Clspace: tools for learning computational
intelligence

David Poole and Alan Mackworth*
April 26, 2001

Abstract

This paper describes Clspace: tools for learning computational intelli-
gence, a collection of interactive tools for learning AI, and how it fits in with
other such tools. CIspace can be found at
http://www.cs.ubc.ca/labs/lci/CIspace/

ClIspace has been developed by a team consisting of Kevin O’Neill, Shin-
jiro Sueda, Leslie Tung, Audrey Yap, Michael Pavlin, Michael Cline, Cristina
Conati, Peter Gomiak, Holger Hoos, Alan Mackworth, and David Poole.

1 Introduction

Clspace is a collection of tools designed to help people learn AI concepts. It is
intended that there are exploratory tools as well as interactive online tutorials. It be-
gan as an offshoot of our textbook Computational Intelligence: a logical approach
[Poole, Mackworth and Goebel, 1998]. We soon discovered that there were con-
cepts that are not easy to describe in a static medium like a book or even in a lecture
with traditional audio-visual aids. We needed ways to show the dynamics of rea-
soning and to make the basic concepts simple and easy to understand. Clspace
should be seen as an ongoing experiment in pedagogy.
Our main design goals are:

*Department of Computer Science, University of British Columbia, 2366
Main Mall, Vancouver, B.C., Canada V6T 174, poole@cs.ubc.ca,
mack@cs.ubc.ca, http://www.cs.ubc.ca/spider/poole
http://www.cs.ubc.ca/spider/mack



to have tools that show the dynamics of basic AI concepts, using appropriate
graphics and animation

to keep the simple ideas simple, but not necessarily simplified

to make algorithms and concepts transparent, so that students can see exactly
how they work at various levels of abstraction

to allow for multi-scale stepping execution so that the tools can be used in a
spectrum from fully autonomous to user-driven

to have load-and-go tools that require a low threshold to be useful
the graphical user interfaces should have an intuitive, unified look and feel

the tools should be modular; teaching a unified collection of ideas, rather
than a large system trying to fulfill (possibly competing) goals

the tools should each come with preloaded examples, but also allow the users
to modify them or build their own

the various tools should allow users to experiment with, and evaluate, dif-
ferent techniques for solving the same problems

the tools should be able to vehicles for studies in intelligent systems, for
example in user modelling or adaptive systems [Gorniak and Poole, 2000a;
Gorniak and Poole, 2000b]

to cater to different presentation modes and learning styles, the tools are
designed to be used

— for in-class demonstration

— as exploratory environments that students can play with

- within interactive tutorials that provide focussed instruction but still
with interaction

— with examples that work that students can modify and elaborate



2 Current Tools

We currently have the following learning tools:

* The Graph Searching applet lets the user interact with a variety of blind and
heuristic search strategies using their own graphs (drawn on a canvas) or
using a number of predefined graphs. Currently we have six search strate-
gies ranging from depth-first search to A* search; with each we allow loop
detection, multiple-path pruning, or no pruning.

* The Constraint Satisfaction via Arc Consistency applet is for solving con-
straint satisfaction problems. The user can interactively or automatically
prune domains via arc consistency or can split domains.

* The Hill Climbing applet is for solving constraint satisfaction problems using
local search techniques. This uses the same graph representation as the arc
consistency applet. It lets us have random restarts, choose heuristics to
decide which variable to select next and which value to select for it. We can
plot how the number of unsatisfied edges changes through a single run of the
hill climbing algorithm, as well as plot the run time distribution of a number
of runs.

* The Neural Network applet is for training and evaluating nenral networks.
This lets us design the network and train it on some data using backpropa-
gation. We can plot how the total error evolves for each step of the gradient
descent. Once trained we can view the parameters and evaluate the network
on new examples.

* The Belief network applet lets the user build and query belief networks
(Bayesian network) and decision networks (influence diagrams). The system
can explain how each number was computed.

* The Robot Control applet lets the user design and/or modify a hierarchical
controller for a simple mobile robot. It uses a logic programming language
to specify the controller. You can watch how the robot réaches goal loca-
tions while avoiding obstacles in a 2-D environment that can be changed
dynamically.

* CILog is a simple logic programming system. Unlike the other learning
tools, this is written in Prolog and does not run as an applet. It can be



seen as pure Prolog, with declarative debugging and expert-system facilities
(why, how, whynot, ask-the-user, etc). It also allows for negation as failure,
consistency-based diagnosis, and abduction (although the current form does
not work with both negation as failure and assumables). This lets students
try to axiomatize a real domain rather than just build tools that lets others
represent domains.

We are also expanding these to be part of a collection of interactive tutorials!.
The aim is that we have interactive tutorials for a number of topics. One of the
reasons for the interactive tutorials is that different students have different learning
styles; some student like free-form interactive environments, while others get lost
in them. Some like to be explained everything from the bottom up, but others are
too impatient. We are planning on developing various ways to teach the material so
that we can cater to various learning styles and mixed-initiative presentations (and
to eventually do research on different learning styles and how to present material
to each person in a way that is appropriate for them).

This summer (2001) we are planning on improving all of the applets, improving
the functionality and making improvements based on our experience in using them
for teaching Al courses. The biggest changes will be to the belief network applet
(expanding it to include multi-stage decision problems), and the robot control
applet (perhaps expanding it to include multiple agents).

3 Relationship to research and unified resource

We don’t believe it is possible or desirable to have a set of official Al teaching
resources where we keep the best of the resources on each topic. There are a
number of reasons for this.

Different people have different views of what is a better tool. What is a better
tool depends on the learning style of the student and what it is you actually want
to teach them.

There are reasons why we have chosen not to include some applets. Not all
ideas are equally important. Adding more features does not necessarily make a
tool better. Al is an ongoing research field. One of the main roles of research is to
prune ideas that don’t work. Unfortunately this often means claiming that some
idea that people have worked on and are still working on will not form the basis

1As a first prototype see:
http://www.cs.ubc.ca/spider/poole/ci/itute/csp/csp.html



for an intelligent system and so should not be included. We need people to make
such judgments; however they could be wrong. It is much better to have a number
of such resources, each of which gives a coherent view to the field. The diversity
of what they choose to include and omit will make the discipline stronger.

We do believe that cooperation in the form of coordination of effort and com-
paring/contrasting approaches is useful. We plan on making the underling tech-
nologies (e.g., the graph drawing toolkit) open source (e.g., under the GPL) so that
others can build upon what we have done.

We view Clspace as a vehicle for research as well as for teaching. Al is still
young, and one of the main challenges is to have a core of underlying techniques
that can be composed to form intelligence. One of our aims is to develop a core
of ideas that are modular and fit together conceptually, rather than a complicated
collection of ad hoc techniques. Keeping it simple is difficult; but we really only
want to develop complicated theories once we have exhausted the simple ones.

We are quite likely wrong in what we think the underlying techniques that are
important for intelligence. But it is important to exhaust the simple ideas first.
Having a number of competing visions of Al is healthy for the discipline.

References

Gorniak, P. and Poole, D. [2000a]. Building a stochastic dynamic model of ap-
plication use, Proc. Sixteenth Conf. on Uncertainty in Artificial Intelligence,
Stanford.

Gorniak, P. and Poole, D. [2000b]. Predicting future user actions by observing
unmodified applications, Proc. 17th National Conference on Artificial Intel-
ligence (AAAI-2000), Austin, Texas.

Poole, D., Mackworth, A. and Goebel, R. [1998]. Computational Intelligence: A
Logical Approach, Oxford University Press, New York.





