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Abstract

The goal of this chapter is to propose constraint satisfaction as a central design concept for intelligent robots.
Some proposals for codes of robot ethics apparently presuppose the existence of certain technical abilities on
behalf of the robot designer, that, simply put, do not yet exist. Namely, given current robot design techniques,
it is usually not possible to specify local or global limitations on a robot’s behavior; or, if indeed we can
specify such limitations, it is usually not possible to verify that the robot will always (or almost always) satisfy
them. Through a case study of a simple robot soccer player, prioritized constraint satisfaction and hierarchical
control decomposition are proposed as design techniques that will provide a more viable foundation for codes
of robot ethics.

Introduction

Intelligent robots must be both protective and responsive. That requirement is the main challenge
facing designers and developers of robot architectures. A robot in an active environment changes that
environment in order to meet its goals and it, in turn, is changed by the environment. In this chapter
we propose that these concerns can best be addressed by using constraint satisfaction as the design
framework. This will allow us to put a firmer technical foundation under various proposals for codes

of robot ethics.

Constraint Satisfaction Problems

We will start with what we might call good old-fashioned conmsiraint satisfaction (GOFCS).
Constraint satisfaction itself has now evolved far beyond GOFCS. However, we initially focus on
GOFCS as exemplified in the constraint satisfaction problem (CSP) paradigm. The whole concept of
constraint satisfaction is a powerful idea. It arose in several applied fields roughly simultaneously;
several researchers, in the early 1970s, abstracted the underlying theoretical model. Simply, many
significant sets of problems of interest in artificial intelligence can each be characterized as a CSP. A
CSP has a set of variables; each variable has a domain of possible values, and there are various

constraints on some subsets of those variables, specifying which combinations of values for the



variables involved are allowed (Mackworth 1977). The constraints rﬁay be between two variables or
amongst more than two variables. A familiar CSP example is the Sudoku puzzle. The puzzle solver
has to fill in each square in a 9x9 array of squares, with a digit chosen from {1, 2, ..., 9}, where the
constraints are that every row, every column, and every 3 x 3 subgroup has to be a permutation of
those nine digits. One can find these solutions using so-called arc consistency constraint satisfaction
techniques and search; moreover, one can easily generate and test potential Sudoku puzzles to make
sure they have one and exactly one solution before they are published. Constraint satisfaction has its

UscCs.

Arc consistency is a simple member of the class of algorithms called network consistency algorithms.
The basic idea is that one can, before constructing global solutions, efficiently eliminate local non-
solutions. Since all of the constraints have to be satisfied, if there is any local value configuration
that does not satisfy any of them, one can throw that tuple out; that is a so-called “no good.” The
solver can discover (that is, learn) those local inconsistencies; once and for all, very quickly, in
linear, quadratic, or cubic time. Those discoveries give huge, essentially exponential, savings when
one does start searching, constructing global solutions, using backtracking or other approaches. The
simplest algorithm is arc consistency, then path consistency, then k-consistency, and so on. For a
detailed exposition and historical perspective on the development of those algorithms see (Freuder
and Mackworth 2006). Since those early days network consistency algorithms have become a major
research industry. In fact, it has now evolved into its own field of computer science and operations
research, called constraint programming. The CSP approach has been combined with logic
programming and various other forms of constraint programming. It is having a major impact in
many industrial applications of Al, logistics, planning, scheduling, combinatorial optimization and
robotics. For a comprehensive overview, see (Rossi, van Beek, and Walsh 2006). Here we will
consider how the central idea of constraint satisfaction has evolved to become a key design tool for
robot architectures. This development, in turn, will allow us to determine how it could underpin

proposals for codes of robot ethics.

Pure Good Old Fashioned Al and Robetics (GOFAIR)
The way we build artificial agents has evolved over the past few decades. John Haugeland
(Haugeland 1985) was the first to use the phrase Good Old Fashioned AI (GOFAI), talking about



symbolic Al using reasoning and so on, as a major departure from earlier work in cybemetics, pattern
recognition and control theory. GOFAI has since come to be a straw man for advocates of sub-
symbolic approaches, such as artificial neural networks and evolutionary programming. Al at that
point, when we discovered these symbolic techniques, tended to segregate itself from those other
areas. Lately, however, we see a new convergence. Let me quickly add here that there was a lot of
great early work in symbolic programming of robots. That work can be characterized, riffing on
Haugeland, as Good Old Fashioned Al and Robotics (GOFAIR) (Mackworth 1993).

GOFAIR Meta-assumptions

In a cartoon sense, a pure GOFAIR robot operates in a world that satisfies many meta-assumptions:

» Single agent

» Seral action execution order

* Deterministic world

» Fully observable, closed world

» Perfect internal model of infallible actions and world dynamics

» Perception needed only to determine initial world state

» Plan to achieve goal obtained by reasoning, and executed perfectly open loop

There is a single agent in the world which executes its actions serially. It does not have two hands
which can work cooperatively. The world is deterministic. It is fully observable. It is closed, so if
do not know something to be true, then it is false, thanks to the Closed World Assumption (Reiter
1978). The agent itself has a perfect internal model of its own infallible actions and the world
dynamics which are deterministic. If these assumptions are true then perception is needed only to
determine the initial world state. The robot takes a snapshot of the world. It formulates its world
model. It reasons in that model then it can combine reasoning that with its goals using, say, a first
order theorem-prover to construct a plan. This plan will be perfect because it will achieve a goal even
if it executes the plan open loop. So, with its eyes closed, it can just do action A, then B, then C, then
D, then E. If it happens to open its eyes again it would see, ‘Oh, I did achieve my goal, great!’
However, there is no need for it to open its eyes because it had a perfect internal model of these
actions which have been performed and they are deterministic and so the plan was guaranteed to

succeed with no feedback from the world.



CSPs and GOFAIR
What I would like you, the reader, to do is to think of the CSP model as a very simple example of

GOFAIR. There are no robots involved, but there are some actions. The Sudoku solver is placing
numbers in the squares and so on. In pure GOFAIR there is a perfect model of the world and its
dynamics in the agent’s head so I call the agent then an omniscient fortune-teller, as it knows all and
it can see the entire future because it can control it, perfectly. Therefore if these conditions are all
satisfied, then the agent’s world model and the world itself will be in perfect correspondence — a
happy state of affairs, but, of course, it doesn’t usually obtain. However, when working in this
paradigm we often failed to distinguish the agent’s world model and the world itself because there
really is no distinction in GOFAIR. We confused the agent’s world model and the world, a classic
mistake.

A Robot in the World

Now we come to think about the nature of robots. A robot acts in a world. It changes that world, and
that world changes the robot. We have to conceive of a robot in an environment, performing actions
in an environment, and the environmental stimuli, which could be sensory stimuli or physical stimuli
will change the robot. Therefore, think of the robot and its environment as two coupled dynamical
systems, operating in time, embedded in time, each changing the other, as they co-evolve as shown in

Figure 3.
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Figure 3. A Robot Co-evolving with its Environment

They are mutually evolving perpetually, or to some future fixed point state, because, of course, the

environment could contain many other agents who see this robot as part of their environment.

Classic Horizontal Architecture

Again, in a cartoon fashion, consider the so-called three boxes model or the horizontal architecture
model for robots. Since perception, reasoning, and action are the essential activities of any robot, why

not just have a module for each?



ROBOT

goals¢

model plan
perception > reasoning —»| action

A

stimuli actions

A 4

ENVIRONMENT

Figure 4. A Horizontal Architecture for a GOFAIR Robot

As shown in Figure 4, the perception module interprets the stimuli coming in from the environment;
it produces a perfect three dimensional model of the world which is transmitted to the reasoning
module, which has goals, either internally generated or from outside. Combining the model and the
goals, it produces a plan. Again, that plan is just a sequence of the form: Do this, do this, do this, then
stop. There are no conditionals, no loops in these straight-line plans. Those actions will, when
executed, change the world perfectly according to the goals of the robot. Now, unfortunately for the
early hopes for this paradigm, this architecture can only be thought of as a really good first cut. You
know that if you wanted to build a robot it is a really good first thought. You want to push it as hard
as you can, because it is nice and simple, it keeps it clean and modular. and all the rest of it. It is
simple but, unfortunately, not adequate. Dissatisfaction with this approach drove the next stage of

evolution of our views of robotic agents, illustrating our theme.



The Demise of GOFAIR

GOFAIR robots succeed in controlled environments such as blocks worlds and factories but they
cannot play soccer! GOFAIR did work, and does work, as long as the blocks are matte blocks with
very sharp edges on black velvet backgrounds. It works in factories if there is only one robot arm and
it knows exactly where things are and exactly where they are going to go. The major defect, from my
point of view, is that they certainly cannot, and certainly never will, play soccer. I would not let them
into my home without adult supervision. In fact, I would advise you not to let them into your home

either.

It turns out that John Lennon, in retrospect, was a great Al researcher since in one of his songs he
mused, "Life is what happens to you when you’re busy making other plans." (Lennon 1981). The key
to the initial success of GOFAIR is that the field attacked the planning problem, and came up with
really powerful ideas, such as GPS, STRIPS, and back-chaining. This was revolutionary. Algorithms
were now available which could make plans in a way we could not do before. The book Plans and
the structure of behaviour (Miller 1960) was a great inspiration and motivation for this work. In
psychology there \%e few ideas about how planning could be done until Al showed the way. The
GOFAIR paradigm demonstrated how to build proactive agents for the very first time.

But planning alone does not go nearly far enough. Clearly, a proactive GOFAIR robot is indeed an
agent that can construct plans and act in the world to achieve its goals, whether short term or long
term. Those goals may be prioritized. That is well and good. However, “There are more things in
heaven and earth, Horatio, than are dreamt of in your philosophy.” In other words, events will occur
in the world that an agent does not expect. It has to be able to react quickly to interrupts from the
environment, to real-time changes, to imminent threats to safety to itself or humans, to other agents
and so on. An intelligent robot must be both proactive and responsive. An agent is proactive if it acts
to construct and execute short-term and long-term plans and achieve goals in priority order. An agent
is responsive if it reacts in real-time to changes in the environment, threats to safety and to other

agents' actions.



Beyond GOFAIR to Soccer

So that was the real challenge that was before us in the 1980°s to the GOFAIR cartoon worldview.
How could we integrate proactivity and reactivity? In 1992, T made a proposal (Mackworth 1993)
that it is fine to say robots must be proactive and reactive or responsive but we needed a simple task
domain in order to force us to deal with those kinds of issues. I proposed robot soccer as that domain
in that paper. Actually, I proposed it after we had actually already built soccer players in our lab and
made them work. We built the world’s first robot soccer players, using cheap toy radio-controlled
monster trucks. The first two players were named after Zeno and Heraclitus. You can see videos of

the first robot soccer games on the Web'.

A single color camera, looking down on these trucks, could see the colored circles on top of the
trucks so that the perceptual system could distinguish Zeno from Heraclitus. It could also see the ball
and the goals. Each truck has its own controller. Since they cannot turn in place -- they are non-
holonomic --so it very hard actually to control them. It is a very tricky problem to control this kind of
steerable robot. The path planning problems have to be solved in real time. Of course, one is trying to
solve a path planning problem, as the ball is moving and the opponent is moving in order to get that
ball; that is very tricky computationally. We were pushing the limits both of our signal processing
hardware and the CPU's in order to get this to work in real time. We were running there at about
15Hz cycle time. The other problem was that our lab was not big enough for these monster trucks.
We wanted to go with more trucks but the department head would not give us a bigger lab. So we
were forced to go to smaller robots, namely, 1/24™ scale radio-controlled model Porsches, that we
called Dynamites. These cars were running on a ping-pong table with a little squash ball (see Figure
5). In the video online, one can see the players alternating between offensive and defensive
behaviors. The behaviors the robots exhibit are clearly a mix of proactive and responsive behaviours,

demonstrating the theme of evolution of our models of agents beyond the GOFAIR approach.

'"URIL: http://www.cs.ubc.ca/~mack/RobotSoccer.htm



Figure 5. The Dynamites: Two-on-Two Soccer Playing Robots (UBC, 1993)

Incidentally, there was an amazing, successful effort to get chess programs to the point where they
beat the world champion (Hsu 2002). But from the perspective presented here, it changes only the
single agent Sudoku puzzle into a two agent game; however, all the other aspects of the Sudoku
domain remain the same, perfect information, determinism, and the like. Chess loses its appeal as a

domain for driving Al research in new directions.

We managed to push all our soccer system hardware to the limit so we were able to develop two-on-
two soccer. The cars were moving at up to 1 m/s and autonomously controlled at 30 Hz. Each had a
separate controller off board and they were entirely independent. The only thing they shared is a
common front-end vision perceptual module. We were using transputers (a IMIP CPU) because we

needed significant parallelism here. You can see a typical game segment with the small cars on the



Web’. We were able to do the real time path planning and correction and control at about 15-30Hz,
depending, but that was really the limit of where we could go at that time (1992-4) since we were

limited by the hardware constraints.

RoboCup

As happens, shortly thereafter some Japanese researchers started to think along similar lines. They
saw our work and said, "Looks good". Instead of using steerable robots, as we had, they chose
holonomic robots that can spin in place. Hiroaki Kitano and his colleagues in Japan proposed
RoboCup (Kitano 1997). In Korea, the MiroSot group’ was also intrigued by similar issues. It made

for an interesting international challenge.

The first RoboCup tournament was held in Nagoya in 1997. Our UBC team participated; it was a
great milestone event. Many researchers have subsequently made very distinguished contributions in
the robot soccer area, including Peter Stone, Manuela Veloso, Tucker Balch, Michael Bowling and
Milind Tambe and many others. It has been fantastic. At Atlanta in RoboCup 2007, there were
around 2,700 participant agents, and of those, about 1,700 were people and 1,000 were robots. A
review of the first 10 years of RoboCup has recently appeared (Visser and Burckhard 2007) showing

how it has grown in popularity and influenced basic research.

>URL: http://www.cs.ubc.ca/~mack/RobotSoccer.htm
3URI: http://www.fira.net/soccer/mirosot/overview.html
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Figure 6. Humanoid Robot Soccer Player

It has become incredibly exciting, a little cutthroat and competitive with perhaps some dubious
tactics at times but that is the nature of intense competition in war and soccer. More importantly,
robot soccer has been incredibly stimulating to many young researchers, and it has brought many
people into the field to do fine work including new competitions such as RoboRescue and
RoboCup@Home. The RoboCup mission is to field a team of humanoid robots to challenge and beat
the human champions by 2050, as suggested by Figure 6.
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From Sudoku to Soccer and Beyond

Now let us step back a bit and consider our theme of evolutionary development of robot
architectures. If one thinks of the Sudoku puzzle domain as the exemplar of GOFAIR in a very
simple minded way, then soccer is an exemplar of something else — what is the something else? 1
think it is situated agents, and so we’re transitioning from one paradigm to another. As shown in
Figure 7, we can compare Sudoku and Soccer as exemplar tasks for each paradigm, GOFAIR and

Situated Agents, respectively, along various dimensions.

Sudoku Soccer

Number of agents 1 23
Competition No Yes
Collaboration No Yes
Real time No Yes
Dynamics Minimal Yes
Chance No Yes
Online No Yes
Planning Horizons No Yes
Situated Perception No Yes
Partially Observable No Yes
Open World No Yes
Learning Some Yes

Figure 7. Comparison of Sudoku and Soccer along Various Dimensions.

I shall not go through these dimensions exhaustively. In soccer we have 23 agents: 22 players and a
referee. Soccer is hugely competitive, between the teams obviously, but also of major importance is
the collaboration within the teams, the teamwork being developed, the development of plays, and the

communications systems, signalling systems between players and the protocols for them. Soccer is
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very real-time. There is a major influence of dynamics and of chance. Soccer is online in the sense
that one cannot compute a plan offline and then execute, as one can in GOFAIR. Whenever anything
is done, a plan almost always must be recomputed. There exist a variety of temporal planning
horizons, from "Can I get my foot to the ball?" through to "Can I get the ball into the net?" and "Can
I win this tournament?" The visual perception is very situated and embodied. Vision is onboard the
robots now in most of the leagues so a robot sees only what is visible from where it is, meaning the
world is obviously only partially observable. The knowledge base is completely open because one
cannot infer much about what is going on behind one's back. The opportunities for robot learning are

tremendous.

From GOFAIR to Situated Agents

As we make this transition from GOFAIR to situated agents, how is it done? There has been a whole
community working on situated agents, since Maxwell in the late 19™ century building governors for
steam engines and the like. Looking at Maxwell’s classic paper “On Governors” (Maxwell 1868), it
is clear that he produced the first theory of control, trying as he was to understand why Watts’
feedback controller for steam engines actually worked, under what conditions it was stable, and so
on. Control theorists have had a great deal to say about situated agents for the last century or so. So,
one way to build a situated agent would be to suggest that we put Al and control together: to stick a
planner, an Al planner, GOFAIR or not, on top of a reactive control-theoretic controller doing PID
control. One could also put in a middle layer of finite state mode control. These are techniques we
fully understand, and that is, in fact, how we did it for the first soccer players which I have described
above. There was a two level controller. However, there are many problems with that approach, not
the least being debugging it, understanding it, let alone proving anything about it. It was all very
much: try it and see. It was very unstable as new behaviors are added. It has to be restructured at the
higher level and so on. Let me just say that it was a very graduate student intensive process requiring
endless student programming hours! So rather than gluing a GOFAIR planner on top of a multi-layer

control-theoretic controller we moved in a different direction.

I argued that we must abandon the meta-assumptions of GOFAIR but keep the central metaphor of

constraint satisfaction. My response was that we just give up on those meta-assumptions of GOFAIR
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but not throw out the baby of constraint satisfaction with the bathwater of the rest of GOFAIR.
Constraint satisfaction was, and is, the key in my mind, and the reason it is the key is that we
understand symbolic constraints, as well as numerical. We understand how to manipulate them and
so on. We understand even first-order logic as a constraint solving system, thanks to work on that
side, but we also understand constraints in the control world. We understand that a thermostat is
trying to solve a constraint. We have now a uniform language of constraint solving or satisfaction
although one aspect may be continuous while the other may be discrete or even symbolic. There is a
single language or single paradigm to understand it from top to bottom, which is what we need to
build clean systems. The constraints now though are dynamic: coupling the agent and its
environment. They are not like the timeless Sudoku constraint: every number must be different now
and forever. When one is trying to kick a ball the constraint one is trying to solve is whether the foot
position is equal to the ball’s position at a certain orientation, at a certain velocity and so on. Those
are the constraints one is trying to solve, and one really does not care how one arrives there. One
simply knows that a certain point in time, the ball will be at the tip of the foot, not where it is now but
where it will be in the future. So this is a constraint but it is embedded in time, and it is changing over

time as one is trying to solve it, and clearly, that is the tricky part.

Thus, constraints are the key to a uniform architecture and so we need a new theory of constraint-
based agents. This has set the stage. I shall leave you in suspense for a while for a digression before I
come back to sketch that theory. Its development is part of the evolutionary process that is the theme

of this article.

Robot Friends and Foes

I digress here briefly to consider the social role of robots. Robots are powerful symbols; they have a
really interesting emotional impact. One sees this instinctively if one has ever worked with kids and
Lego robotics or the Aibo dogs that we see in Figure 8, or with seniors who treat robots as friends
and partners. We anthropomorphize our technology with things that look almost like us or like our
pets - although not too much like us; that is the "uncanny valley’ (Mori 1982). We relate to humanoid
robots very closely emotionally. Children watching and playing with robot dogs appear to bond with

them at an emotional level.

14



Figure 8. Robot Friends Playing Soccer
But, of course, the flip side is the robot soldier (Figure 9), the robot army and the robot tank.

Figure 9. ... and Robot Foes
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Robots, Telerobots, Androids and Cyborgs

Robots really are extensions of us. Of course, there are many kinds of robots. One uses the word
'robot' loosely but, technically, one can distinguish between strictly autonomous robots and telerobots
where there is human supervisory control, perhaps at a distance, to Mars or in a surgical situation, for
example. There are androids that look like us and cyborgs that are partly us, partly machine. The
claim is that robots are really reflections of us, and that we project our hopes and fears onto them.
That this has been reflected in literature and other media over the last two centuries is a fact. I do not

need to bring to mind all the robot movies but robots do stand as symbols for our technology.

Dr. Frankenstein and his creation, in Frankenstein; or, The Modern Prometheus (Shelley 1818),
stood as a symbol of our fear, a sort of Faustian fear that that kind of power, that kind of projection of
our own abilities in the world, would come back and attack us. Mary Shelley's work explored that,
and Charlie Chaplin’s Modern Times (Chaplin, 1936) brought the myth up to date. Recall the scene
in which Charlie is being forced to eat in the factory where, as a factory worker, his entire pace of life
is dictated by the time control in the factory. He is a slave to his own robots and his lunch break is
constrained because the machines need to be tended. He is, in turn, tended by an unthinking robot
who keeps shoving food into his mouth and pouring drinks on him until finally, it runs amok. Chaplin
was making a very serious point that our technology stands in real danger of alienating and

repressing us if we are not careful.

I’ll conclude this somewhat philosophical interjection with the observations of two students of
technology and human values. Marshall McLuhan argued, although he was thinking of books,
advertising, TV and other issues of his time but it applies equally to robots, “We first shape the tools
and thereafter our tools shape us.” (McLuhan 1964). Parenthetically, this effect can be seen as classic

projection and alienation in the sense of Feuerbach (Feuerbach 1854).

The kinds of robots we build, the kinds of robots we decide to build, will change us as they will
change our society. We have a heavy responsibility to think about this carefully. Margaret Somerville
is an ethicist who argues that actually the whole species Homo sapiens is evolving into Techno
sapiens as we project our abilities out (Somerville, 2006). Of course, this is happening at an

accelerating rate. Many of our old ethical codes are broken and do not work in this new world,
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whether it is in biotechnology or robotics, or in almost any other area of technology today. As

creators of some of this technology, it is our responsibility to pay serious aftention to that.

Robots: One More Insult to the Human Ego?

Another way of thinking about our fraught and ambivalent relationship with robots is that this is
really one more insult. How much more can humankind take? Robotics is only the latest
displacement of the human ego from centre stage. Think about the intellectual lineage that links
Copemicus, Darwin, Marx, Freud and Robots. This may be a stretch in thinking but perhaps not.

Humans thought they were at the center of the universe until Copernicus proposed that the earth was
not at the centre and the sun should be seen that way. Darwin hypothesized we are descended from
apes. Marx claimed that many of our desires and goals are determined by our socioeconomic status,
and, thus, we are not as free as we thought. Freud theorized one's conscious thoughts are not freely
chosen, but rather they come from the unconscious mind. Now I suggest that you can think of robots
as being in that same great lineage of saying, you, Homo sapiens, are not unique. Now, there are
other entities, robots, created by us, that can also perceive, think and act. They could become as smart
as we are. But this kind of projection can lead to a kind of moral panic: "The robots are coming!! The
robots are coming!! What are we going to do??" When we talk to the media the first questions
reporters ask are, typically: "Are you worried about them rising up and taking over?" and "Do you
think they’ll keep us as pets?" The public perception of robots is evolving as our models of robots

and the robots themselves evolve.

Helpful Robots

To calm this kind of panic we need to point to some helpful robots. The arm shown in Figure 10, the
RoboSurgeon NeuroArm, is actually fabricated from non-magnetic parts so it can operate within an
MRI field. The surgeon is able to do neurosurgery telerobotically getting exactly the right parts of the
tumor while seeing real time feedback as the surgery is performed. An early prototype of our UBC
smart wheelchair work is shown in Figure 11. This chair can use vision and other sensors to locate

itself, map its epvironment and allow its user to navigate safely.
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Figure 10. RoboSurgeon — NeuroArm
(MDA & Hotchkiss, 2007)

Figure 11. Prototype Smart Wheelchair (UBC, 2006)
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RoboCars: DARPA Urban Challenge

(@) “Junior” (b) “Boss”
(Stanford Racing Team, 2007) (CMU-GM Tartan Racing Team, 2007)

Figure 12. Two competitors in the DARPA Urban Challenge
Continuing with the helpful robot theme, consider autonomous cars. The original DARPA
Challenges, in 2004 and 2005, and the Urban Challenge in 2007 have catalyzed significant progress.
Sebastian Thrun and his team at Stanford developed Junior (Figure 11(a)), loaded with sensors and
actuators and horsepower and CPU's of all sorts, facing off against Boss (Figure 11(b)), the
CMU/GM Tartan racing team in the fall of 2007 with Boss taking first place and Junior second in
the Urban Challenge’. The media look at these developments and see them as precursors to robot
tanks, cargo movers, and automated warfare, reaching an understanding of why DARPA funded
them. However, Thrun (Thrun 2006) is an evangelist for a different view of such contests. The
positive impact of having intelligent cars would be enormous. Consider the potential ecological
savings of using highways so much more efficiently instead of paving over farmland. Consider the
safety aspect in reducing the annual camage of 4,000 road accident deaths a year in Canada alone.
Consider the fact that cars could negotiate at intersections, the way Dresner and Stone (Dresner 2008)
have simulated to show you could get maybe two to three times the throughput in cities in terms of
traffic if these cars could talk to each other instead of having to wait for dumb stop signs and traffic
lights. Consider the ability for the elderly or disabled to get around on their own. Consider the ability
to send one's car to the parking lot by itself and then call it back later. There would be automated

warehouses for cars instead of using all that surface land for parking. Truly, the strong positive
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implications of success in this area are enormous. But, can we trust them? This is a real problem and
it is one of the major problems. In terms of smart wheelchairs one major reason why they do not
already exist now is liability. It is almost impossible to get an insurance company to back a project or
a product. This clarifies why the car manufacturers have moved very slowly in an incremental way to

develop intelligent technology.

Can We Trust Robots?

There are some real reasons why we cannot yet trust robots. The way we build them now, not only
are they not trustworthy, they are also unreliable. So, can they do the right thing? Will they do the
right thing? And then, of course, there is the fear that I alluded to earlier that eventually they will

become autonomous, with free will, intelligence and consciousness.

Ethics at the Robot/Human Interface

Do we need robot ethics, for us and for them? We do. Many researchers are working on this
(Anderson and Anderson 2007). Indeed, many countries have suddenly realized this is an important
issue. There will have to be robot law. There are already robot liability issues. There will have to be
professional ethics for robot designers and engineers just as there are for engineers in all other
disciplines. We will have to factor the issues around what we should do ethically in designing,
building and deploying robots. How should robots make decisions as they develop more autonomy?
What should we do ethically and what ethical issues arise for us as we interact with robots? Should

we give them any rights? We have a human rights code; will there be a robot rights code?

There are, then, three fundamental questions we have to address:
A. What should we humans do ethically in designing, building and deploying robots?
B. How should robots decide, as they develop autonomy and free will, what to do ethically?

C. What ethical issues arise for us as we interact with robots?

*URIs: http://www.tartanracing,org, http://cs.stanford.edu/group/roadrunner
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Asimov’s Laws of Robotics

In considering these questions we will go back to Asimov (Asimov 1950) as he was one of the earlier
thinkers about these issues, who put forward some interesting, if perhaps naive, proposals. His
original three Laws of Robotics are:
I. A robot may not harm a human being, or, through inaction, allow a human being to come to
harm.
II. A robot must obey the orders given to it by human beings except where such orders would
conflict with the First Law.
III. A robot must protect its own existence, as long as such protection does not conflict with the

First or Second Laws.

Asimov’s Answers

Asimov’s answers to those questions I posed are that: First, you must put those laws into every robot
and by law manufacturers would have to do that. Second, robots should always have to follow the
prioritized laws. He did not say much about the third question. His plots arise mainly from the
conflict between what the humans intend the robot to do, and what it actually does do, or between
literal and sensible interpretations of the laws, because they are not codified in any formal language.
He discovered many hidden contradictions but they are not of great interest here. What is of interest
and important here is that, frankly, the laws and the assumptions behind them are naive. That is not to
blame Asimov as he was very early and pioneered the area, but we can say that much of the ethical
discussion nowadays remains naive. It is presupposes a technical abilities that we just do not have

yet.

What We Need

We do not currently have adequate methods for modeling robot structure and functionality, of
predicting the consequences of robot commands and actions, and of imposing requirements on those
actions, such as reaching the goal but doing it in a safe way and making sure that the robot is always

live, with no deadlock or livelock. And most importantly, one can put those requirements on the
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Figure 13. A Vertical Robotic System Architecture

A Constraint-Based Agent

We are interested in constraint-based agents. They are situated; they will be doing constraint
satisfaction but in a more generalized sense, not in the GOFCS sense. These constraints may be

prioritized. Now we conceive of the controller of the agent or robot as a constraint solver.

Dynamic Constraint Satisfaction

Consider the generalization of constraint satisfaction to dynamic constraint satisfaction. A soccer

example will serve us.
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we think back to the GOFAIR model we never actually did that. The reasoning was in the agent’s
head alone and we assumed that if it was correct everything else was correct. Finally, as I mentioned
earlier, one cannot just graft a symbolic system on top of a signal control based system and expect the
interface to be clean, robust, reliable, debuggable and (probably) correct. So the slogan is "No hybrid

models for hybrid systems."

Vertical Architecture

To satisfy those requirements for situated agents we have to throw away the horizontal three boxes
architectural model and move to a vertical 'wedding cake' architecture. As shown in Figure 13, as one
goes up these controllers, each controller sees a virtual body below it, modularizing the system in that
way. Each controller, as one goes higher, is dealing with longer time horizons but with coarser time
granularity and different kinds of perception. Each controller will only know what it needs to know.
This architectural approach was advocated by Albus (Albus 1981) and Brooks (Brooks 1986). It

corresponds quite closely to biological systems at this level of abstraction.
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robot but one has to be able to find out if the robot will be able to satisfy those requirements. We will
never have, for real robots, 100% guarantees but we do need within-epsilon guarantees. Any well-
founded ethical discussion presupposes that we (and robots) do indeed have such methods. That is

what we require.

Theory Wanted

So, finally coming back to the constraint-based agent theory, it should help to satisfy those
requirements. In short, we need a theory with a language to express robot structure and dynamics,
language for constraint-based specifications, and a verification method to determine if a robot
described in the first language will (be likely to) satisfy its specifications described in the second

language.

Robots as Situated Agents

What kind of robots, then, are we thinking about? These are situated robots tightly coupled to the
environment; they are not universal robots. Remember Rossum’s Universal Robots (Capek 1923)?
We are not going to build universal robots. We are going to build - we are building - very situated
robots that are functioning in particular environments for particular tasks. But those environments
are, typically, highly dynamic. There are other agents. We have to consider social roles. There is a
very tight coupling of perception and action, perhaps at many different levels. We now know that the
human perceptual system is not a monolithic black box which delivers a 3D model from retinal
images. There are many visual subsystems dealing with recognition, location, orientation, attention

and so forth. Our robots will be like that as well.

It is not ‘cheating' to embody environmental constraints by design, evolution or learning. It was
cheating in the old GOFAIR paradigm which did aim at universal robots. Everything had to be
described in, say, the logic and one could not design environmental constraints into the robots. We
think just following biology and natural evolution is the way to go and learning will play a major
part. Evolution is learning at the species level. Communication and perception are very situated. The
architectures are online, and there is a hierarchy of time scales and time horizons. Critically, we want
to be able to reason about the agent’s correctness as well as in the agents. We do not require the

agents to do reasoning - they may not - but certainly we want to be able to reason about them. When
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Figure 14. Solving a Dynamic Soccer Constraint

FootPosition(t)

Imagine a humanoid robot trying to kick a soccer ball. In Figure 14, we can see the projection into a
two dimensional space of a complex phase space that describes the position and velocity of the limbs
of the robot and the ball at time (¢). Each flow line in the figure shows the dynamics of the evolution
of the system from different initial conditions. The controller has to be able to predict where the robot
should move its foot to, knowing what it knows about the leg actuators and the ball and where it is
moving and how wet the field is and so on, to make contact with the ball to propel it in the right
direction. That corresponds to the 45° line y = x. So x here is the ball position on the horizontal axis
and y is the foot position on the vertical axis. That is the constraint we are trying to solve. If the
controller ensures the dynamical system always goes to (or approaches, in the limit) that constraint
and stays there, or maybe if it doesn’t stay there, but it always returns to it soon enough, then we say
that this system is solving that constraint, FootPosition(f) = BallPosition(f). In hybrid dynamical
systems language, we say the coupled agent environment system satisfies the constraint if and only if
the constraint solution set, in the phase space of that coupled hybrid dynamical system, is an attractor

of the system as it evolves. Incidentally, that concept of online hybrid dynamical constraint
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satisfaction subsumes the entire old, discrete offline GOFCS paradigm (Zhang and Mackworth
1993).

Formal Methods for Constraint-Based Agents

The Constraint Based Agent (CBA) framework consists of three components:
1. Constraint Net (CN) for system modeling
2. Timed for-all automata for behavior specification

3. Model-checking and Liapunov methods for behavior verification

These three components correspond to the tripartite requirement for the theory we said we wanted
earlier. Ying Zhang and I developed these formal methods for constraint-based agents (Zhang and
Mackworth 1995; Mackworth and Zhang 2003). First, there is an architecture for distributed
asynchronous programming languages called Constraint Nets (CN). Programs in CN represent the
robot body, the controller and the environment. In them are represented constraints that are local on
the structure and dynamics of each system. For behavior specification we either use temporal logics
or timed for-all automata. For verification techniques we have used model checking or generalized
Liapunov techniques taken from the standard control literature but generalized for symbolic as well
as numerical techniques. Rather than present any technical detail here, I shall sketch a case study,

again using soccer.

A Soccer Case Study with Prioritized Constraints

Suppose we want to build a robot soccer player which can move around the world, and repeatedly
find, track, chase and kick the soccer ball. The setup is shown in Figure 15. Pinar Muyan-Ozgelik
built a controller for this robot to carry out the task using the Constraint-Based Agent methodology
(Muyan-Ozgelik and Mackworth 2004). The detailed view of the robot in Figure 16, shows a robot
base, that can only move in the direction it is facing, but it can rotate in place to move in a new
direction. There is a pan-tilt unit that serves as a neck and a trinocular color camera on top of it that

can do stereo vision but in this experiment we used monocular color images only.
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Figure 15. A Robot and a Human Kick the Ball Around
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Figure 16. A Simple Soccer Player

This is a very simple, almost trivial example but even here you get a rich complexity of interaction
with emergent behavior. Imagine that you have got very simple controllers that can solve each of
these constraints: 1) to get the ball in the image 2) if the ball is in the image center it, 3) make the
base heading equal to the pan direction. Imagine that you are a robot and remember you can only
move forward in the direction you are facing with these robots. If you turn your head to the left and
acquire the ball in the image over there, then you have to turn your body to the left towards it and as
you are tracking the ball in the image you have to turn your head to the right in the opposite direction.
This is analogous to the well-known vestibulocular reflex (VOR) in humans. Now you are looking at
the ball and facing towards it, so now you can move towards it and hit the ball. The last constraint is

for the robot to be at the ball. These are the constraints and from that will emerge this unified
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behavior: acquire, track, chase and kick the ball behavior if we can satisfy these constraints, but in
that priority order. If at any time one is satisfying a lower priority constraint and a higher priority

constraint becomes unsatisfied the controller must revert to re-satisfying it.

The prioritized constraints are: Ball-In-Image (I), Ball-In-Center (C), Base-Heading-Pan (H), Robot-
At-Ball (A). The priority ordering is: I > C > H > A. We want to satisfy those prioritized constraints.
That is the specification. The specification for this system is one has to solve those four constraints
with that priority. That is all one would say to the system. It is a declarative representation of the
behaviour we want the system to exhibit. We can automatically compile that specification into a
controller that will in fact exhibit that emergent behavior. We can conceptualize these prioritized

constraint specifications as generalizations of the GOFAIR linear sequence plans.

Constraint-Based Agents in Constraint Nets

Suppose we are given a prioritized constraint specification for a controller at a certain level in the
controller hierarchy as in Figure 17. The specification involves Constraintl, Constraint2, and

Constraint3. It requires this priority order: Constraint] > Constraint2 > Constraint3.
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Figure 17. Synthesizing a Controller from a Prioritized Constraint Specification

We assume we have a simple solver for each constraint, Constraint Solver-1, -2 and -3. Constraintl is
the highest priority so if it is active and not satisfied its solver indicates, "I’m not satisfied now I’d
like you to do this to satisfy Constraintl". It might be a gradient descent solver, say. Its signal would
go through Arbiter-1. The arbiter knows this is higher priority and its signal passes it all the way
through to Arbiter-2 as well, to the motor outputs. If Constraint-1 is satisfied Arbiter-1 will let
ConstraintSolver-2 pass its outputs through and so on. If there is any conflict for the motors, that is
how it is resolved. If there is no conflict then the constraints can be solved independently because
they are operating in orthogonal spaces. Using that architecture we built a controller for those
constraints in the soccer player and we tested it all in simulation and it works. It works in a wide
variety of simulated conditions; it works with the same controller in a wide variety of real testing
situations. We found that the robot always eventually kicks the ball repeatedly, both in simulation and

experimentally. In certain circumstances, we can prove that the robot always eventually kicks the ball
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repeatedly. We conclude that the Constraint-Based Agent approach with prioritized constraints is an

effective framework for robot controller construction for a simple task.

Just as an aside, this is a useful way to think about a classic problem in psychology Carl Lashley, in a
seminal paper called, “The Problem of the Serial Ordering of Behavior” (Lashley 1 95 1), was writing
about speech production but the sequencing problem arises for all behaviors. Suppose one has a
large number of goals one is attempting to satisfy. Each goal is clamoring to be satisfied. How do
they get control of the actuators? How does one sequence that access? How does one make sure it is
robust? For prioritized constraints, it is robust in the sense that if the controller senses the loss of
satisfaction of a higher priority constraint it will immediately resume work on re-satisfying it. One
can also think of what we’ve done as a formalization of subsumption (Brooks 1991). So this is a
solution; I am not saying it is tze solution. It is a very simple- minded solution, but it is a solution to
the classic problem of the serial ordering of behavior. And it demonstrates that prioritized constraints

can be used to build more reliable dynamic agents.

Modeling Uncertainty

So far, nothing has been said about the element of chance but, of course, in real robots with real
environments there will be much noise and uncertainty. Robert St-Aubin and I have developed
Probabilistic Constraint Nets using probabilistic verification (St-Aubin 2006). As shown in Figure
18, there will be uncertainty in the model of the dynamics and in the dynamics themselves and in the
robot's measurement of the world. Moreover, one will be unable to fully model the environment so

there will be environmental disturbances.
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Figure 18. Uncertainty in Robotic Systems

Observations and Conclusion

Stepping back we observe that a very simple idea, constraint satisfaction allows us to achieve
intelligence through the integration of proactive and responsive behaviors and it is uniform top to
bottom. We see in the formal prioritized constraint framework the emergence of robust goal-seeking
behavior. I propose it as a contribution to the solution of the problem of a lack of technical
foundation to many of the naive proposals for robot ethics. So if one asks, "Can robots do the right
thing?" The answer so far is, "Yes, sometimes they can do the right thing, almost always, and we can

prove it, sometimes."
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