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CONSTRAINT SATISFACTION

Constraint satisfaction is an umbrella term for a variety
of techniques of Al and related disciplines. In this entry
attention is focused on the main approaches, such as back-
tracking, constraint propagation, and cooperative algo-
rithms, with some consideration given to the motivations
and techniques underlying other constraint-based sys-
tems.

The first class of constraint satisfaction problems con-
sidered is those in which one has a set of variables, each to
be instantiated in an associated domain and a set of Bool-
ean constraints limiting the set of allowed values for spec-
ified subsets of the variables. This general formulation
has a wide variety of incarnations in various applications:
it is a general search (qv) problem. One standard approach
involves backtracking (gv); various forms of “intelligent”
backtracking are surveyed. A complementary approach
based on the class of consistency algorithms has some nice
properties that are described and illustrated.
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The second class of problems considered is the numeri-
cal optimization problems that arise when one is design-
ing a system to maximize the extent to which the solu-
tions it provides satisfy a large number of local
constraints. Algorithms for their solution are based on
generalizations of the consistency algorithms for applica-
tions primarily in computational vision. These algo-
rithms, which have a high degree of potential parallelism,
are variously known as cooperative or probabilistic relax-
ation algorithms.

One can call these two problem classes Boolean con-
straint satisfaction problems and constraint optimization
problems, respectively. As with all dichotomies, this one is
not absolute. Some approaches lie between these two
poles; others combine them. There are, in fact, many other
dimensions along which one could categorize the area, but
this is the best first cut.

BOOLEAN CONSTRAINT SATISFACTION PROBLEMS

A Boolean constraint satisfaction problem (CSP) is char-
acterized as follows: given is a set V of n variables {v;, vq,

., Ua}, associated with each variable v; is a domain D;
of possible values. On some specified subsets of those vari-
ables, there are constraint relations, given that there are
subsets of the Cartesian product of the domains of the
variables involved. The set of solutions is the largest sub-
set of the Cartesian product of all the given variable do-
mains such that each n-tuple in that set satisfies all the
given constraint relations. One may be required to find
the entire set of solutions or one member of the set or
simply to report if the set of solutions has any members—
the decision problem. If the set of solutions is empty, the
CSP is unsatisfiable.

A surprisingly large number of seemingly different ap-
plications can be formalized in this way. Some of them are
enumerated below. Of particular theoretical interest is
the map-coloring problem. Consider, for example, the
problem of deciding if three colors suffice to color a given
planar map s::ch that each region is a different color from
each of its neighbors. This is formulated as a Boolean CSP
by creating a variable for each region to be colored, associ-
ating with each variable the domain {red, green, blue},
and requiring for each pair of adjacent regions that they
have different colors. Since the map-coloring problem is
known to be NP-complete and is therefore believed inher-
ently to require exponential time to solve, one does not
expect to find an efficient polynomial time algorithm to
determine if a general CSP is satisfiable.

Various restrictions on the general definition of a CSP
are possible. For example, the domains may be required to
have a finite number of discrete values. If this is the case,
the constraining relations may be specified extensionally
as the set of all p-tuples that satisfy the constraint. One
may further require that all the relations be unary or
binary, that is, that they only constrain individual vari-
ables or pairs of variables. These restrictions apply to the
map-coloring example above. However, they are not nec-
essary for some of the techniques reported here to be ap-
plicable. For example, suppose one were planning the lay-
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out of furniture in an office. The position of each item of
furniture would be a variable, with an associated domain
that would contain an infinite number of pairs (or triples,
if rotations are allowed) of real values. Those domains
would have to be described intensionally by, for example,
describing the boundaries of the connected subspaces per-
mitted for that item. The constraints, such as “The waste-
basket must be within three feet of the chair. The door
must be unobstructed,” must also be specified intension-
ally using, perhaps, algebraic inequalities on the values of
the constrained variables. Moreover, one might have p-
ary relations such as “The desk must be between the chair
and the door.”

Crossword puzzles are used here as a tutorial example
of the concepts of constraint satisfaction. Consider the
puzzle in Figure 1. To simplify the presentation, assume
that one is required to find in the given word list the eight
words that correspond to 1 across, 2 down, and so on, with
duplicates allowed. The reader should try to solve this
simple CSP now, introspecting on the methods used as one
goes through the process of looking for a solution.

In general, one may represent the satisfiability deci-
sion problem for CSP as equivalent to determining the
truth of a well-formed formula in first-order predicate
logic (qv):

Ax;Fxy- - - Fx, 0, EDY N\ (g EDY N - - N (x, € D,)
VAN Pl(xl) A Pz(xz) VANCEESRIVAN P,,(x,,) A\ Plz(xl, xz)
A P13(x1) xa) AXIEIRIAN Pn—l,n(xn—ly xn) (1)

Here Py; is included in the formula only if i < j, since it
is assumed that P(x;, x;) = Py(x;, x;). Initially here, only
constraints representable as unary and binary predicates
are considered. For the crossword puzzle the unary con-
straints {P;} specify the word length. P, requires that the
word starting at 1 across have five letters. the binary con-
straints arise when a word across intersects a word down.
For example P;, requires that the third letter of word 1
across be the same as the first letter of word 2 down. In
general, but not for this example, p-ary predicates (1 <
P =< n) are required.

For binary predicates another convenient problem rep-
resentation is a network consisting of a graph with a ver-

Hoses Hoses
Laser Laser
1 Across Sails Sails 2 Down
Sheet Sheet
Steer Steer

Word List
Aft Laser
Ale Lee
Eel Line
Heel Sails
Hike Sheet
Hoses Steer
Keel Tie
Knot

Figure 1. A constraint satifaction problem. Solve the crossword.

4 Across 3 Down
Aft Hiel

7 Across é\!j B = ?ée? 5 Down
Lee Knot
Tie Line

8 Across 6 Down

Figure 2. The crossword puzzle constraint network.

tex for each variable with its associated domain attached
and an edge between the vertices corresponding to each
pair of directly constrained variables. In the crossword
puzzle constraint network shown in Figure 2, the initial
domain of words for a variable is shown inside the vertex
for that variable.

Note that only words satisfying the unary word length
constraint are shown. In general, for p-ary constraints
(p > 2), a hypergraph representation with a hyperedge for
each constraint connecting the p vertices involved is re-
quired.

BACKTRACKING AND CONSISTENCY ALGORITHMS FOR
CONSTRAINT SATISFACTION PROBLEMS

Generate and Test

Assuming finite discrete domains, there is an algorithm
to solve any CSP. The assignment space D = D; x D, X

* » X D, is finite, and so one may evaluate the body of
formula 1 on each element of D and stop if it evaluates to
true. This generate-and-test algorithm is correct but slow.
In the crossword puzzle the number of different assign-
ments to be tested is 58 or 390,625.



Backtracking Algorithms. Backtracking algorithms sys-
tematically explore D by sequentially instantiating the
variables in some order. As soon as any predicate has all
its variables instantiated, its truth value is determined.
Since the body of formula 1 is a conjunction, if that predi-
cate is false, that partial assignment cannot be part of any
total valid assignment. Backtracking then fails back to
the last variable with unassigned values remaining in its
domain (if any) and instantiates it to its next value. The
efficiency gain from backtracking arises from the fact that
a potentially very large subspace of D, namely, the prod-
uct space of the currently unassigned variable domains, is
eliminated by a single predicate failure.

The reader is invited to solve the crossword puzzle by
backtracking, instantiating the words in the order 1-8.
Start with word 1 across as “hoses”; try word 2 down as
“hoses,” P, is not satisfied, so all potential solutions with
these two choices for 1 and 2 are illegal. Next try word 2 as
“laser”; and so on.

The efficiency of backtracking has been investigated
(Bitner and Reingold, 1975; Knuth, 1975; Gaschnig, 1979;
Haralick and Elliot, 1980). Good analytical results are
hard to come by, but see Haralick and Elliot (1980);
Freuder (1982); Nudel (1982); and Purdom and Brown
(1982). Other factors being equal, it pays to preorder the
variables in terms of increasing domain size; one thereby
maximizes the average size of the subspace rejected by the
failure of a predicate. This principle has been extended to
dynamic reordering (Bitner and Reingold, 1975; Purdom
and co-workers, 1981) involving one or two more levels of
look-ahead search to find the variable with the smallest
domain of acceptable values to instantiate next. Regard-
less of the order of the instantiation, one almost always
observes thrashing behavior in backtrack search (Bobrow
and Raphael, 1974). Thrashing can be defined here as the
repeated exploration of subtrees of the backtrack search
tree that differ only in inessential features, such as the
assignments to variables irrelevant to the failure of the
subtrees (Sussman and McDermott, 1972; Mackworth,
1977). This ubiquitous phenomenon is indeed observed, in
abundance, as one develops the search tree for the cross-
word puzzle. Many of the techniques reported in this sec-
tion and the next are designed to reduce or eliminate
thrashing essentially by providing the algorithms with
better memories.

One form of so-called intelligent backtracking uses
varying degrees of look-ahead to delete unacceptable val-
ues from the domains of all the uninstantiated variables
(Haralick and Shapiro, 1979; Haralick and Elliot, 1980).
Another form of intelligent backtracking identifies the
latest instantiated variable causing the failure and fails
back to it, possibly across many intervening levels (Suss-
man and McDermott, 1972; Gaschnig, 1979; Bruynoo-
ghen, 1981). Gaschnig’s (1977) backmarking algorithm is
another potential improvement on backtracking that
looks backward to remember value combinations that
guarantee failure or success so that they are not retried
elsewhere in the tree.

Similar techniques are exploited in dependency-di-
rected backtracking (Stallman and Sussman, 1977) and
truth or belief maintenance systems (de Kleer, 1984) (see
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BACKTRACKING, TRUTH MAINTENANCE svsTEMS), Those gystems
generally abandon the chronological stack-based control
discipline of pure backtracking, allowing choices to be un-
done independent of the order in which they are made.
The Al programming languages Micro-Planner and PRO-
LOG are based on automatic backtrack control structures.
The possibility of providing some of the techniques sur-
veyed in this entry as general Al tools should not be over-
looked (Sussman and McDermott, 1972; Mackworth,
1977; de Kleer, 1984).

Consistency Algorithms. Another family of algorithms
complementary to the class of backtracking has been
characterized as the class of consistency algorithms
(Mackworth, 1977). By analyzing the various causes of
thrashing behavior in backtracking, various authors have
described algorithms that eliminate those causes (Ull-
man, 1966; Montanari, 1974; Waltz, 1975; Mackworth,
1977; Freuder, 1978; Mohr and Henderson, 1986). They
are most easily described in the network method of CSPs
given earlier. For binary constraints each edge in the
graph between vertices i and j is replaced by arc (i, j) and
arc (J, ©).

Node i, composed of vertex i and the associated domain
of variable v;, is node consistent iff

Vx(x € D;) O Pix) (2)

Each node can trivially be made consistent by performing
the domain restriction operation:

D; « D; N {x| Pyx)} 3)

In the crossword puzzle this corresponds to the obvious
strategy of deleting from each variable’s domain any word
of the wrong length (and, in a real crossword puzzle, any
word that does not fit the clue).

Similarly, arc (i, j) is arc consistent iff

Vx(x € D;) D 3y(y € D;j) N\ Py(x, y) (4)

that is, if for every element in D; there is at least one
element in D; such that the pair of elements satisfy the
constraining predicate. Are (i, j) can be made arc consis-
tent by removing from D; all elements that have no corre-
sponding element in D; with the following arc consistency
domain restriction operation:

D; < D; N {x|3y(y € D)) A P;(x, y)} (5)

In the language of relational database theory this oper-
ation is known as a semijoin (Maier, 1983). A network is
node and arc consistent iff all its nodes and arcs are con-
sistent. A given network for a CSP can be made node
consistent in a single pass over the nodes. However, a
single pass of the arc consistency operation over the arcs
will not guarantee that the network is arc consistent. One
must either repeat that pass until there is no reduction in
any domain in a complete pass or use a more selective
constraint propagation technique that examines each of
the arcs, keeping track of the arcs that may have become
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inconsistent as a result of deletions from the domain at
their destination node (Waltz, 1975; Mackworth, 1977).
The first approach is a symbolic relaxation algorithm and
suggests parallel implementation techniques (Rosenfeld
and co-workers, 1976). The second is usually more effi-
cient on a single processor. The Waltz (1975) filtering al-
gorithm uses the second approach. The arc consistency
algorithm requires time linear in the number of con-
straints to make the network arc consistent (Mackworth
and Freuder, 1984).

The best framework for understanding these algo-
rithms is to see them as removing local inconsistencies
from the network which can never be part of any global
solution. When those inconsistencies are removed, they
may cause inconsistencies in neighboring arcs that were
previously consistent. Those inconsistencies are in turn
removed so the algorithm eventually arrives, monotoni-
cally, at a fixed-point consistent network and halts. An
inconsistent network has the same set of solutions as the
consistent network that results from applying a consis-
tency algorithm to it, but if one subsequently applies, say,
a backtrack search to the consistent network, the resul-
tant thrashing behavior can be no worse and may be much
better.

The result of applying algorithm AC-3, a serial arc con-
sistency algorithm (Mackworth, 1977), to the crossword
puzzle constraint graph is shown in Figure 3.

The arcs to be initially examined are put on a queue in
the order 12, 21, 13, 31, 42, 24,43, . . . , 86, 68, and the
deleted words are numbered. When words are deleted
from a domain at a node, all the arcs into that node not
currently waiting on the queue (except the reverse of the
arc causing the deletion) are added to the end of the
queue. In Figure 3, the numbers following the deleted
words give the order in which they are deleted. Since each
domain is eventually reduced to a singleton set of one
element, there is a unique solution to the puzzle, shown in
Figure 4.

A generalization of this technique is to path consis-
tency (Montanari, 1974; Mackworth, 1977). A path of
length 2 from node i through node m to node J is consistent
iff

VxVzP(x, 2) D Jy(y € D) N\ Pinlx, y) N\ Pni(y,z) (6)

A path is made consistent by deleting entries in the rela-
tion matrix representing P; if it is not. Analogous relaxa-
tion and propagation techniques apply. If all paths of
length 2 are consistent, then all paths are consistent
(Montanari, 1974). In general, path consistency uses the
operation of relational composition. If the relations are
represented as matrices, then binary matrix multiplica-
tion implements that operation but other approaches are
possible, In Allen (1983), for example, a finite number of
possible relations between temporal intervals is specified
and their composition table made explicit.

A further generalization to p-ary relations is the con-
cept of k-consistency (1 < p, & = n) (Freuder, 1978). A
network is -consistent iff, given any instantiation of any
& — 1 variables satisfying all the direct constraints among
those variables, it is possible to find an instantiation of

Hoses Hoses 4
Laser & Laser 5
1 Across Sals | < & Sails 2 Down
Sheet 2 Sheet 25
Steer 3 Steer 26

4 Across 3 Down

Aft 17 Heel 14

Ale 18 1\ Hike 15

7 Across Eel 20 [ *1  Keel 5 Down
Lee Knot 21
Tie 19 Line 16

8 Across

Figure 3. The arc consistent constraint network.

any kth variable such that the % values taken together
satisfy all the constraints among the %k variables. Node,
arc, and path consistency correspond to k-consistency for
k = 1, 2, and 3, respectively. A network is strongly
k-consistent iff it is j-consistent for all j < k. Another
generalization to p-ary relations (Mackworth, 1977) in-
volves only arc consistency techniques.

Even if a network is strongly k-consistent for k < n,
there is no guarantee that a solution exists unless each
domain is reduced to a singleton. One approach to finding
complete solutions is to achieve strong n-consistency

H|O[s |E[s
= Nk
211 [k |E

AL L|E|E

'L|AlS|E|R
E ik 1

Figure 4. The crossword puzzle solution.



(Freuder, 1978), but that approach can be very inefficient
as Freuder’s algorithm for k-consistency is O(n*) (Seidel,
1983). A second approach is to acheive only strong arc
consistency. If any node still has more than one element in
its domain, choose the smallest such domain and recur-
sively apply strong arc consistency to each half of it. Only
the arcs coming into that node can initially be inconsis-
tent in the two subproblems generated. A third and re-
lated approach is to instantiate the variable with the
smallest domain that has more than one value in it and
repeat arc consistency recursively, backtracking on fail-
ure; again, initially only the arcs coming into that node
can be inconsistent. Or, fourth, one can simply backtrack
on the consistent network using any of the backtracking
algorithms shown above. This is the sense in which back-
tracking and consistency algorithms are complementary.
Backtracking is a depth-first instantiation technique
whereas consistency is an elimination approach ruling out
all solutions containing local inconsistencies in a progres-
sively wider context. Other names for the class of consis-
tency algorithms include discrete relaxation, constraint
propagation, domain elimination, range restriction, filter-
ing, and full forward look-ahead algorithms, but these
terms do not properly cover the range of consistency tech-
niques described here.

Applications

As surveyed in Mackworth (1977) and Freuder (1980),
various combinations of backtracking and consistency
techniques have been applied to finite assignment space
puzzles such as cryptarithmetic problems, Instant Insan-
ity, magic and Latin squares, and the n-queens problem
(not to mention crossword puzzles). Other applications re-
ported include map coloring, Boolean satisfiability, graph
and subgraph homomorphism and isomorphism, database
retrieval for conjunctive queries, theorem proving (qv),
temporal reasoning (Allen, 1983; Dechter and co-workers,
1989; Feldman and Golumbic, 1989; van Beek, 1989), and
spatial layout tasks. The first application in computa-
tional vision was to edge labeling (Waltz, 1975), but there
have been many others reported, including sketch map
interpretation (Mackworth, 1977) and consistency for
schema-based systems (Havens and Mackworth, 1983). In
Woodham (1977) arc consistency is used on a vision prob-
lem in which the domains are not discrete. In that applica-
tion the domains correspond to a range of allowable sur-
face orientations at various locations in an image of a
smooth surface. In general, the only requirement for using
consistency is that one be able to carry out restriction
operations typified by eq. 5 on the descriptions of the do-
mains and relations, which may be intensional rather
than extensional.

Various experimental and theoretical results on the
running time of these algorithms have been reported
(Waltz, 1975; Gaschnig, 1979; McGregor, 1979; Haralick
and Elliot, 1980; Seidel, 1981, 1983; Mackworth and
Freuder, 1984; Dechter and Meiri, 1989), but these results
must be interpreted with care since the authors are not
always discussing the same algorithms, different mea-
sures of time are used, some results are task specific, and
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some authors analyze the decision problem and others .
alyze the problem of synthesizing the global n-ary rel.
tion, reporting all solutions. More work needs to be done,
but at this point the situation is that arc consistency tech-
niques can markedly improve the overall efficiency of
backtracking algorithms, as can the various intelligent
backtracking enhancements. The general lesson is that by
doing a limited amount of local computation at each level
using, say, linear, quadratic, or cubic time, one can opti-
mize backtracking search sufficiently to effect an overall
substantial improvement in performance on some difficult
problems; however, there is still no adequate theory of
how the nature of the task constraints affects the perfor-
mance of these techniques.

Some aspects of such a theory are, however, emerging.
In particular, the topology of the constraint graph itself is
a crucial factor. If it is a tree, then the CSP can be solved
in linear time (Freuder, 1982; Mackworth and Freuder,
1984). Other topological properties of the graph may also
be exploited (Dechter and Pearl, 1987, 1989; Rossi and
Montanari, 1989). Such a theory must also relate CSP
consistency approaches to integer linear programming
(Rivin and Zabih, 1989), ATMS formulations (de Kleer,
1989), database and graph-theoretic techniques (Dechter
and co-workers, 1990), theorem proving (Bibel, 1988), dy-
namic programming (Seidel, 1981) and propositional
satisfiability (Zabih and McAllester, 1988; Reiter and
Mackworth, 1989).

The consistency algorithms are serial polynomial ap-
proximation algorithms for CSPs. Aspects of parallel com-
plexity have been investigated. Kasif (1986) shows that
arc consistency is log-space complete for P, the class of
problems solvable on a single Turing machine in polyno-
mial time. The implication of this is that it is unlikely
that arc consistency can be solved in (worst-case) poly-
logarithmic time with a polynomial number of processors.
This might be interpreted as saying that the problem of
arc consistency is “inherently” sequential. Further results
are presented on Kasif (1989). However, Gu and co-work-
ers (1987) present a parallel architecture and the design
for the AC Chip (Swain and Cooper, 1988) embodies a
highly parallel algorithm for arc consistency implemented
directly in VLSIL.

Generalizations of the basic Boolean CSP have been
considered. If there is no solution to a CSP, one may want
to relax the constraints sufficiently to obtain a solution
(Descotte and Latombe, 1985; Hertzberg and co-workers,
1988; Freuder, 1989; Freeman-Benson and co-workers,
1990). On the other hand, if there are a large number of
possible solutions to the CSP one may wish to define a
preference relation or metric on the solution space and
find the most preferred solution(s) (Dechter and co-work-
ers, 1990).

RELAXATION ALGORITHMS FOR CONSTRAINT
OPTIMIZATION PROBLEMS

The restrictions on the Boolean CSP paradigm can be re-
laxed in several other ways. In computational vision and
other AI domains one is often not just satisfying a set of
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Boolean constraints but rather optimizing the degree to
which a solution satisfies a variety of conflicting continu-
ous constraints. Several generalizations of the consistency
techniques have been invented to cope with that problem.
In a paper by Zucker and co-workers (1977), the labels in
the discrete domains have associated weights in the unit
interval (0, 1], and the relation matrices are allowed to
have entries from | -1, 1]. These entries measure the ex-
tent to which two values from related domains are com-
patible. The algorithm looks at each variable domain in
parallel, adjusting the weight of each label based on an
updating rule that adjusts the weight’s previous value
using the strength of the connection from this variable to
each of its neighboring variables, the compatibility coeffi-
cient between this label and each of its neighbor’s labels,
and the previous weight of that neighboring label. This
process iterates until a fixed point is reached when no
significant change occurs in any weight or until some
other stopping criterion applies. The details of the various
updating and stopping rules used by these so-called relax-
ation-labeling algorithms can be found in the surveys by
Davis and Rosenfeld (1981) and Ballard and Brown
(1982), where applications and other variations on this
formulation are also given. An interpretation of the
weights as probabilities and the compatibilities as Bay-
esian conditional probabilities was suggested, hence the
term “probabilistic relaxation algorithms.” The term re-
laxation was suggested by the loose analogy with the nu-
merical methods used to solve, say, the heat equation for a
steel plate. However, the probabilistic interpretation has
several problems of semantics and convergence, and other
interpretations are now preferred. For example, this ciass
of algorithms can be seen as finding the optimal solution
to a linear programming problem as surveyed by Ballard
and Brown (1982).

Algorithms in this generic class are often termed coop-
erative algorithms (Julesz, 1971; Marr, 1982). Here the
sense is that compatible values in neighboring domains
can cooperatively reinforce each other by increasing each
other’s weight. Simultaneously, incompatible values com-
pete, trying to suppress each other. Each value in a do-
main is competing with each of the other values in that
domain. This general class of algorithms is attractive be-
cause they are highly parallel, requiring only local neigh-
borhood communication between uniform processors that
need only simple arithmetic operations and limited mem-
ory. These features suggest various implementations for
low-level perception (such as stereo vision) in artificial
and biological systems, which are being explored (Julesz,
1971; Zucker and co-workers, 1977; Barrow and Tenen-
baum, 1978; Ikechuchi and Horn, 1981; Marr, 1982;
Zucker, 1983; Hinton and co-workers, 1984).

The semantics of these algorithms—the specification of
what is being computed—has been clarified (Ullman,
1979; Hummel and Zucker, 1983). The best formal analy-
sis and design of these algorithms is based on the concept
of minimization of a figure of merit (or “energy”) of the
system under study. If that surface is everywhere a down-
ward convex function of the configuration variables of the
system, there is a unique global minimum, and steepest
descent techniques will find it. If that requirement is not

met, techniques such as simulated annealing (qv) based
on the Metropolis algorithm and Boltzmann distributions
are useful (Kirkpatrick and co-workers, 1983; Hinton and
co-workers, 1984) (see BoLTZMANN MACHINES).

In Ikeuchi and Horn (1981) an iterative shape-from-
shading algorithm is proposed in which a specific figure of
merit is minimized. The algorithm is given an image of a
smooth surface for which the dependence of the gray value
on surface orientation is known. Since surface orientation
at a point has two degrees of freedom, that single con-
straint is not sufficient. Accordingly, the additional regu-
larizing requirement that the surface be as smooth as pos-
sible is introduced. The figure of merit is a weighted sum
of measures of the extent to which these two constraints
are violated. The requirement that it be minimized trans-
lates analytically to a very large, sparse set of equations
on the values of surface orientation at each pixel in the
image. That set of equations is solved by standard numeri-
cal iterative relaxation techniques using gradient de-
scent, yielding a simple updating rule for approximations
to the surface orientation values. Note, here, however,
that the domains no longer consist of a discrete set of
possible values with associated weights but simply the
best current approximation to the value.

OTHER CONSTRAINT-BASED SYSTEMS AND LANGUAGES

The constraint satisfaction approach has considerable at-
traction both in AI and in other areas of computer science.
In graphics and simulation, constraint propagation is the
mechanism underlying two pioneering systems: Suther-
land’s (1965) Sketchpad and Borning’s (1979) ThingLab.
Stefik’s (1981) Molgen system propagates constraints aris-
ing at different levels of planning abstraction to generate
plans for gene-splicing experiments. Various systems
have been implemented for domains such as circuit analy-
sis (Stallman and Sussman, 1977; Kelly and Steinberg,
1982), job shop scheduling (Fox and co-workers, 1982),
and mechanical design (Mittal and co-workers, 1986).
Other applications in computational vision have been de-
scribed (Brooks, 1981; Marr, 1982; Mackworth, 1983).
Constraint propagation and data flow as the design princi-
ples for new computational architectures have also been
discussed (Abelson and Sussman, 1985). Part of the appeal
of logic programming (qv) (Kowalski, 1974) is that atten-
tion is focused more on the constraints of the problem and
less on the way they are used. There is, for example, less of
a distinction between input and output variables in a rela-
tional language like PROLOG than in a functional lan-
guage like LISP. Personal computer spreadsheet systems,
based on Visicalec and its descendants, already embody
some of these constraint-based ideas. There the variables
take only numeric values, and the constraints are simple
algebraic formulas, but some of the latest systems allow
relaxation for the solution of mutually dependent con-
straint sets.

A variety of systems that provide constraint-based
tools in a programming environment have been proposed
and implemented. REF-ARF (qv) (Fikes, 1970), Steele’s
(1980) constraint language, Bertrand (Leler, 1988), CON-



SAT (Gusgen, 1989), Platypus (Havens and Rehfuss,
1989), and ThingLab [I (Maloney and co-workers, 1989;
Freeman-Benson and co-workers, 1990), for example,
cover a wide spectrum of classes of constraints, constraint-
solving algorithms, and user tools.

A language class of particular interest is the set of
constraint logic programming (qv) (CLP) languages.
These generalize the use of unification in conventional
logic programming to constraint solving over various do-
mains. For example, CLP(D) is a scheme for a family of
CLP languages parameterized by D, the domain for the
constraints (Jaffar and Lassez, 1987). CHIP (van Hen-
tenryck, 1989), CLP(R) (Jaffar and Michaylov, 1987), Pro-
log III and Trilogy (Voda, 1988) are implemented CLP
languages that allow various domains for their con-
straints. CHIP (qv) augments the PROLOG interpreter
with arc consistency and other constraint satisfaction al-
gorithms,

Concurrent logic programming (Foster and Taylor,
1990), another generalization of logic programming, has
led to the development of the cc family of concurrent
constraint programming languages (Saraswat, 1989).
Saraswat advocates the use of constraints for communica-
tion and control in concurrent programming languages.
The model provides a global constraint store, but this re-
quest blocks if the constraint or its negation is not yet
entailed. An agent may Tell a constraint to the store if the
constraint is consistent with the constraints already
placed. An agent may also Ask if a constraint is entailed
by the constraints in the store, but this request blocks if
the constraint or its negation is not yet entailed. This
protocol provides concurrency control among the agents.
Approaches such as this carry the promise of making ac-
cessible constraint-based computation systems that are
both simple and powerful.

CONCLUSIONS

The definition of the word constraint varies enormously. It
has been taken to mean a relation over a Cartesian prod-
uct of sets, a Boolean predicate, a fuzzy relation, a contin-
uous figure of merit analogous to energy, an algebraic
equation, an inequality, a Horn clause in PROLOG, and
various other arbitrarily complex symbolic relationships.
Nevertheless, underlying this variety, a common con-
straint satisfaction paradigm is emerging. Much of one’s
knowledge of the world is best expressed in terms of what
is allowed or, conversely, what is not allowed. On the
other hand, most current artificial computational systems
insist on a particular direction of use of that knowledge.
This forces the designer or user to overspecify control in-
formation, leading to undesirable representational redun-
dancy, a rigid input—output dichotomy, and conceptual
mismatch at the human—computer interface. The con-
straint satisfaction paradigm allows the system designer
to concentrate on what, not how. In computational vision,
for example, it is crucial to determine precisely how an
image constrains the equivalence class of scenes that
could produce it and to identify other constraints that will
further constrain the scene. The constraints implicit in
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other knowledge and data sources can be analyzed and
represented. These constraints may be uniformly intro-
duced and used in various directions depending on the
current availability to the system of specific data and
knowledge.
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CONTROL STRUCTURES

[t is necessary to distinguish control structures from algo-
rithms and from virtual machines. Control concerns what
happens in a computational process. The word control has
two different meanings. On the one hand, there is the
problem of ensuring that a process does as little work as
necessary. Thus, the term search control is applied to a
search that explores a minimum of wrong paths. This is
more properly a matter for the study of algorithms. On the
other hand, there is the problem of specifying clearly what
should happen in a computational process. The notion of a
control structure concerns this problem of specification. It
1s a more general notion than that of an algorithm, al-
though no precise line can be drawn.

The notion of a control structure must also be distin-
guished from the notion of a virtual machine. For simplic-
ity, this article assumes that a virtual machine is defined
by a programming language, which might be a machine
language. A virtual machine provides the programmer
with a collection of primitive operations (no matter if they
have a direct physical embodiment in the architecture of a
real machine). More important, though, a virtual machine
provides ‘an ontology of objects and processes, on top of
which programmers can build their own abstractions. The
notion of control originated in the days when computers
all had simple von Neumann architectures and a pro-
grammer needed no more sophisticated a metaphor for
control than simply running a finger through the code.
The conclusion of this article suggests that the notion of
control can become inappropriate on a virtual machine
that departs substantially from this model.

Finally, it is necessary to distinguish between a partic-
ular control structure and a whole philosophy and style of
programming. For example, object-oriented programming
is a style that requires a particular control structure, the
familiar type-dispatching procedure call. [With a suffi-
ciently rigid model of types, the outcome of this dispatch
can be determined at compile time (Liskov and co-work-
ers, 1981). Thus, a control structure can be entirely a fic-
tion of the virtual machine.] This distinction is particu-
larly important for the history of AI because of the
frequency with which subtle and profound philosophies of
programming are melted down to catalogs of control and
data structures. A control structure must be analyzed in
the context of a coherent philosophy of programming.

A control structure is a technique, especially one set
down as a linguistic construct, that an algorithm can use
in determining what happens when on some virtual ma-
chine. This article does not exhaustively treat all the dif-
ferent control structures, because many of them are
treated in their own articles in this encyclopedia. Instead,
this article outlines current issues and describes the his-
tory of Al researchers’ attitudes toward process organiza-
tion in general. (For discussion of particular control struc-
tures, see AGENDA-BASED SYSTEMS; BACKTRACKING; BLACKBOARD
sysTEMs; COROUTINES; DISTRIBUTED PROBLEM SOLVING; LaAN-
GUAGES, OBJECT-ORIENTED; LOGIC PROGRAMMING; MEANS-ENDS
ANALYSIS; META-KNOWLEDGE, META-RULES, AND META-REASONING;
PARSING, WORD-EXPERT; PROCESSING, BOTTOM-UP AND TOP-DOWN;
and RuULE-BASED sysTEMS. For discussion of languages, sys-



