
Parallel and Distributed Algorithms
for Finite Constraint Satisfaction Problems

Ying Zhang Alan K. Mackworth"

Department of Computer Science
University of British Columbia

Vancouver, B.C. Canada

Abstract
This paper develops two new algorithms for solv-

ing a finite constraint satisfaction problem (FCSP) in
parallel. In particular, we give a parallel algorithm for
the EREW PRAM model and a distributed algorithm
for networks of interconnected processors. I f an FCSP
can be represented b y an acyclic constraint network of
sire n with width bounded b y a constant then (1) the
parallel algorithm takes O(1ogn) time using O (n) pro-
cessors and (2) there is a mapping of this problem to
a distributed computing network of poly(n) processors
which stabilizes in O(1ogn) time.

1 Introduction
A Finite Constraint Satisfaction Problem (FCSP)

can be informally described as follows. Given a set
of variables, each with a finite domain, and a set of
constraints, each specifying a relation on a subset of
the variables, find the relation on the set of all the
variables which satisfies all the given constraints si-
multaneously. FCSPs are useful abstractions of many
problems in image understanding, planning, schedul-
ing, database retrieval and truth maintenance [7] [2].

Any FCSP can be represented by a constraint net-
work. Graphically, a constraint network is a labelled
hypergraph, in which nodes represent variables and
arcs represent constraints. Formally,

Definition 1.1
Constraint Network CN E (V, dom, A, con) where

V as a set of variables, { V I , v2,. . .,UN}.
Associated with each variable vi is a finite domain
di = dom(v;).

0 A is a set o f arcs, { a l , a 2 , .. .,U,,}.

Associated with each arc Q; is a constraint

A constraint, written r(R) , can be considered as a re-
lation r on a relation scheme R g], where R is a set

con(a;).

of variables and r is a set of re I ation tuples. r(R)

'Shell Canada Fellow, Canadian Institute for Advanced
Research

Department of Computer Science
University of British Columbia

Vancouver, B. C. Canada

is a universal constraint iff r includes all the possi-
ble tuples. For X C R, the rojection of r onto X ,
written IIx(r), is {<X)lt E r f , where t (X) is tuple t
restricted to X . The join of two constraints r (R) and
l (L) , written r W I, is { t (R u L) 1 3 t r E r,tl E l , t (R -
t@), t (L) = L)}. The semijoin of r(R) and I(!!:

Let C be the set of constraints of a constraint
network CN, C = {con(ai)lai E A}. A constraint
network is a binary constraint network iff Vr(R) E
C,lRI 5 2. The hypergraph of C N is called the
scheme of C N [2], i.e. scheme(CN) = {RIr (R) E C}.
Tuple s is a solution of a constraint network CN,
i.e. s E sol(CN), iff Vr(R) E C, s (R) E r . A
constraint network C N is minimal iff Vr(R) E C,
IIR(sol(CN)) = r . Two constraint networks C N
and CN' are equivalent, written C N = CN', iff
V = VI, dom = dom', sol(CN) = sol(CN').

However, it is well known that the FCSP decision
problem is NP-complete. In order to cope with the
intractability of FCSPs, two strategies have been fol-
lowed: (2) finding efficient algorithms for preprocess-
ing, suc as arc consistency [6], path consistency [ll]
and k-consistency [4] algorithms for binary constraint
networks; and (2) exploiting the topological features
of FCSPs to guide efficient algorithms for solving these
problems [2]. In this paper, we develop an approach to
combining these two strategies. We generalize the bi-
nary arc consistency problem [6] to an arc consistency
problem on any constraint network.

The dual network DN of a constraint network CN
can be considered as an alternative representation of
an FCSP. D N is a labelled undirectional graph, in
which the nodes are the arcs of C N labelled by con-
straints, the edges represent the nonempty intersection
of two relation schemes. For an edge eij = {a; , ~ j } in
DN, with con(ai) = r i (R i) and con(aj) = r j (R j) , the
label of ejj , written L(e;j) , is RinRj. eij is arc consis-
tent iff II,qe,j)(ri) = n ~ (~ , ~) (r ,) . A dual network is arc
consistent iff all the edges are arc consistent. We say
a constraint network is arc consistent iff its dual net-
work is arc consistent. This definition reduces to the
definition given in [SI for binary constraint networks.

A join network J N of a constraint network is a
subnetwork of the dual network D N , with redundant

written r a I, IS h R(r W 1).

394
0-8186-2310-1/91$1.008 1991 IBEE

edges removed. A join network is arc consistent iff
all the edges are arc consistent. All the join networks
of a dual network are equivalent, in the sense that a
dual network is arc consistent iff any of its join net-
works is arc consistent. In other words, a constraint
network is arc consistent iff any of its join networks is
arc consistent.

Constnint Network

Tk. Dual Network A Join Network

Figure 1: A Constraint Network, the Dual Network
and a Join Network

Example 1.1 Figure 1 shows the scheme of a con-
straint network, the dual network and a join network.

Algorithm AC is a generalization of AC-3 in [8].

Algorithm AC: Enforce Arc Consistency i n CN
Input: j o i n network <A,E>;
Output: a r c cons is ten t network;
BEGIN
q := t h e s e t of a l l nodes i n A;
WHILE (q is not empty) DO
BEGIN

remove node a from q; /* con(a) = r(R) */
s := r ;
FOR (a l l (a , a l) i n E) /* con(a1) = rl(R1) */
I F s =\= r THEN
B E G I N

s := s semijoin r l ;

r := s;
FOR (a l l (a,al) i n E) DO
q := q union (ai);

END
END

END

If a binary constraint network C N is acyclic, a tree,
enforcin arc consistency in C N results in a minimal
networkf8l. Generalizing, we say a constraint network
is acyclic iff its hypergraph is acyclic, a hypertree [9]
[12]. On the other hand, it is acyclic iff its join net-
works are trees [9]. Applying algorithm AC to any of
its join trees results in a minimal constraint network.

Furthermore, for a join tree, there exist a more effi-
cient algorithm TAC for obtaining a minimal network.

Algorithm TAC: AC on Acyclic Network
Input: rooted j o i n t r e e <A,E>;
Output: minimal network;
BEGIN
q0 := t h e s e t of all nodes i n A;
/* ordered from chi ldren t o parents */
Q := Qo;
~ H I L E - (~ is not empty) DO
BEGIN
remove node a from q; /* con(a) = r(R) */
FOR (a l l (a , a l) i n E) /* con(a1) = rl(R1) */
/* a is t h e parent of a1 */
r := r semijoin r l ;

END
q: = reverse q0;
/* ordered from parents t o ch i ldren */
WHILE (q is not empty) DO
BEGIN
remove node a from q;
FOR (a l l (a1,a) i n E) DO
r := r semijoin r l ;

END
END

For an acyclic constraint network C N , let s i z e (C N) =
IAI, width(CN) = mXREscheme(CN){ IRI}. The com-
plexity of TAC is O(nl1ogl) where n is the number of
nodes in the join tree, i.e. n = s i z e (C N) and 1 is the
maximum number of tuples in any constraint, i.e. if
rn = max{ldil then 15 mwidth(CN). For a minimal
acyclic networ k , finding one solution is in O(n).

Since a constraint network C N may not be acyclic
in general, as in the example shown in Figure 1, the
solutions for C N can be computed in three steps.
First, construct a join tree whose constraint network is
equivalent to C N . Second, apply AC or TAC to the join
tree. Third, construct the solutions of the acyclic min-
imal network. The first step is called tree clustering.
A tree-clustering scheme can be obtained by applying
a tree-clustering algorithm [3 to scherne(CN) . Given

a join tree by adding universal constraints to relation
schemes which are in TC but not in C N .

In the rest of this paper, we will present a parallel
version of algorithm TAC, and a distributed version of
algorithm AC.

2 Parallel Algorithm and Complexity
Even though arc consistency for a binary constraint

network is P-complete, it is in N C for a binary acyclic
constraint network [5] , i.e. there exists an algorithm
which takes polylog time using polynomial number of
processors in the PRAM model. We present a paral-
lel TAC algorithm which generalizes this result to any
acyclic constraint network of bounded width.

We apply the parallel tree contraction technique in
[lo] to the problem. Let T = (A , E) be a rooted join
tree with nodes A and edges E. A sequence of nodes
al , . . . , ak is called a chain if ai+l is the only child of ai
for 1 5 i < k, and (Ik has exactly one child and that

a tree-clustering scheme TC I or C N , we can construct

395

child is not a leaf. The parallel tree contraction al-
gorithm defines two basic contract operations: RAKE
and COMPRESS. RAKE is the operation of removing
all leaves from T. COMPRESS is the operation on T
which contracts all the maximal chains of T in half, by
identifying ai with ai+l for i odd, where ai is a node
on a maximal chain. CONTRACT is the simultaneous
application of RAKE and COMPRESS to the entire
tree. After [log5/4 n1 executions of CONTRACT on a
tree of n vertices, the tree is reduced to its root [lo].

The parallel TAC algorithm ParAC consists of two
phases: ContractAC and ExpandAC. ContractAC,
shown below, iterates tree contraction on a rooted
join tree T . Semijoin operations are associated with
each RAKE; join and projection operations are asso-
ciated with each COMPRESS. For a E A, let pt a
be the parent of a. If a has only one child, let cd(a]
denote that child. If arg(a is the number of chil-

as arg(a) = 1 and arg(pt(a)) = 1. We call p the
contracting parent of a , if a is raked from p or a is
compressed to p . Let ep(a) denote the contracting
parent of a. Whenever a RAKE operation removes
a leaf node with constraint l (L) from its parent with
constraint r(R), a semijoin r Q 1 is performed and r,
the relation on the parent, is updated. Correspond-
ingly for the COMPRESS operation, suppose ai, ai+l
are two consecutive nodes on a chain and let ai-1
be the parent of a, and ai+2 be the child of ai+l
with C O n (Q k) = ?-&(I&) and L k = Rk fl &+I, where
i- 1 5 k 5 i+ 1. Whenever ui is identified with a;+ l ,
an operation IIL,-lu~,UL,+,(ri W r i+l) is applied.

dren of a, let chain(a) be a b oolean function defined

It is clear that the number of iterations in ContractAC
is identical to the number needed for CONTRACT.

During the tree contraction phase, links between
a contracting parent and its contracted nodes are es-
tablished. Let T' = (A', E') be the join tree resulting
from applying ContractAC to TI such that A' = AUA"
where A" includes all the nodes created in the tree
contraction phase, and (a, a') E E' iff a' = cp(u), i.e.,
a' is the contracting parent of a. The tree expansion
phase starts from the root node of T' and propagates
the solutions from root to leaves. Initially, the root
is marked. Whenever the parent of a node is marked,
the solutions can be computed for the node and then
the node is marked.
Algorithm ExpandAC: Tree Expansion Phase
Input: result of ContractAC T' = <A',E'>;
Output: minimal network;

marked(root) := I;

Iterate the following procedure the same
number of times as for ContractAC:

In Parallel for a in A ' \(root>
/* at most n nodes at each iteration */
BEGIN
IF (marked(cp(a1) THEN
BEGIN
r(R) := con(a); p(P) := con(cp(a));
r := r semijoin p;
marked(a) := I
END

Algorithm ContractAC : Tree Contraction Phase
Input: rooted join tree T = <A,E>; The parallel AC algorithm ParAC simply applies
Output: directional arc consistent network;

Iterate the following procedure u t i 1 T=rOOt:

In Parallel f o r all a in A\(root)
BEGIN BEGIN

END

ContractAC to T and then applies ExpandAC to T'.

Algorithm ParAC: Parallel Arc Consistency
Input: rooted join tree T;
Output: minimal network T":

r (R) := con(a); p(P) := con(pt(a));
IF (a has a leaf child) THEN /* RAKE */
FOR (each leaf child c with constraint 1(L))

T' = ContractAC(T) ;
T" = ExpandAC (T ')
END

BEGIB
r := r semijoin 1; remove c;
/* update links of a */
cp(c) := a

END
ELSE IF (chain(a)) THEN /* COMPRESS */
BEGIN /* pt(a) is identified with a */
create a new node a';
c(C) := con(cd(a));
p'(P') := con(pt(pt(a)>);
pal := C R t R * P + P * P';
/* t denotes union,* denotes intersection */
pal := project (r join p) on P";
con(a') := p"(P");
pt(cd(a)) := a'; cd(a') := cd(a);
cd(pt(pt(a)) = a'; pt(a') = pt(pt(a));
cp(a) := a'; cp(pt(a)) := a'
END

END

Theorem 2.1 The result of applying ParAC to a join
tree T is an arc consistent join tree whose constraint
network as minimal and equivalent t o the constraint
network of T.

Theorem 2.2 The algorithm ParAC takes O(1ogn)
time using O(n) processors in the E R E W (Exclusive
Read Exclusive Write) P R A M model, given a join tree
of an acyclic constraznt network with bounded width.

Proof: see [13].
The procedures associated with RAKE and COM-

PRESS for arc consistency can be associated with
other parallel tree contraction algorithms. By associ-
ating semijoin with PRUNE and associating join and
projection with BYPASS in the algorithm given by

for an acyclic constraint network of
be done optimally in O(1og n) time

using O(n/ logn) processors in an EREW PRAM.

396

3 Distributed Complexity
Here, we develop a distributed AC algorithm D i s t A C

for reconfigurable interconnected processors with dis-
tributed memory and asynchronous communication.
Let the nodes and edges of a join network map to
processors and bidirectional channels in a distributed
computing network, respectively. The algorithm is
uniform: all processors have the same program. Let
r(R) be the local constraint and propagate be a
subroutine for propagating the local constraint to its
neighbors.

propagate:
FOR (a l l channel c) send r(R) t o c

Algorithm D i s t A C : Distributed AC
propagate ;
LOOP
BEGIN
s := r;
FOR (a l l channel c)

I F (there i s a message a t channel c) THEN
BEGIN

receive ri(R1) from c ;
s := s semijoin rl;

END
I F s =\= r THEN
BEGIN r := s; propagate END

END

Proposition 3.1 If the width of constraint network
C N is bounded by a constant, the complexity of
D i s t A C is O(n) , where n = s i r e (C N) .

Proposition 3.2 For a join tree JT of an acyclic
constraint network of bounded width and J T is of
bounded degree, the complexity of D i s t A C is O (D)
where D is the diameter of J T .

Theorem 3.1 Let n and w be the size and width of
an acyclic constraint network A C N . One can con-
struct a balanced binary join tree such that its acyclic
constraint network ACN' is equivalent to A C N with
s i z e (A C N ') = poly(n) and w i d t h (A C N ') 5 3w.
Proof: see [13].

Thus, there exists a mapping from an acyclic con-
straint network of size n with bounded width to a net-
work of poly(n) processors and it takes O(1ogn) time
to find the minimal network.

4 Conclusions
We have presented parallel and distributed algo-

rithms for solving FCSPs and shown that for an FCSP
that can be represented by an acyclic constraint net-
work of bounded width, there are efficient algorithms
in both parallel and distributed environments. The
bounded width property of acyclic constraint networks
characterizes a set of tractable FCSPs [2] as well as ef-
ficiently parallelizable FCSPs. I t is not generally true
that a problem solvable in linear sequential time also
has an efficient parallel algorithm, but it does happen
to be the case for FCSPs.

Acknowledgements
We wish to thank Feng Gao, Nick Pippenger and

Runping Qi for valuable suggestions and comments.
The first author is supported by the University Grad-
uate Fellowship from University of British Columbia.
This research was supported by the Natural Sciences
and Engineering Research Council and the Institute
for Robotics and Intelligent Systems.

References
K. Abrahamson, N. Dadoun, D.G. Kirkpatrick,
and T. Przvtvcka. A simde Darallel tree contrac-
tion algorithk. Joumai of-Algorithms, 10:287-
302, 1989.

R. Dechter. Constraint networks: A survey. In
S. Shapiro, editor, Encyclopedia of Artificial In-
telligence. Wiley, N.Y., 1991. (to appear).

Rina Dechter and Judea Pearl. Tree clustering
for constraint networks. Artificial Intelligence,
38(3):257-388, April 1989.

E. C. Freuder. Synthesizing constraint expres-
sions. Communications of the A C M , 21(11),
November 1978.

S. Kasif and A. L. Delcher. Analysis of lo-
cal consistency in parallel constraint satisfaction
networks. In Proc. A A A I Symposium on Con-
straint Based Reasoning, Stanford, pages 154 -
163, 1991.

A. K. Mackworth. Consistency in networks of re-
lations. Artificial Intelligence, 8(1):99--118, 1977.

A. K. Mackworth. Constraint satisfaction. In
S. Shapiro, editor, Encyclopedia of Artificial In-
telligence, pages 205 - 211. Wiley, N.Y., 1987.

A. K . Mackworth and E. C. Freuder. The com-
plexity of some polynomial network consistency
algorithms for constraint satisfaction problems.
Artificial Intelligence, 25(1):65 - 74, 1985.

D. Maier. The Theory of Relational Databases.
Computer Science Press, 1983.

G. L. Miller and J . H. Reif. Parallel tree con-
traction and its application. In Proc. 26th An-
nual IEEE Symp. on Foundations of Comp. Sci.,
pages 478-489, 1985.

U. Montanari. Networks of constraints: Funda-
mental properties and applications to picture pro-
cessing. Information Science, 7:95-132, 1974.

G. Shafer and P. P. Shenoy. Local computation in
hypertrees. Technical report, School of Business,
University of Kansas, August 1988. Working pa-
per 201.

Ying Zhang and Alan K . Mackworth. Parallel and
distributed algorithms for constraint networks.
Technical Report 91-6, Department of Computer
Science, Univ. of British Columbia, May 1991.

391

