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Abstract Our goal is to develop practical and formal design methodolo-
gies for building integrated perceptual agents. The methodologies are evolving
dialectically. The symbolic methods of Good Old-Fashioned Artificial Intelli-
gence and Robotics (GOFAIR) constitute the original thesis. The antithesis
is reactive Insect AI. The emerging synthesis, Situated Agents, needs formal
rigor and practical tools. A robot is a hybrid intelligent dynamical system,
consisting of a controller coupled to its plant. The Constraint Net (CN) model
of Zhang and Mackworth is a formal and practical model for building hybrid
intelligent systems as Situated Agents. Even though a robotic system is, gen-
erally, a hybrid system, its CN model is unitary. We advocate an architecture
for robot controllers consisting of multi-layer constraint-satisfying modules.
We have developed a testbed for multiple, visually-controlled, cheap robot ve-
hicles performing a variety of tasks, including playing soccer. Soccer meets the
scientific requirements of the Situated Agent approach and as a task domain
is sufficiently rich to support research integrating many branches of robotics
and AL The controllers for our new softbot soccer team, UBC Dynamo98, are
modeled in CN and implemented in Java, using the Java Beans architecture.
We demonstrate that the formal Constraint Net approach is a practical tool for
designing and implementing controllers for perceptual robots in multi-agent
real-time environments.

1 Introduction

We need practical and formal design methodologies for building integrated perceptual
agents. Here we argue for a formal approach to the emerging synthesis, Situated Agents.
The approach is based on the view that any agent or robot is a hybrid intelligent dynamical
system, consisting of a controller coupled to its plant. The robot is symmetrically coupled
to a dynamic environment, forming a robotic system.

Similarly, knowledge-based image interpretation needs to be re-interpreted. The tra-
ditional Good Old-Fashioned Artificial Intelligence and Robotics (GOFAIR) approach
proposes that domain-specific knowledge is used by the robot/agent at run-time to dis-
ambiguate the retinal array into a rich world representation. The argument is that the
impoverishment and ambiguity of the visual stimulus array must be supplemented by
additional knowledge. This approach has failed to make substantial progress for several
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reasons. One difficulty is the engineering problem of building robots by integrating off-line
knowledge-based vision systems with on-line control-based motor systems. Especially in
active vision systems [2] this integration is difficult, ugly and inefficient [8]. Because of
such objections, some in the Al-robotics community have rejected the knowledge-based
approach adopting instead an ad hoc Gibsonian situated approach to perception that
exploits regularities of the particular environmental niche of the robot 6,1, 5, 4. In
[9], Mackworth argued that, with a radical re-interpretation of ‘knowledge-based’, we can
design, build and verify quick and clean knowledge-based situated robot vision systems.

2 The Design Problem

The robot design problem is formidable, regardless of whether the robot is designed
or modified by a human, by nature (evolution), by another robot (bootstrapping), or
by itself (learning). A robot is, typically, a hybrid intelligent system, consisting of a
controller coupled to its plant. The controller and the plant each consist of discrete-
time, continuous-time or event-driven components operating over discrete or continuous
domains. The controller has perceptual subsystems that can (partially) observe the state
of the environment and the state of the plant.

Robot design methodologies are evolving dialectically [8]. The symbolic methods of
GOFAIR constitute the original thesis. The antithesis is reactive Insect AI. The emerging
synthesis, Situated Agents, has promising characteristics, but needs formal rigor and
practical tools. The critiques and rejection, by some, of the GOFAIR paradigm have
given rise to the Situated Agent approaches of Rosenschein and Kaebling [10], Brooks [4],
Ballard [2], Winograd and Flores [12], Lavignon and Shoham [7], Zhang and Mackworth
[14, 8] and many others.

3 The Robot Soccer Challenge

Theory is vacuous without an appropriate application to drive designs, experiments and
" implementations. In 1992, Mackworth proposed robot soccer as a grand challenge problem
for the field [8] since it has the task characteristics that force us to deal all these issues
in a practical way for a percepetual, collaborative, real-time task with clear performance
criteria. At the same time, Mackworth also described the first implemented system for
playing robot soccer. Since then it has been a very productive environment both for our
laboratory (3, 11, 9, 17, 19, 18] and for many other groups around the world through the
influential RoboCup initiative [21], stimulating research toward the goal of building vision
and robotic systems that are uniform, clean, powerful and practical.

4 Constraint Nets

The Constraint Net (CN) model [15] is a formal and practical model for building hybrid
intelligent systems as Situated Agents. In CN, a robotic system is modelled formally as
a symmetrical coupling of a robot with its environment. Even though a robotic system
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is, typically, a hybrid dynamic system, its CN model is unitary. Most other robot design
methodologies use hybrid models of hybrid systems, awkwardly combining off-line com-
putational models of high-level perception, reasoning and planning with on-line models
of low-level sensing and control.

CN is a model for robotic systems software implemented as modules with I/O ports. A
module performs a transduction from its input traces to its output traces, subject to the
principle of causality: an output value at any time can depend only on the input values
before, or at, that time. The model has a formal semantics based on the least fixpoint
of sets of equations [15]. In applying it to a robot operating in a given environment,
one separately specifies the behaviour of the robot plant, the robot control program, and
the environment. The total system can then be shown to have various properties, such
as safety and liveness, based on provable properties of its subsystems. This approach
allows one to specify and verify models of embedded control systems. Our goal is to
develop it as a practical tool for building real, complex, sensor-based robots. It can be
seen as a development of Brooks’ subsumption architecture [4] that enhances its modular
advantages while avoiding the limitations of the augmented finite state machine approach.

A robot situated in an environment is modeled as three machines: the robot plant, the
robot control and the environment. Each is modeled separately as a dynamical system by
specifying a CN with identified input and output ports. The robot is modeled as a CN
consisting of a coupling of its plant CN and its control CN by identifying corresponding
input and output ports. Similarly the robot CN is coupled to the environment CN to
form a closed robot-enviroment CN.

Although CN can carry out traditional symbolic computation on-line, such as solving
Constraint Satisfaction Problems and path planning, notice that much of the symbolic
reasoning and theorem-proving may be outside the agent, in the mind of the designer.
GOFAIR does not make this distinction, assuming that such symbolic reasoning occurs
explicitly in, and only in, the mind of the agent.

The question “Will the robot do the right thing?” [14] is answered if we can:

1. model the coupled robotic system at a suitable level of abstraction,
2. specify the required global properties of the system’s evolution, and
3. verify that the model satisfies the specification.

In CN the modelling language and the specification language are totally distinct since
they have very different requirements. The modelling language is a generalized dynamical
system language. Two versions of the specification language, Timed Linear Temporal
Logic (17] and Timed V-automata [13], have been developed with appropriate theorem-
proving and model-checking techniques for verifying systems.

5 Constraint-Satisfying Controllers

Many robots can be designed as on-line constraint-satisfying devices [13, 16, 17]. A robot
in this restricted scheme can be verified more easily. Moreover, given a constraint-based
specification and a model of the plant and the environment, automatic synthesis of a
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correct constraint-satisfying controller becomes feasible, as shown for a simple ball-chasing
robot in [17].

A constraint is simply a relation on the phase space of the robotic system, which is
the product of the controller, plant and environment spaces. A controller is defined to be
constraint-satisfying if it, repeatedly, eventually drives the system into an e-neighborhood
of the constraint using a constraint satisfaction method such as gradient descent.

A constraint-satisying controller may be hierarchical with several layers of controller
above the plant. In this case each layer must satisfy the constraints appropriate to the
layer, defined on its state variables. The layers below each layer present to that layer as
a virtual robot plant in a suitably abstract state space [17, 18]. |

6 Soccer-Playing Robots

The ideas presented here have been developed and tested by application to the challenge
of designing, building and verifying active perception systems for robot soccer players
with both off-board and on-board vision systems.

In the Dynamo (Dynamics and Mobile Robots) Project in our laboratory, we have ex-
perimented, since 1991, with multiple mobile robots under visual control. The Dynamite
testbed consists of a fleet of radio-controlled vehicles that receive commands from a re-
mote computer. Using our custom hardware and a distributed MIMD environment, vision
programs are able to monitor the position and orientation of each robot at 60 Hz; plan-
ning and control programs generate and send motor commands at the same rate. This
approach allows umbilical-free behaviour and very rapid, lightweight fully autonomous
robots. Using this testbed we have demonstrated various robot tasks [3], including play-
ing soccer [11].

One of the Dynamo robots, Spinoza, is a self-contained robot consisting of an RWI base
with an RGB camera on a pan-tilt platform mounted on top and binocular monochrome
stereo cameras in the body. As a illustration of these ideas consider the task for Spinoza
of finding, tracking and chasing a soccer ball, using the pan-tilt camera. After locating
the moving ball Spinoza is required to move to within striking distance of the ball and
maintain that distance. The available motor commands control the orientation of the
base, the forward movement of the base, and the pan and tilt angles of the camera. The
parameters can be controlled in various relative/absolute position modes or rate mode.
The available rate of pan substantially exceeds the rate of body rotation. A hierarchical
constraint-based active-vision controller can be specified for Spinoza that will achieve and
maintain the desired goal subject to safety conditions such as staying inside the soccer
field, avoiding obstacles and not accelerating too quickly. If the dynamics of Spinoza and
the ball are adequately modelled by the designer then this constraint-based vision system
will be guaranteed to achieve its specification.

We have recently extended these ideas to build multi-layer constraint-satisfying con-
trollers for a complete soccer team [19]. The controllers for our new softbot soccer team,
UBC Dynamo98, are modeled in CN and implemented in Java, using the Java Beans
architecture [18]. They control the soccer players’ bodies in the Soccer Server developed
by Noda Itsuki[20] for the RoboCup Simulation League [21]. This experiment provides
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evidence that CN is a uniform, clean, powerful and practical design framework for per-
ceptual robots. In the rest of this paper we describe in more detail the constraint-based
architecture and the UBC Dynamo98 system built in it.

7 Modeling in Constraint Nets

A robot is an integrated system, with a controller embedded in its plant. A robot controller
(or control system) is a subsystem of a robot, designed to regulate its behavior to meet
certain requirements. A robotic system is the coupling of a robot to its environment.
Robotic systems are, in general, hybrid dynamic systems, consisting of continuous, discrete
and event-driven components. The dynamic relationship of a robot and its environment
is called the behavior of the robotic system.

Constraint Nets (CN), a semantic model for hybrid dynamic systems, can be used
to develop a robotic system, analyze its behavior and understand its underlying physics.
Using this model, we can characterize the components of a system and derive the behavior
of the overall system. CN is an abstraction and generalization of dataflow networks. Any
(causal) system with discrete/continuous time, discrete/continuous (state) variables, and
asynchronous/synchronous event structures can be modeled. Furthermore, a system can
be modeled hierarchically using aggregation operators; the dynamics of the environment
as well as the dynamics of the plant and the controller can be modeled individually and
then integrated [17)].

A constraint net consists of a finite set of locations, a finite set of transductions and
a finite set of connections. Formally, a constraint net is a triple CN = (L¢,Td,Cn),
where Lc is a finite set of locations, T'd is a finite set of labels of transductions, each with
an output port and a set of input ports, Cn is a set of connections between locations.
A location can be regarded as a wire, a channel, a variable, or a memory cell. Each
transduction is a causal mapping from inputs to outputs over time, operating according
to a certain reference time or activated by external events.

Semantically, a constraint net represents a set of equations, with locations as variables
and transductions as functions. The semantics of the constraint net, with each location
denoting a trace, is the least solution of the set of equations. For trace and some other
basic concepts of dynamic systems, the reader is referred to [22].

Given CN, a constraint net model of a dynamic system, the abstract behavior of
the system is the semantics of CN, denoted [CN], i.e., the set of input/output traces
satisfying the model.

A complex system is generally composed of multiple components. A module is a
constraint net with a set of locations as its interface. A constraint net can be composed
hierarchically using modular and aggregation operators on modules. The semantics of
a system can be obtained hierarchically from the semantics of its subsystems and their
connections.

A constraint net is depicted by a bipartite graph where locations are depicted by
circles, transductions by boxes and connections by arcs. A module is depicted by a box
with rounded corners. :

A control system is modeled as a module that may be further decomposed into a
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Figure 2: A robotic system

hierarchy of interactive modules (Fig. 1). The higher levels are typically composed of
event-driven transductions and the lower levels are typically analog control components.
The bottom level sends control signals to various effectors, and at the same time, senses
the state of effectors. Control signals flow down and the sensing signals flow up. Sensing
signals from the environment are distributed over levels. Each level is a black box that.
represents the causal relationship between the inputs and the outputs. The inputs consist
of the control signals from the higher level, the sensing signals from the environment and
the current states from the lower level. The outputs consist of the control signals to
the lower level and the current states to the higher level. Usually, the bottom level is
implemented by analog circuits that function with continuous dynamics and the higher
levels are realized by distributed computing networks.

Furthermore, the environment of the robot can be modeled as a module as well. A
robotic system can be modeled as an integration of a plant, a controller and an environ-
ment (Fig. 2). A plant is a set of entities which must be controlled to achieve certain
requirements, for example, a car with throttle and steering. A controller is a set of
sensors and actuators, which, together with software/hardware computational systems,
(partially) senses the states of the plant (X) and the environment (Y'), and computes the
desired control inputs (U) to actuate the plant. An environment is a set of entities beyond
the (direct) control of the controller, with which the plant may interact. For example,
obstacles to be avoided and objects to be reached can be considered as the environment
of a robotic system.

In most cases, desired goals, safety requirements and physical restrictions of a robotic
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system can be specified by a set of constraints on variables U U X UY. The controller is
then synthesized to regulate the system to satisfy the set of constraints. The semantics
(or behavior) of the system is the solution of the following equations:

X = PLANT(U,Y), (1)
U = CONTROLLER(X,Y), (2)
Y = ENVIRONMENT(X). - (3)

Note that PLANT, CONTROLLER and ENVIRONMENT are transductions map-
ping input traces to output traces (not'simple functions), and the solution gives X, Y
and U as tuples of traces (not values).

8 The CN Architecture of the Controller for a Soccer-
playing Softbot

The soccer-playing softbot system is modeled as an integration of the soccer server and
the controller (Fig. 3). The soccer server provides 22 soccer-playing softbots’ plants and
the ball. Each softbot can be controlled by setting its throttle and steering. When the
softbot is near the ball (within 2 meters), it can use the kick command to control the
ball’s movement. For the controller for one of the soccer-playing softbots, the rest of the
players on the field and the ball are considered as its environment. The sensor of the
controller determines the state of the plant (position and direction) by inference from a
set of landmarks it ‘sees’. The rest of the controller computes the desired control inputs
(throttle and steering) and sends them to the soccer server to actuate the plant to move
around on the field or kick or dribble the ball.

For the soccer-playing softbot, we have designed a three-level controller. The lowest
level is the Effector&Sensor. It receives ASCII sensor information from the soccer server
then translates it into the World model. It also passes commands from the upper level
" down to the soccer server. The middle level is the Executor. It tries to translate the
action (goal) which comes from the upper level into a sequence of commands and sends
them to the lowest level. The Executor also evaluates the situation and sends it to the
top layer (Planner). The highest level is the Planner. It decides which action (goal) to
take based on the current situation and it may also consider the next action assuming the
current action will be correctly finished on schedule.

The controller is composed of four CN modules. The Effector module combines with
the Sensor module to form the lowest level Effector&Sensor. The Executor module forms
the middle level and the Planner module forms the highest level (Fig. 4).

The CN controller is written in Java because it is object-oriented, provides features like
easy thread programming and an effective event mechanism. The Java Beans component
architecture is used here to implement the CN modules.

Events are one of the core features of the Java Beans architecture. Conceptually, events
are a mechanism for propagating state notifications between a source object and one or
more target listener objects. Under the new AWT event model, an event listener object
can be registered with an event source. When the event source detects that something
interesting has happened it calls an appropriate method in the event listener object.
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Figure 3: The soccer-playing softbot system

CN model is a data-flow model; each CN module can be run concurrently on different
processors to improve the speed of the controller. Since these modules are event-driven and
fixed-sample-time-driven, they are best implemented as Java threads to improve efficiency
on a single CPU too. If no event arrives, they go to sleep so the CPU can deal with other
softbots. In such a multi-threaded environment where several different threads may be
simultaneously delivering events and/or calling methods and/or processing event objects’
and/or setting properties, special considerations are needed to make sure these beans
properly coordinate their behaviour, using wait/notify and synchronization mechanisms.

The Sensor module wakes up when new information arrives. It then processes the
ASCII information from soccer server, updates the world model, and sends an event to
the Executor. The Sensor goes to sleep when there is no information waiting on its socket.

The Executor module receives the event from the Sensor, then it processes the world
model and updates situation states. These situation states tell the Planner if it can kick
the ball, if the ball is in its sight, if it is the nearest player to the ball, if there are obstacles
on its way, the action from the Planner has finished or not, and so on. Any change of
situation creates an event and triggers the higher level Planner module. This part of the
Executor runs in the same thread as the Sensor module.

The main part of the Executor executes actions passed down from the Planner. It
wakes up when it receives an action event from the Planner module. It produces a sequence
of commands which are supposed to achieve goals (actions) when they are performed.
Commands such as kick, dash, and turn are sent to the Effector’s Movement_command
buffer. Other commands are sent to the Effector’s Sensing_command buffers: the Say_-message
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buffer, the Change_view buffer, and the Sense_body buffer. The Executor goes to sleep
when there is no action waiting for its processing.

The Planner module wakes up when triggered by a situation-changed event from the
Executor. It then produces actions and pushes them into Executor’s action buffer and
sends an event to trigger the Executor to execute actions. Then it goes to sleep until a
new event arrives.

The Effector module is a fixed-sample-time-driven module. Every 100ms, it gets one
command from each non-empty buffer and sends them to the soccer server.

This is a hybrid control system because it has both event-driven' and fixed-sample-
time-driven modules.

9 Constraint-Based Control for Soccer-playing Soft-
bot

Constraints are considered to be relations on a set of state variables; the solution set of
the constraints consists of the state variable tuples that satisfy all the constraints. The
behavior of a dynamic system is constraint-based if the system is asymptotically stable at
the solution set of the given constraints, i.e., whenever the system diverges because of some
disturbance, it will eventually return to the set satisfying the constraints. Most robotic
systems are constraint-based, where the constraints may include physical limitations,
environmental restrictions, and safety and goal requirements. Most learning and adaptive
dynamic systems exhibit some forms of constraint-based behaviors as well [16].

A controller is an embedded constraint solver if the controller, together with the plant
and the environment, satisfies the given constraint-based specification.

In the framework for control synthesis, constraints are specified at different levels
on different domains, with the higher levels more abstract and the lower levels more
plant-dependent. A control system can also be synthesized as a hierarchy of interactive
embedded constraint solvers. Each abstraction level solves constraints on its state space
and produces the input to the lower level. Typically the higher levels are composed of
digital/symbolic event-driven control derived from discrete constraint methods and the
lower levels embody analog control based on continuous constraint methods [17].

The Executor module can be seen as an embedded constraint solver on its world state
space. It solves the constraint-based requirements passed down from the higher layer
Planner module. For example, if the action from the Planner is to go to (z4,y4) and the
position state variables of the robot soccer player are (z,y), the set of constraints are
T = T4,y = yq. If the action from the Planner is to intercept the ball at (zy, ys, vZs, VYb),
and the state variables of the robot soccer player are (z,, ¥p, Zp, Vyp), the set of constraints
are Tp + v, xt = zp + vTp xt and y, + vy, ¥ t = yp + vy * L.

The Planner module can be seen as an embedded constraint solver on its situation
state space. The ultimate constraint here is: the number of goals scored should be more
than its opponent’s. To satisfy this ultimate constraint, the robot has to satisfy a series
of other constraints first.

These constraints have their priorities. The constraints with higher priority must be
solved earlier. The constraint of knowing its position and the ball’s should be solved first.
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Then the robot will try to solve the constraints of collision and offside. In order to win,
the robot will consider some other constraints, such as, its own team’s time in possession
of the ball should be greater than its opponent’s team, the ball should be near enough to
the opponent’s goal, the ball should be as far away as possible from its own goal, and the
ball should be kicked into opponent’s goal instead of its own goal.

It chooses actions to satisfy the constraints at this level. When robot loses its own
position or the ball’s position for a certain amount of time, it sends find.-me or find_ball
actions down to the Executor. When the robot senses that it will collide with other players,
it sends avoid_collision action down to the Executor. It also sends down avoid_of f side
down to the Executor if it finds itself is at offside position. The robot tries to intercept
the ball if it senses that it is nearer to the ball than its teammates, if not, it goes to a
suitable position to assist its teammate’s interception.

If the robot gets the ball, it has to choose where to kick. The best action should
optimally satisfy the constraints above. Here we have two problems. First, the robot
can’t be certain that an action will satisfy a constraint because the soccer server provides
a noisy, dynamic world. For example, it’s impossible for the robot to choose a kick
direction which makes sure that its teammates will get the ball first. We can only say
that if the robot chooses to kick in this direction, the probability of teammates getting
the ball first is high. Second, the robot can’t find a kick direction that can maximize all
the probabilities of satisfying all the constraints. For example, if the robot chooses the
kick direction which makes the probability of its teammates getting the ball very high,
the ball might be kicked away from its opponent’s goal and near its own goal.

We solve this by setting weights for these constraints and combine these constraints
into a utility function , which assigns a single number to express the desirability of an
action. The Planner chooses the action with the highest utility.

Ula) = 3 ki * P(a)

U(a) is the action a’s utility. P;(a) is the probability of satisfying the constraint 4
when taking the action a. k; is the weight for the constraint :.

These weights can be set by hand. They can also be tuned by learning methods,
such as reinforcement learning. We have designed a coach program using an evolutionary
algorithm to adjust these weights and other parameters in the controller.

Also the utility function U(a) need not be linear, it might be obtained by using neural
networks learning.

A series of soccer-playing experiments were performed for evaluating the constraint-
based controller. In one experiment three different versions of the controller were com-
pared to find out which constraint is more important. The controller for team 1 considers
all the constraints. The controller for team 2 only considers the constraint of kicking the
ball into the opponent’s goal. The controller for team 3 only considers the constraint of
letting its teammates get the ball first. Table 1 shows the scores for all the matches.

From this experiment, we learn that the constraint of shooting at goal is more impor-
tant than the constraint of passing the ball to its teammates and the more constraints
are considered, the better the performance.
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Table 1: Scores for soccer games (Row:Column)

Vs Team 1 | Team 2 | Team 3
Team 1 - 2:1 6:1
Team 2 1:2 - 5:0
Team 3 1:6 0:5 -

13

10 Summary and Conclusions

Constraint Nets (CN), a semantic model for hybrid dynamic systems, can be used to
develop a robotic system, analyze its behavior and understand its underlying physics.

The soccer-playing softbot system is modeled as an integration of the soccer server
and the controller. The three-level controller is composed of four modules. The Effector
module combines with the Sensor module to form the lowest level Effector&Sensor. The
Executor module forms the middle level and the Planner module forms the highest level.
The controller is written in Java. The Java Beans component architecture is used here
to implement the CN modules and we use the Java event mechanism to implement com-
munication among these CN modules. They are implemented in Java threads to improve
efficiency.

The controller for soccer-playing softbot is synthesized as a hierarchy of interactive
embedded constraint solvers. Each level solves constraints on its state space and produces
the input to the lower level.

In short, we have demonstrated that the CN model is a formal and practical tool
for designing and implementing, in Java, constraint-based controllers for robots in multi-
agent, real-time environments.

11 Conclusions

We have described the motivation, some results and some current directions of a long-term
project intended to develop a new approach to the specification, design, implementation
and evaluation of robotic systems. The practical result is a new methodology for building
intelligent, perceptual systems.
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