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Abstract 
This paper develops two new algorithms for solv- 

ing a finite constraint satisfaction problem (FCSP) in 
parallel. In particular, we give a parallel algorithm for 
the EREW PRAM model and a distributed algorithm 
for  networks of interconnected processors. I f  an FCSP 
can be represented b y  an acyclic constraint network of 
sire n with width bounded b y  a constant then (1) the 
parallel algorithm takes O(1ogn) time using O ( n )  pro- 
cessors and (2) there is a mapping of this problem to 
a distributed computing network of poly(n) processors 
which stabilizes in O(1ogn) time. 

1 Introduction 
A Finite Constraint Satisfaction Problem (FCSP) 

can be informally described as follows. Given a set 
of variables, each with a finite domain, and a set of 
constraints, each specifying a relation on a subset of 
the variables, find the relation on the set of all the 
variables which satisfies all the given constraints si- 
multaneously. FCSPs are useful abstractions of many 
problems in image understanding, planning, schedul- 
ing, database retrieval and truth maintenance [7] [2]. 

Any FCSP can be represented by a constraint net- 
work. Graphically, a constraint network is a labelled 
hypergraph, in which nodes represent variables and 
arcs represent constraints. Formally, 

Definition 1.1 
Constraint Network CN E (V, dom, A, con) where 

V as a set of variables, { V I ,  v2,. . .,UN}. 
Associated with each variable vi is a finite domain 
di = dom(v;).  

0 A is a set o f  arcs, { a l , a 2 ,  .. .,U,,}. 

Associated with each arc Q; is a constraint 

A constraint, written r(R) ,  can be considered as a re- 
lation r on a relation scheme R g], where R is a set 

con( a;). 

of variables and r is a set of re I ation tuples. r(R) 
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is a universal constraint iff r includes all the possi- 
ble tuples. For X C R, the rojection of r onto X ,  
written IIx(r), is {<X)lt E r f ,  where t ( X )  is tuple t 
restricted to X .  The join of two constraints r ( R )  and 
l ( L ) ,  written r W I, is { t ( R u L ) 1 3 t r  E r,tl E l , t ( R  - 
t@), t ( L )  = L)}.  The semijoin of r(R)  and I(!!: 

Let C be the set of constraints of a constraint 
network CN,  C = {con(ai)lai E A}. A constraint 
network is a binary constraint network iff Vr(R)  E 
C,lRI 5 2. The hypergraph of C N  is called the 
scheme of C N  [2], i.e. scheme(CN)  = {RIr (R)  E C}.  
Tuple s is a solution of a constraint network CN,  
i.e. s E sol(CN), iff Vr(R) E C, s ( R )  E r .  A 
constraint network C N  is minimal iff Vr(R) E C, 
IIR(sol(CN)) = r .  Two constraint networks C N  
and CN' are equivalent, written C N  = CN', iff 
V = VI,  dom = dom', sol(CN) = sol(CN'). 

However, it is well known that the FCSP decision 
problem is NP-complete. In order to cope with the 
intractability of FCSPs, two strategies have been fol- 
lowed: (2) finding efficient algorithms for preprocess- 
ing, suc as arc consistency [6], path consistency [ll] 
and k-consistency [4] algorithms for binary constraint 
networks; and (2) exploiting the topological features 
of FCSPs to guide efficient algorithms for solving these 
problems [2]. In this paper, we develop an approach to 
combining these two strategies. We generalize the bi- 
nary arc consistency problem [6] to an arc consistency 
problem on any constraint network. 

The dual network DN of a constraint network CN 
can be considered as an alternative representation of 
an FCSP. D N  is a labelled undirectional graph, in 
which the nodes are the arcs of C N  labelled by con- 
straints, the edges represent the nonempty intersection 
of two relation schemes. For an edge eij = {a; ,  ~ j }  in 
DN,  with con(ai) = r i (R i )  and con(aj)  = r j ( R j ) ,  the 
label of ejj ,  written L(e;j ) ,  is RinRj. eij is arc consis- 
tent iff II,qe,j)(ri) = n ~ ( ~ , ~ ) ( r , ) .  A dual network is arc 
consistent iff all the edges are arc consistent. We say 
a constraint network is arc consistent iff its dual net- 
work is arc consistent. This definition reduces to the 
definition given in [SI for binary constraint networks. 

A join network J N  of a constraint network is a 
subnetwork of the dual network D N ,  with redundant 

written r a I, IS h R(r W 1).  
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edges removed. A join network is arc consistent iff 
all the edges are arc consistent. All the join networks 
of a dual network are equivalent, in the sense that a 
dual network is arc consistent iff any of its join net- 
works is arc consistent. In other words, a constraint 
network is arc consistent iff any of its join networks is 
arc consistent. 

Constnint Network 

Tk. Dual Network A Join Network 

Figure 1: A Constraint Network, the Dual Network 
and a Join Network 

Example 1.1 Figure 1 shows the scheme of a con- 
straint network, the dual network and a join network. 

Algorithm AC is a generalization of AC-3 in [8]. 

Algorithm AC: Enforce Arc Consistency i n  CN 
Input: j o i n  network <A,E>; 
Output: a r c  cons is ten t  network; 
BEGIN 
q := t h e  s e t  of a l l  nodes i n  A; 
WHILE (q is  not empty) DO 
BEGIN 

remove node a from q; /* con(a) = r(R) */ 
s := r ;  
FOR ( a l l  ( a , a l )  i n  E) /* con(a1) = rl(R1) */ 
I F  s =\= r THEN 
B E G I N  

s := s semijoin r l ;  

r := s; 
FOR ( a l l  (a,al) i n  E) DO 
q := q union (ai);  

END 
END 

END 

If a binary constraint network C N  is acyclic, a tree, 
enforcin arc consistency in C N  results in a minimal 
networkf8l. Generalizing, we say a constraint network 
is acyclic iff its hypergraph is acyclic, a hypertree [9] 
[12]. On the other hand, it is acyclic iff its join net- 
works are trees [9]. Applying algorithm AC to  any of 
its join trees results in a minimal constraint network. 

Furthermore, for a join tree, there exist a more effi- 
cient algorithm TAC for obtaining a minimal network. 

Algorithm TAC: AC on Acyclic Network 
Input: rooted j o i n  t r e e  <A,E>; 
Output: minimal network; 
BEGIN 
q0 := t h e  s e t  of all nodes i n  A; 
/* ordered from chi ldren  t o  parents */ 
Q := Qo; 
~ H I L E - ( ~  is not empty) DO 
BEGIN 
remove node a from q; /* con(a) = r(R) */ 
FOR ( a l l  ( a , a l )  i n  E) /* con(a1) = rl(R1) */ 
/* a is  t h e  parent of a1 */ 
r := r semijoin r l ;  

END 
q: = reverse q0; 
/* ordered from parents t o  ch i ldren  */ 
WHILE (q is  not empty) DO 
BEGIN 
remove node a from q; 
FOR ( a l l  (a1,a) i n  E) DO 
r := r semijoin r l ;  

END 
END 

For an acyclic constraint network C N ,  let s i z e ( C N )  = 
IAI, width(CN) = mXREscheme(CN){  IRI}. The com- 
plexity of TAC is O(nl1ogl) where n is the number of 
nodes in the join tree, i.e. n = s i z e ( C N )  and 1 is the 
maximum number of tuples in any constraint, i.e. if 
rn = max{ldil then 15 mwidth(CN). For a minimal 
acyclic networ k , finding one solution is in O(n). 

Since a constraint network C N  may not be acyclic 
in general, as in the example shown in Figure 1, the 
solutions for C N  can be computed in three steps. 
First, construct a join tree whose constraint network is 
equivalent to  C N .  Second, apply AC or TAC to the join 
tree. Third, construct the solutions of the acyclic min- 
imal network. The first step is called tree clustering. 
A tree-clustering scheme can be obtained by applying 
a tree-clustering algorithm [3 to  scherne(CN) .  Given 

a join tree by adding universal constraints to relation 
schemes which are in TC but not in C N .  

In the rest of this paper, we will present a parallel 
version of algorithm TAC, and a distributed version of 
algorithm AC. 

2 Parallel Algorithm and Complexity 
Even though arc consistency for a binary constraint 

network is P-complete, it is in N C  for a binary acyclic 
constraint network [5] ,  i.e. there exists an algorithm 
which takes polylog time using polynomial number of 
processors in the PRAM model. We present a paral- 
lel TAC algorithm which generalizes this result to any 
acyclic constraint network of bounded width. 

We apply the parallel tree contraction technique in 
[lo] to the problem. Let T = ( A ,  E )  be a rooted join 
tree with nodes A and edges E.  A sequence of nodes 
al ,  . . . , ak is called a chain if ai+l is the only child of ai 
for 1 5 i < k, and (Ik has exactly one child and that 

a tree-clustering scheme TC I or C N ,  we can construct 
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child is not a leaf. The parallel tree contraction al- 
gorithm defines two basic contract operations: RAKE 
and COMPRESS. RAKE is the operation of removing 
all leaves from T. COMPRESS is the operation on T 
which contracts all the maximal chains of T in half, by 
identifying ai with ai+l for i odd, where ai is a node 
on a maximal chain. CONTRACT is the simultaneous 
application of RAKE and COMPRESS to the entire 
tree. After [log5/4 n1 executions of CONTRACT on a 
tree of n vertices, the tree is reduced to its root [lo]. 

The parallel TAC algorithm ParAC consists of two 
phases: ContractAC and ExpandAC. ContractAC, 
shown below, iterates tree contraction on a rooted 
join tree T .  Semijoin operations are associated with 
each RAKE; join and projection operations are asso- 
ciated with each COMPRESS. For a E A, let pt a 
be the parent of a. If a has only one child, let cd(a] 
denote that child. If arg(a is the number of chil- 

as arg(a)  = 1 and arg(pt(a)) = 1. We call p the 
contracting parent of a ,  if a is raked from p or a is 
compressed to p .  Let ep(a)  denote the contracting 
parent of a. Whenever a RAKE operation removes 
a leaf node with constraint l ( L )  from its parent with 
constraint r(R),  a semijoin r Q 1 is performed and r,  
the relation on the parent, is updated. Correspond- 
ingly for the COMPRESS operation, suppose ai, ai+l 
are two consecutive nodes on a chain and let ai-1 
be the parent of a, and ai+2 be the child of ai+l 
with C O n ( Q k )  = ?-&(I&) and L k  = Rk fl &+I, where 
i- 1 5 k 5 i+ 1. Whenever ui is identified with a;+ l ,  
an operation IIL,-lu~,UL,+,(ri W r i+l )  is applied. 

dren of a, let chain(a) be a b oolean function defined 

It is clear that the number of iterations in ContractAC 
is identical to the number needed for CONTRACT. 

During the tree contraction phase, links between 
a contracting parent and its contracted nodes are es- 
tablished. Let T' = (A', E') be the join tree resulting 
from applying ContractAC to TI such that A' = AUA" 
where A" includes all the nodes created in the tree 
contraction phase, and (a,  a') E E' iff a' = cp(u),  i.e., 
a' is the contracting parent of a. The tree expansion 
phase starts from the root node of T' and propagates 
the solutions from root to leaves. Initially, the root 
is marked. Whenever the parent of a node is marked, 
the solutions can be computed for the node and then 
the node is marked. 
Algorithm ExpandAC: Tree Expansion Phase 
Input: result of ContractAC T' = <A',E'>; 
Output: minimal network; 

marked(root) := I; 

Iterate the following procedure the same 
number of times as for ContractAC: 

In Parallel for a in A '  \(root> 
/* at most n nodes at each iteration */ 
BEGIN 
IF (marked(cp(a1) THEN 
BEGIN 
r(R) := con(a); p(P) := con(cp(a)); 
r := r semijoin p; 
marked(a) := I 
END 

Algorithm ContractAC : Tree Contraction Phase 
Input: rooted join tree T = <A,E>; The parallel AC algorithm ParAC simply applies 
Output: directional arc consistent network; 

Iterate the following procedure u t i 1  T=rOOt: 

In Parallel f o r  all a in A\(root) 
BEGIN BEGIN 

END 

ContractAC to T and then applies ExpandAC to T'. 

Algorithm ParAC: Parallel Arc Consistency 
Input: rooted join tree T; 
Output: minimal network T": 

r ( R )  := con(a); p(P) := con(pt(a)); 
IF (a has a leaf child) THEN /* RAKE */ 
FOR (each leaf child c with constraint 1(L)) 

T' = ContractAC(T) ; 
T" = ExpandAC ( T ' ) 
END 

BEGIB 
r := r semijoin 1; remove c; 
/* update links of a */ 
cp(c) := a 

END 
ELSE IF (chain(a)) THEN /* COMPRESS */ 
BEGIN /* pt(a) is identified with a */ 
create a new node a'; 
c(C) := con(cd(a)); 
p'(P') := con(pt(pt(a)>); 
pal := C R t R * P + P * P'; 
/* t denotes union,* denotes intersection */ 
pal := project (r join p) on P"; 
con(a') := p"(P"); 
pt(cd(a)) := a'; cd(a') := cd(a); 
cd(pt(pt(a)) = a'; pt(a') = pt(pt(a)); 
cp(a) := a'; cp(pt(a)) := a' 
END 

END 

Theorem 2.1 The result of applying ParAC to a join 
tree T is an arc consistent join tree whose constraint 
network as minimal and equivalent t o  the constraint 
network of T.  

Theorem 2.2 The algorithm ParAC takes O(1ogn) 
time using O(n)  processors in the E R E W  (Exclusive 
Read Exclusive Write) P R A M  model, given a join tree 
of an acyclic constraznt network with bounded width. 

Proof: see [13]. 
The procedures associated with RAKE and COM- 

PRESS for arc consistency can be associated with 
other parallel tree contraction algorithms. By associ- 
ating semijoin with PRUNE and associating join and 
projection with BYPASS in the algorithm given by 

for an acyclic constraint network of 
be done optimally in O(1og n)  time 

using O(n/ logn) processors in an EREW PRAM. 
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3 Distributed Complexity 
Here, we develop a distributed AC algorithm D i s t A C  

for reconfigurable interconnected processors with dis- 
tributed memory and asynchronous communication. 
Let the nodes and edges of a join network map to 
processors and bidirectional channels in a distributed 
computing network, respectively. The algorithm is 
uniform: all processors have the same program. Let 
r(R) be the local constraint and propagate be a 
subroutine for propagating the local constraint to its 
neighbors. 

propagate: 
FOR ( a l l  channel c )  send r(R) t o  c 

Algorithm D i s t A C :  Distributed AC 
propagate ; 
LOOP 
BEGIN 
s := r; 
FOR ( a l l  channel c )  

I F  (there i s  a message a t  channel c )  THEN 
BEGIN 

receive ri(R1) from c ;  
s := s semijoin rl; 

END 
I F  s =\= r THEN 
BEGIN r := s; propagate END 

END 

Proposition 3.1 If the width of constraint network 
C N  is bounded by a constant, the complexity of 
D i s t A C  is O(n) ,  where n = s i r e ( C N ) .  

Proposition 3.2 For a join tree JT of an acyclic 
constraint network of bounded width and J T  is of 
bounded degree, the complexity of D i s t A C  is O ( D )  
where D is the diameter of J T .  

Theorem 3.1 Let n and w be the size and width of 
an acyclic constraint network A C N .  One can con- 
struct a balanced binary join tree such that its acyclic 
constraint network ACN'  is equivalent to  A C N  with 
s i z e ( A C N ' )  = poly(n) and w i d t h ( A C N ' )  5 3w. 
Proof: see [13]. 

Thus, there exists a mapping from an acyclic con- 
straint network of size n with bounded width to  a net- 
work of poly(n)  processors and it takes O(1ogn) time 
to  find the minimal network. 

4 Conclusions 
We have presented parallel and distributed algo- 

rithms for solving FCSPs and shown that for an FCSP 
that can be represented by an acyclic constraint net- 
work of bounded width, there are efficient algorithms 
in both parallel and distributed environments. The 
bounded width property of acyclic constraint networks 
characterizes a set of tractable FCSPs [2] as well as ef- 
ficiently parallelizable FCSPs. I t  is not generally true 
that a problem solvable in linear sequential time also 
has an efficient parallel algorithm, but it does happen 
to  be the case for FCSPs. 
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