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ABSTRACT

Computational vision has developed as a dis-
tinct scientific field in the last decade with a
shared oaradigm, a research strategy and a collec-
tion of results within a common theory. That
develaopment has focussed on an analysis of the
visual task itself; the task requires the
unpacking of a collection of confounding processes.
Explicit intermediate representations of the
¢onfoundad domains must be constructed, with
certain characteristics. Constraint-dased
regresentations and processes provide a common
methodology at all levels of the visual system.
Adequacy criteria may be applied to the various
representations of visual knowledge, both implicit
and explicit, that have been proposed. Finally,
nine broad areas of research progress are
summarized. The agenda for the next decade must
include understanding meta-knowledge computation
such as the representation and use of the hierar-
chies of default assumptions that our microtheories
require.

[  THE TASK

The vision problem is characterized by
information loss in the image formation process.
The intensity values in an image are the result of
the interaction of many factors, including the
intensity, colour, location and nature of the
1ight sources, the gosition, reflectance, trans-
parency and opaqueness of the objects in the scene,
the transmission, refractance, absorption and
scattaring properties of the light transmission
media, the optical properties of the imaging
device, the response characteristics of the sensor
and so forth.

The difficulty of computational vision arises
not because we do not understand or cannot model
these processes and their interactions; we do and
we can. The difficulty Ties in representing the
uncertainty caused by the many-to-one confounding
process itsalf and in resalving that uncertainty
through the acquisition of more imagery or the
addition of other constraints on the elements of
the confounded domains.

II  THE EMERGEMCE QF A SCIENCE

The emergence of the science of computational
vision over the last decade has been characterizad
by this focus on the nature of the visual task
itself. Any vision system must make explicit
descriptions of the sets of alements of the
implicit, confounded domains that could have
produced the image under certain specific 2 Jriori
assumptions (Mackworth, 1983a). ’

Marr (1982) insisted on three levels of
analysis: a computational theory of the task that
specifies the purposes of the system, the domains
involved and the input/output predicates for
processes operating on those domains, an algorith-
mic level giving detailed descriptions of thossz
processes and a mechanism level that describes the
implementation of thosa algorithms on the real
hardware available (or on virtual hardwars, sincs
this analysis may be racursive). The ressarch
conducted in the style of this dictum has had
several effects. First, we see that ther2 can :2
a genuine science of vision with a common body of
theory at the computational level. This scienc2
can be applied either to biological systems or <o
man-made artefacts. Second, an obsession with
particular algorithms or mechanisms without
justification or analysis at the computational
task level is sterile. Some historically early
work concentrated on performance and one-off
demonstrations, even going so far as to make a
virtue of necessity, claiming "The program is the
theory". The days of the theary-shy vision
hacker are over. Equally, of course, we must
avoid Charybdis: thegry that exists for its own
sake, masquerading as pure science, with all i*s
seductive allure. Hignly mathematical micro-
theories embodying artificial assumptions, not
embedded in a realistic system design, may not 5e
very useful .

Since the computational level of analysis is,
in large measure, dictated by the task and the
mechanism level dictated, in some sanse, 5y the
hardware, the widest choice with the weakest
evaluation measures occurs at the algorithmic
level (Poggio, 1983).

I [NTERMEDIATE REPRESENTATIONS

Since the confounding process must be
unpacked as a series of confounding procésses we
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~.57 have exolicit representations of the inter-
3I2 3lages Sucnh intermadiate repre sanzations
nave certain characteristics. They must oe
5le of finitely representing all and anly the
al]r) infinite numcer of Ponf1ﬂuraf10rs in the

rmediate domains that could have produced the
e They are best thought of as intensional
riotions of equivalence classes in some con-
yratian space for the intermediate domain. Tnny
st Se capable of being refined as additional
n.ormation is available in the form of additional
imagery of the assumed common underlying scene
whether that information comes from stereoa, colour,
structured light, a rangefinder, motion or some
other source, They must be efficiently computable
from the information available in the imags and
the other intermediate representations. They must
be capable of representing the tradeoffs between
intarmediate domains such as the shape/perspective
tradeoff or the reflectance map/shape tradeoff
(Woodham, 1983) that allow one factor to be varied
while simultaneously varying the other to maintain
a constant image. Ffinally, they must be capable
of represanting and enabling access to model
constraints (and their Tog1ca1 consequences) such
as "this surftace is convex", "all surfaces are
'smooth' or ruled", "all surfaces have Lambertian
reflectance maps", "all objects in this domain are
opaque polyhedra”, "this object is a banana" and
the like.

Intermediate representations such as the
primal sketch (Marr, 1982), intrinsic images
(8arrow and Tenenbaum, 1978), the gradient space
(Huffman, 1971; Mackworth, 1973), the 24D sketch
(Marr, 1982), the reflectance map (Horn, 1977) and
generalized cylinders (Binford, 1971) have been
developed with some of these criteria in mind if
not explicitly stated, although none of them
properly satisfy all those criteria.

Intermediate representations are arranged on
a spectrum based on the degree of egocentricity
of their coordinate frames. The ones noted are so
ordered. Representations can be categorized as
retina-centred, viewer-centred, object-centred
and world-centred.

| .
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IV CONSTRAINTS

This characterization of the vision task is
based on the fact that a single image undercon-
strains the scene; it asks how to represent the
equivalence class of possible scenes. It then
asks what additional constraints are necessary to
specify the scene uniquely. The additional
constraints may arise from a priori general
knowledge of the scene domain, the imaging process,
Tighting and the like or from contingent know-
ledge of context or from general or specific
object models or from additional images together
with assumptions about how they interrelate in
the scene domain,

The constraint-based view has proven useful
at the computational, algorithmic and mechanism
levels of analysis {Marr, 1982; Mackworth, 1973,

1977a; Zucker, 1981). The intermediate repre-
sentations can also bSe judged on their ability zo
support this view of the process by allowing
representation of such constraints at all levels
of the visual system,

vV VISUAL KMOWLEDGE REPRESENTATIC!HS

The vision task requires knowledge-based
processing thus placing it firmly in the artifi-
cial intelligence paradigm. A set of criteria for
descriotive adequacy and procedural adeguacy must

be used to evaluate proposed visual knowladge
representations (Clowes, 1971; Havens and
Mackworth, 1983). Parenthetically, this does not
prejudge the goal-driven/data-driven distinction
which is simply one of the procedural adeguacy
issues for the particular task and level of the
vision system involved.

The constraint-based approach is not commit-
ted to a thoroughgoing proceduralization of the
knowledge nccessary for interpretation. As a
consequence it enables the design of image-base<
systems where there may be no rigid distinction
between input and output (Barrow and Tenenbaum,
1978). Information and constraints are simply
propagated from whichever source is able to
supply them. In overdetermined visual tasks such
as industrial inspection or remote sensing, where
part geometry, digital terrain, reflectance and
Tighting models are available, this may be most
fruitful approach (Woodham, 1983), It also
suggests a rapprochement of the long-divorced
yision and graphics communities. Other «nawledge
representations including logic (Kowalski, 1979
grammars (Browse, 1982) and schema systems (Havens
and Mackworth, 1983) share this procedural
adequacy advantage (Mackworth, 1983b).

VI THE ACHIEVEMENTS

In summary, there are nine main areas of
achievement of the past decade of computiational
vision. First, there has been a convergence an a
paradigmn for a science of computational vision
(Brady, 1981). Second, there has been an emphasis
on understanding, modelling and exploiting the
physics of image formation - its geometry and
radiometry (Horn, 1977). Third, the constraint-
based nature of vision has become clear., Ffourth,
the importance of various intermediate reoresan-
tations and criteria for judging them have emerged.
Fifth, there has been a flurry of microtheories,
results and algorithms for shape recovery from
various information sources including shading
(1keuchi and Horn, 1981), texture (Witkin, 1981),
motion (Ullman, 1979; Longuet-Higgins and
Prazdny, 1981), stereo (Grimson, 1981; B8aker and
Binford, 1981), contour (Clowes, 1971; Huffman,
1971; Mackworth, 1973; 8arrow and Tenerdaum,
1981, Kanade, 1981) and photometric stereo
(Woadham, 1981). Sixth, some of the new insights
have been applied to understanding the neuroc-
physiology and psychophysics of mammalian vision
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22 23, 5llman and Hildrezh, 1983,
33}, sSeventh, new non-von \leumann

5% cemoutation of the coooerative (Marr,
connectionist (Hinton, 1981; Ballard,
relaxation {Zucker, 1981), and consistency
wortn, 1977b) style are emerging and

7ing new architectures. Eighth, criteria
criptive and procedural adequacy have guided
e development of schema-based knowledge repre-
entations for high level vision {Hanson and
Risaman, 1678; B8rady and Wielinga, 1978;

8rowse, 1982; Havens,-1983; Havens and Mack-
worth, 1983). Engineering applications of the

new science in industrial inspection, robotics

and remote sensing are flourishing at CMU, SRI,
Machine Intelligence, Fairchild, Hitachi, GM,
Stanford, MIT, McGill, USC and many other Tabs
around the world.
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VII  THE AGEMOA

The agenda for the next decade has the same
itam at the top of the list as the agenda of the
last decade, "How is vision possible?* The
answers to that question will continue to flow
from pushing hard at the boundaries of all the
nine areas outlined above.

One additional research topic must be added
to that agenda. The current standard theory has
within it a Targe collection of microtheories
concerned, for example, with shape recovery. Each
of these microtheories has its own set of assump-
tions and restrictions, domain of applicability,
recuisite ‘inputs and attached methods, many of
which are implicit both in the theories and the
programs that implement them. We must now learn
how to represent these knowledge "bundles"
explicitly in our programs and have well-struc-
tured ways of indexing, invoking, using and
coordinating them.

As an example of this, our cooperative inter-
pretation paradigm suggests that two (or more)
knowledge sources can work synergistically to
interpret an image when either alone would do
poorly (Mackworth, 1978), Glicksman's (1983)
Missze system uses the qualitative spatial scene
knowledge provided by the Mapsee2 interpretation
of a sketchmap to augment the spectral and spatial
constraints crudely extracted from an aerial image
of “he same scene, integrating information from
both saurces into a single schema-based represen-
tation.

More generally, meta-knowledge computation
must be part of the vision system. One approach
to this is to apply default logic theory {(Reiter,
1920). Many logical implications flow from the
scena domain to the image domain but can only be
reversed under various contingent "general view-
point", "general light source” or "smooth surface”
assumptions analogous to the "closed world" or
"circumscription” (McCarthy, 1980) assumptions.

As a trivial example, a straight edge in a 30
scene is depicted as a straignt line in the image.
The abductive inference step required to reverse

that logical impliciation does not follow without
explicitly invoking the default "general view-
point" assumption. Current vision systems (Lowe
and 3inford, 1981; B8inford, 1981) abound with
examples of this style of reasoning. 'We must
develop a logic of depiction.

The importance of hierarchical descriptions
both in the image domain and in the scene domain
is well understood. Spatial frequency channels,
for example, simply encode & hierarchy of image
detail useful for edge detection (Marr and
Hitdreth, 1980) and stereo matching (Grimson,
1981). Within a particular scene domain, specia-
ljzation and composition hierarchies serve both
descriptive and procedural adequacy (Mackworth
and Havens, 1981). Hierarchical descriptions
will also prove to be useful for organizing
collections of default and domain assumptions of

.widely varying power and generality.
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