given the distance between each pair of a finite
number of nodes in a complete graph, the Travelling Salesman
Problem (TSP) is to find the shortest tour passing through all
the nodes exactly once and returning to the starting node [5].

This Lin-Kernighan algorithm, a local search algorithm
[11], is a generalization of the k-opt algorithm [7]. A k-opt
algorithm explores all the TSP tours which can be obtained
by removing k edges from the original tour and adding k
different edges, such that the resulting tour is feasible. In
order to improve the efficiency, Lin and Kernighan introduce
a variable k-opt algorithm, which adaptively decides at each
iteration what value of k to use [14]. Given the computation
time limit, the process is repeated by generating new initial
tours and applying the Lin-Kernighan algorithm to possibly
find a tour shorter than the best one thus far. Martin et. al
[15], [16] suggest that instead of repeatedly starting from new
tours, which is inefficient, the alternative is to perturb the Lin-
Kernighan tour, and then reapply the algorithm. If this leads
to a shorter tour, then discard the old tour, and start with the
new one. Otherwise, continue with the old tour and perturb it
again.

The input of the Chained Lin-Kernighan algorithm needs
to be a complete graph. To this end, the Boundary Graph
is made complete (line 2) by adding edges from the original
VG graph, when there does not exist an edge between two
nodes in the Boundary Graph. If there is not an edge between
the two nodes in the original graph either, a virtual edge is
added to the Boundary Graph to connect the two nodes. The
weights of these edges are set to the length of the shortest path

Algorithm 2: Cyclic Boundary Coverage
Input:
Gvis(Vvis,Evis), where Vvis = SG

⋃
P /* VG */

SG = {g1,g2,,gm} /* Boundary Guards */
P = {p1, p2,, pn} /* Endpoints of Obstacles */
Gboundary(Vboundary,Eboundary) : the Boundary Graph
|R|: Number of Robots

Output:
A tour, dTour, distributed among the robots, passing
through all the nodes (Points of Interests) of the
Boundary Graph

1 begin
2 CGBoundary←−CompleteGraph(Gboundary,Gvis)
3 tour←− BuildTour(CGBoundary,CLK)
4 dTour←− DistributeRobots(tour, |R|)
5 return dTour
6 end

between the two nodes in the original VG graph. The Chained
Lin-Kernighan algorithm then finds the shortest tour passing
through all the nodes of the Boundary graph, returning to the
start node (line 3). The robots are then distributed equidistantly
along the tour (line 4) and move repeatedly around it in the
same direction.

B. Cluster-based Boundary Coverage

The Cluster-based Boundary Coverage algorithm (Algo-
rithm 3), uses the k-Means clustering algorithm to divide the
guards into |R| disjoint clusters. The initial centroids are found
as follows: the endpoints of the longest path in the original
VG graph are selected as the starting points of the first two
centroids, such that the endpoints belong to the set of guards,
SG. For the next centroid, a guard in SG is selected such that
it maximizes the minimum distance from the starting points
of the first two centroids. Similarly, for the next centroid, a
guard is selected that maximizes the minimum distance from
the starting points of the other three centroids. This continues
until |R| initial centroids are found for the |R| clusters of the
guards. In the next iterations, since the computed centroids
may not lie on the nodes of the Boundary Graph, they are
matched to the closest guard in the environment (line 2).

Distance from the centroids is determined based on the
distance in the original VG graph rather than the Euclidean
distance. Having built the |R| clusters on the guards (line
3), we connect each pair of guards in each cluster if they
have a corresponding edge in the Boundary Graph (line 5).
Thereafter, we do a connectivity test on all the clusters,
meaning that each pair of guards in each cluster should be
connected through a path. For this purpose, we first find the
disconnected components within the cluster (line 6) and then

Algorithm 3: Cluster-based Boundary Coverage
Input:
Gvis(Vvis,Evis), where Vvis = SG

⋃
P /* VG */

SG = {g1,g2,,gm} /* Boundary Guards */
P = {p1, p2,, pn} /* Endpoints of Obstacles */
Gboundary(Vboundary,Eboundary) : the Boundary Graph
|R|: Number of Robots

Output:
A set of |R| tours, Tours =

{
T1,T2, . . . ,T|R|

}
where

|R|⋃
i=1

VTi = SG, SG is the set of guards of the Boundary

Graph and VTi is the set of guards of the tour Ti

1 begin
2 initialCentroids←− FindInitialCentroids(Gvis, |R|)
3 Tours←− kMeans(Gvis, |R| , initialCentroids)
4 foreach Ti ∈ Tours do
5 ConnectGuards(Ti,Gboundary)
6 disconnectedComponents←−

FindDisconnectedComponents(Ti)
7 MST ←−

BuildMST (Gvis,disconnectedComponents)
8 Ti←− Ti +MST
9 Ti←− BuildTour(Ti,CLK)

10 end
11 return Tours
12 end

compute a Minimum Spanning Tree on them based on the
edges of the original VG graph (line 7). Finally, we add the
Minimum Spanning Tree’s corresponding edges and nodes to
the cluster (line 8), and the Chained Lin-Kernighan algorithm
is used to build a tour on it (line 9). The tour is then assigned
to a robot, and the robot repeatedly traverses the tour.

V. INFORMED BOUNDARY COVERAGE

Informed Boundary Coverage is primarily based on the
Markov Decision Process (MDP) formalism in which the
robots try to cooperatively maximize the reward by detect-
ing the maximum number of events in the minimum time,
considering the importance value of the events. To this end,
the robots learn the expected reward of visiting a state in the
target area at each time step, and based on that, they plan to
select the best possible path to visit the most promising state
at the time in the area.

The algorithm starts by decomposing the Boundary Graph
into as many clusters as there are robots in the environment
using the k-Means algorithm, similar to the process discussed
before in Section IV-B. Each robot then traverses the cluster
assigned to it according to the policy being learned. In this
approach, the robots do not need to communicate about every

one of the guards they visit. They only update each other
about the guards with one or more shared segments, and those
shared segments belong to more than one robot. When a robot,
Ri, visits a guard having a segment in common with another
guard assigned to robot R j, it notifies R j about the visit and
the events detected in the shared segment.

Definition 5. Time of Last Visit (TLV): Each robot keeps track
of the time of the last visit to its guards, and to the guards of
the other robots with some segments shared with one of the
robot’s guards. If {g1,g2, ...,gp} is the set of guards monitored
by a robot, then for each gi, T LVgi represents the last time the
guard gi was visited.

Assumption 2. The robots are aware of the types of the events
occurring on the boundaries and their importance weights.

The Multi-Robot Repeated Boundary Coverage
problem is formulated as a tuple (S,A,ST,ST R) where:

• S = SG×T LV is the set of states, where SG is the set of
guards and T LV is the set of last visits to the guards.

• A is the set of actions available for a robot in each state.
An action is defined as moving from one guard to another.
So in each state, the robot might have one or more actions
available.

• ST is the state transition function which is deterministic,
that is, it guarantees reaching the target state chosen by
the robot when the action is performed.

• ST R is the state reward, which is equal to the sum of
the discounted importance of the detected events at the
state. If t(e) is the time interval between starting event
e and the detection time, the STR is formulated as:

ST R(g) = ∑segg∈VAg ∑Ei∈E ∑ei∈Ei weight(ei)× γt(ei)

Once a robot arrives at a guard g, it can detect all the
events occurring within the VAg, the visual area of the
guard g. If a robot were aware of the starting time of
the events, it would receive the STR. It is assumed that
the reward a robot receives for an event depends on how
early the event is detected. At each time step after the
event occurrence, the detection reward of the event is
multiplied by a discount factor of γ = 0.95.

Definition 6. Policy: A policy, π : S → A at each state
determines what action should be performed next by the robot.

A. Learning

If the robots had knowledge of the probability of occurrence
of the different events in each state as well as the starting time
of the events, they would be able to utilize the STR to find
a policy which maximizes the total reward of the boundary
coverage mission. But since this information is not available
to the robots, the STR is estimated by the sum of the Expected

Segment Reward (ESR) of the segments comprising the state:

ST R(g)' ∑segg∈VAg(ESR(segg, t))

Expected Segment Reward (ESR) is defined to represent
the expected reward of segg at time t. The ESR can be
calculated using the sum of the discounted importance of
the events occurred between the last visit, T LVg, and the
current visit time, t, to the segment’s corresponding guard, g:

ESR(segg, t) = ∑Ei∈E ∑ei∈Ei(1+ γ1 + γ2 + ...+ γt−T LVg)×
PSE(ei,segg)×weight(Ei).

where γ is the reward discount factor. We assume that for
every time step after an event occurs without being detected,
the event detection reward is discounted by γ. Furthermore,
the Probability of Segment Event (PSE) is defined for each
event type Ei ∈ E and each segment segg, g ∈ SG, to indicate
the probability of events of type Ei occurring within the segg

at each time step.
The Expected Segment Reward can be reformulated as

below:

ESR(segg, t) = (1+ γ1 + γ2 + ...+ γt−T LVg)×
∑Ei∈E ∑ei∈Ei PSE(ei,segg)×weight(Ei)

In the above formula, ∑Ei∈E ∑ei∈Ei PSE(ei,segg)×weight(Ei)
is called the Potential Segment Reward (PSR), indicating the
potential reward of all the events at segg, per time step, and
is represented by PSR(segg). If a robot knows the PSR of the
events at each segment of the visual area of the guards, it can
calculate the ESR for any arbitrary time t.

To this end, a learning procedure for estimating the PSR
gradually updates its initial value. In the initialization step,
we assume that all the events have the same probability
of occurrence at each segment. Therefore, all the PSRs are
initialized to 1. When a robot arrives at a guard g, it can
detect whether an event has occurred at any of the segments
belonging to VAg. If there is at least one event occurring in the
segg, the PSR(segg) is updated using the following formula:

PSR(segg) = (1−α)×PSR(segg)+α× ∑Ei∈E ∑ei∈Ei (weight(ei))
t−T LVg

where α is the learning rate set to 0.9 and t is the time of
the visit to g. This formula gives more weight to the new
information than that given to the past information. The robot
performs the updating process for all the event types and all
the segments of the guards.

On the contrary, if no event occurs during the
time period between the last visit, TLVg, and the

current visit time, t, the PSR is updated to reflect
the new fact. To this end, the current value of the
PSR is multiplied by the discount factor of β = 0.9:

PSR(segg) = PSR(segg)×β

This helps to gradually discard the effects of the segments in
which events occur rarely.

In summary, the PSR is updated once a robot visits a guard.
As already mentioned, the PSR represents the potential reward
of each segment per time step. Now, we can use the PSR to
calculate the ESR using the following procedure:

At the beginning, the ESRs of all the segments
are initialized to zero. Then, at each time step, if
the robot has yet to arrive at a guard, the value
of ESR is updated using the following equation:

ESR(segg, t) = γ×ESR(segg, t−1)+PSR(segg), segg ∈
VAg and g ∈ SG

If the robot arrives at g, it detects all the events and conse-
quently:

∀segg ∈VAg, ESR(segg, t) = 0.

This updating process continues during the boundary coverage
operation.

B. Planning

Once a robot arrives at a guard and detects all the events
which might have occurred at the segments of the guard, it
selects the next action to perform. As already mentioned,
the action in the boundary coverage operation is defined as
moving from one guard to another. At each state, the robot
considers all the shortest paths to all the other guards it can
move to. Note that, since we divide the Boundary Graph
among the robots, each robot can only move to the guards
assigned to it. For each path, path(gi,g j), where gi is the
current guard and g j is the target guard, Path Reward (PR) is
defined as the reward the robot receives when moving from
the guard gi to the guard g j. The path from gi to g j includes
zero or more intermediate guards and can be represented as:

path(gi,g j) = [gi,gi+1,gi+2, ...,g j−1,g j].

Given the speed of the robot, the arrival time at each of the
guards on the path can be estimated. Hence, the robot can
have an estimate of the ESR(segg, tg) for each segment of the
guard g, in which tg is the arrival time to the guard g. For
such a path, the PR is calculated as below:

PR(path(gi,g j)) = ∑g∈path(gi,g j) ∑segg∈VAg ESR(segg, tg).

When calculating the PR, the robot should take into account
the visits to the shared segment by the other robots. Moreover,
as long as a robot does not receive a message from another
robot regarding a visit to a shared segment, the robot assumes
that the shared segment has not already been visited and will
not be visited by any other robot.

Next, for each path, the Average Path Reward
(APR) is calculated using the following formula:

APR(path(gi,g j)) = PR(path(gi,g j))
tg j−T LVgi

where g j is the target guard on the path, and tg j is the arrival
time to the guard g j. The robot will select a path with the
maximum Average Path Reward to traverse next.

VI. PROPOSED EXPERIMENTS

We have developed a simulator to test the algorithms in
different scenarios. The simulator can support different num-
bers of robots in the workspace, different visual ranges for
the robots, and varying degrees of clutter in the environment.
A random map generator was also developed as a part of the
simulator which extends a library [18] to build rectilinear or
non-rectilinear polygons with free form polygonal obstacles
within the space. Maps can have different numbers of nodes
and percentages of clutter.

We aim to compare the Informed Boundary Coverage with
the two variants of the Uninformed Boundary Coverage algo-
rithm in terms of the total reward received by the team for
detecting the events. To this end, we consider three types of
environments in the experiments: sparse (0− 25% cluttered),
semi-cluttered (25−50% cluttered), cluttered (50−75% clut-
tered). Ten different maps are used in the experiments for
each of the three environment types (30 in total). The clutter
percentage of an environment is the ratio of the area of the
obstacles to the whole target area (i.e. obstacles + free space).
The experiments are conducted using 1,2,3, . . . ,15 robots. 5
different event types are also used in the experiments. Finally,
the effect of change in the robots’ visual range on the perfor-
mance of the boundary coverage algorithms is investigated.

VII. FUTURE WORK

In the Informed Boundary Coverage approach, we consid-
ered a static decomposition of the Boundary Graph among
the robots. However, this is not always a reasonable approach,
as it is possible that all the events are generated in just one
cluster, and so just one robot will be in charge of handling
all the events. In other words, for the other robots, there are
no events occurring in their clusters. To cope with this issue,
we are investigating a dynamic approach to decompose the

Boundary Graph among the robots, considering the location
and the weight of the events occurring on the boundary.

REFERENCES

[1] N. Agmon, S. Kraus, and G. Kaminka, “Multi-robot perimeter patrol in
adversarial settings,” in Proceedings of the IEEE International Confer-
ence on Robotics and Automation, ICRA, May 2008, pp. 2339–2345.

[2] N. Agmon, S. Kraus, G. A. Kaminka, and V. Sadov, “Adversarial
uncertainty in multi-robot patrol,” in Proceedings of the International
Joint Conference on Artificial Intelligence, IJCAI, 2009, pp. 1811–1817.

[3] A. Almeida, G. Ramalho, H. Santana, P. A. Tedesco, T. Menezes, V. Cor-
ruble, and Y. Chevaleyre, “Recent advances on multi-agent patrolling,”
in Proceedings of the Brazilian Symposium on Artificial Intelligence,
SBIA, 2004, pp. 474–483.

[4] P. Amstutz, N. Correll, and A. Martinoli, “Distributed boundary coverage
with a team of networked miniature robots using a robust market-based
algorithm,” Annals Mathematics Artificial Intelligence, vol. 52, no. 2-4,
pp. 307–333, 2008.

[5] D. Applegate, R. E. Bixby, V. Chvatal, and W. J. Cook, The Traveling
Salesman Problem: A Computational Study. Princeton, NJ, USA:
Princeton University Press, 2007.

[6] D. Applegate, W. Cook, and A. Rohe, “Chained Lin-Kernighan for large
traveling salesman problems,” INFORMS Journal on Computing, vol. 15,
pp. 82–92, January 2003.

[7] B. Chandra, H. Karloff, and C. Tovey, “New results on the old k-
opt algorithm for the traveling salesman problem,” SIAM Journal on
Computing, vol. 28, pp. 1998–2029, August 1999.

[8] H. Choset, “Coverage for robotics – a survey of recent results,” Annals
of Mathematics and Artificial Intelligence, vol. 31, no. 1-4, pp. 113–126,
2001.

[9] P. Fazli, A. Davoodi, P. Pasquier, and A. K. Mackworth, “Multi-robot
area coverage with limited visibility,” in Proceedings of The Inter-
national Conference on Autonomous Agents and Multiagent Systems,
AAMAS, 2010, pp. 1501–1502.

[10] ——, “Complete and robust cooperative robot area coverage with limited
range,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, IROS, 2010, pp. 5577–5582.

[11] H. Hoos and T. Sttzle, Stochastic Local Search: Foundations & Appli-
cations. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.,
2004.

[12] G. D. Kazazakis and A. A. Argyros, “Fast positioning of limited
visibility guards for inspection of 2D workspaces,” in Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS, 2002, pp. 2843–2848.

[13] J.-C. Latombe, Robot Motion Planning. Norwell, MA, USA: Kluwer
Academic Publishers, 1991.

[14] S. Lin and B. Kernighan, “An effective heuristic algorithm for the
traveling-salesman problem,” Operations Research, vol. 21, no. 2, pp.
498–516, 1973.

[15] O. Martin, S. Otto, and E. Felten, “Large-step markov chains for the
traveling salesman problem,” Complex Systems, vol. 5, no. 3, pp. 299–
326, 1991.

[16] O. Martin, S. W. Otto, and E. W. Felten, “Large-step markov chains
for the TSP incorporating local search heuristics,” Operations Research
Letters, vol. 11, pp. 219–224, 1992.

[17] J. O’Rourke, Art gallery theorems and algorithms. New York, NY,
USA: Oxford University Press, Inc., 1987.

[18] A. P. Tomás and A. L. Bajuelos, “Quadratic-time linear-space algorithms
for generating orthogonal polygons with a given number of vertices,” in
Proceedings of the International Conference on Computational Science
and Its Applications, ICCSA, 2004, pp. 117–126.

[19] K. Williams and J. Burdick, “Multi-robot boundary coverage with plan
revision,” in Proceedings of the IEEE International Conference on
Robotics and Automation, ICRA, 2006, pp. 1716–1723.

[20] B. Zalik and G. J. Clapworthy, “A universal trapezoidation algorithm
for planar polygons,” Computers & Graphics, vol. 23, no. 3, pp. 353 –
363, 1999.

