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Abstract

Machine vision will advance substantially
only if it continues to devels  a cohervent theory.
As with all fledgling sciences, the framework for
such a paradigm has emerged as a result of restrict—
ing the scope of attention to limited but non-
sterile domains that serve the current needs of the
theory. An example of such a domain is the class
of freehand sketches. These occupy a positien in
vision analogous to that of speech in that they are
designed for person-to-person communication and
thereby have a rich, conventional semantics which
can be exploited. The goals of a project to
understand sketches are given. A very brief
description of a program, MAPSEE, that interprets
sketch maps illustrates the argument. A conservative
partial segmentation yields a varilety of cues which
invoke models that interact according to a unlform
control structure: a network consistency algorithm.
The necessary deficiences of the segmentation,
their effect on the interpretation and using the
interpretation to refine the gegmentation are all
mentioned. This example is used to focus discussion
of a variety of vision lssues such as the chicken-
and-epg problem, the power of descriptive models
and their corresponding weaknesses, the incremental
nature of constraint methods, cue/model hierarchies,
the wodularity and generality problems and g
procedural adequacy. Finally a cyclie theory of
perception is used to chavacterize a variety of
vision programs.

1. Strategles for Vislon

If we intend to continue developing a
gcience of perception--for that is what T
believe we are dolng—-our research must become
self-conscious. We must be aware of our strategies
and scholarly In the development of the field. Our
efforts must be informed by what has been done, why
it has been done and what has been learned. It
should be clear that we have a developing paradign
[25,26,2,11,12] and that research goals should be
based not on fashion but on the needs of that
paradigm. It should also be clear that any
science at this early stage must, perforce, close
its eyes to almost all the allures and mysteries
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of nature and choose a highly circumseribed
fragment of reality to examine. Indeed, glancing
back at the history of science, the fragment
chosen is usually not even part of nature as she
is but merely an abstracted, stylized slice which
can illuminate ths murky recesses of current theory.
Galileo chosa, 25 his blocks world, bodies sliding
down a frictisn-free inclined plane in a vacuum;
Newton considered point masses of infinilte density;
Chomsky the ideal speaker-hearer's competence.

In vision, Roberts [20] realizad that the enormous
effort being male to solve the problems of pattern
classification was eontributing little to the
theory of machine perceptlion. He then retreated
from the “"real-world” problems of character
recognition to understand his blocks world: black
velvet background, matte surfaces carefully 1it

and all. The decade of research inspired by his
declsion proved its correctness. The cumulalbive,
puzzle-solving activity of viewing the world
through polyhedral spectacles pr ‘lded a theoretleal
base and practical support for tue sceds of a new
vision paradigm.

Perhaps the most important blocks world lesson
is that only by patiently teasing out the semantics
of a domain (that is, the relationship of
representation [6J: the relationship between
objects in the world and their pictorial traces)
will we be able to write programs which interpret
pictures in that domain. So we start by looking
at the semantics of pictures.

2. Clean and Dirty Semantics: The Laws of
Convention or the Laws cf Physics?

It 1is still jnstructive to look for parallels
between vision and natural language understanding
without making a commitment to, say, 2 lingulstic
approach to vision or, even further, to tha -
primacy of syntax in both domains or, on the
other hand, to an imagery-based approach to
language. One can establish an analogy between
successions of task areas in the visual and aural
domains ranging from perfect line dlagrams
through free-hand sketches to "real" images of
natural scenes in the former and from perfect
presegmented text through speech to arbitrary
natural sounds in the latter. This admittedly
crude analogy depends upon a variety of under-
lying factors. These include the mature of the
representational medium and the presumption of
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perfect segmentatlon but, primartly; the analogy
depends upon the extent to which the laws of
convention rather tnan the laws of physics
dictate the relationship of representation.

The analogy demonstrates that vision researchers
have largely 1gnored an area which has been the
primary focus for our aural counterparts. We
have ignored man-made images desiguced for person-
to-person communication, images whose semantics
are fixed by convention, and concentrated on
images of natural scenes, images whose semantics
are dictated by the laws of optics. Man-made
images have, by their very nature and purpose, a
rich, clean and useful scmantics which can be
codified and senslbly explolited. Again, this
is not to say that we should discontinue work on
recovering the relations !p between incident and
reflected light, the nature of surfaces, edges,
textures, and shadows and so on; as in speech
understanding, progress will require a judicious
admixture of both approaches,

Figure 1.

3. Freehand. Sketches and Maps

A‘common class of image designed .for communi-
cation is the frece-hand sketch diagram. TFor several
years we have had the ability to draw such diagrams
directly on graphical data tablets but thls ability
has not been heavily exploited. Most uses have
been very mechanical and ad hoc. Only .urely
[1,18] can a-program be truly said to be {nterpreting
the sketch.

In studying images sketched free-hand on a
data tablet, this project has many goals. They
include:

I) To see if we can broaden the scope of our
vision programs by applying the theory developed in
the blocks world decade to other domains. At the
same time, reworking and extending the theory.

II) To explore the relationship between
natural and conventional representations.

ITI) To determine the extent to which highly
domain-specific knowledge can be factored out of
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the image interpretation program, to be
supplicd by the user.

IV) To make available a usceful dinterpretation
program for some restricted but dmportant
classces of sketches.

V) To provide an experimental vehicle for
studying tlic control structures required
to implement schema-based theorles of per-
ception.

" The initial domain chosen was a set of sketch
maps drawn on a data tablet typificd by the map
shown in Fig. 1.

This is, deliberately, so badly skctched that
many people bave to be told, before they can sce
it, that 1t represents an island on which there ds
a road that connects two towns and crosscs a
bridge over a river that rises in a mountain range
and ends in a delta.

This domain allows us to explore ways of sat-—
isfying the goals listed above. In particular, be-
sides having a satisfying mixture of conventional
and direct representations, such maps are related
to the work we are doing on understanding LANDSAT
(ERTS) images [22] which have primarily optical
semantics. In the long run, such understanding
would proceed more successfully :f programs were
able to accept advice, in the form of sketch maps,
about the geography underlying the image.

4. How to Interpret Sketch Maps

In describing how to interpret sketch maps,
I cannot here do justice to the current program,
MAPSEE, an implementation in LISP recently com-
pleted. Without giving the detalls of its opera-
tion—-~these are presented elsewhere [13,14]——1
will place the ideas behind MAPSEE in countext.
Furthermore, the short-range and long-range goals
of the project will be distinguished as they are,
at times, in apparent opposition. (But then, the
tension between them establishes a productive dia-
lectic.)

L T ¢

4,1 Cues and Models = i

In any world it is crucial to ask: what can
various picture fragments depict? Here, it is
clear that a line element can, in total isolation
represent part of a road, a river, a bridge, a
mountainside or a shoreline (of lake or the sea,
with water on one side, land on the vther or vice
versa), An areal element could be land, lake or
sea. The design of an interpretation scheme
starts with the fact that, as in the blocks
world, the enormous ambiguity of interpretation
can be progressively reduced by considering picture
fragments in wider and wider context. Individual
picture fragments, or cues, invoke local models
which serve to explain or interpret the immediate
locale of the cue that invoked them. These models
must talk to each other and agree on the interpre-
tation of picture fragments that they mutually im
terpret. To discover the first level of model in-
formation the following experiment is recommended:
cut a small hole in a sheet of paper and move it

about Figure 1. Being familiar with the class of
maps re.roo-ated, you would discover a wide vaviety
of inforwative local picture parts. The pointclus-—
ters, the chain links (where a chadn of line seg-
ments joins back on itself), the [rce ends, the
sharp kinks in the chains and the various junctions
all contain wuch interesting but totally ambiguous
informatlon. Alternatively, one can say that each
part invokes a set of models for its envirvonment.

A catalogue of picture parts, known as "primary
cues," and their possible models is not given here.
Simply, note that each of the many possible inter-
pretations of a primary cue places an interpreta-
tion on each of the line and region fragments that
comprise the part. As shown in [14] the primary
cue interpretation catalogue captures a wide var-
iety of gcographic and cartographic inferences.

4.2 Control Structure

If we suppose, for the sake of exposition.
that our images were perfectly presegmented line
drawings of maps then finding such cues in the pic-
ture and scarching for a mutually compatible inter-
pretation would be analogous to that process in the
blocks world with some important cexceptions and ex-
tensions. Mackworth [10] presents a series of al-
gorithns designed to instantiate, in given domains,
each of a sct of variables that must salisfy a set
of binary relations. Those algorithms, called
there network consistency algorithns as exemplified
by Waltz's are eonsistency algorithm [24] and
Montanari's path consistency algorithm [17], are
often better than backtracking for such a task.

In Waltz's case the variables or nodes are the
junctions, the »inary relations or arcs are the
lines between the junctions, that is, the network
of relations is isomorphic to the line drawing be-
ing interpreted. TIn MAPSEE the variables or nodes
are the chains and the regions (which also must be
interpreted-—everything need not be packed into the
chain labels) and the relations, no longer just bi-
nary, arc generalized to n~ary relations that cou-
sist of the primary cue models. The control struc-
ture for the interpretation phase of MAPSEE is a
new nctwork consistency algorithm, NC. Sce [10]
and [23]] among others for other uses of the con-
straint satisfaction approach.

4,3 Representations . ) \

Pictures must have a variety of representations
according to the needs of the various components of
the task. In MAPSEE there are three: a procedural
representation as, for example, originally created
by the stylus tracking routines, a network represen-—
tation of objects, relations between objects and
local function definitions [7] and an array repre-
sentation indexed by x-y coordinates.

Pictorial representations should encourage the
use of a level of detail appropriate to the task at
hand. IEach of the three representations allows
that. The primary cues, for cxample, are found by
searching the most appropriate picture structure,
exploiting the Jevels of detail to make the search
effort as cfficient as possible.
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4.4 Conservative Scomentation

The c¢arliév supposition that we have perfeetly
prescegaented maps Is totally wrong. The segmenta-
tioa into chaing, rvegions and the variety ol priuw-
ary cues is not given and cannot be doue perfectly
by any umeans. For cexample, as there can be sub-
stantial gaps between lines that were "intended" to
meet, the region segmentation is difficult, Indead,
in a real sense, it camot be done at all until the
map has been interpreted! This is one of the many
chicken and cgg problems of scenc analysis: seg-
mentation is interpretation and vice Egrsatllj.ﬂow—

ever, an initial partial region segmentation is
possible. A quick scgmentation, using a Warnock-
type algorithm in the tree of space occupation ar-
rays followed by a merge of all adjacent regions
can be done. The top-down tree search 1s stopped
well before it could get into trouble, at a level
wvhose resolution size is much greatev than any un—
Intentional gaps in the drawing. This guarantccs
no region leakage. MNo region so found correspouds
to more than one "intended" region. But, of
course, an Intended region can be segmented into
more than one found region. In Fig. 1, the large
connected land region is split into three rcgions:
one between the upper mountains and the river, onc
in the peninsula in the south-west and one consist-
ing of the rest of the island except for the river
delta. On the other hand, other intended regions
are not represcented by any found regions. In Fig.
1, the two small laund regions in the river delta
are not found,

The essential character of this approach to
partial segmentation is 1ts conservatism (or, if
you prefer, it follows Marr's principle of least
commitment [15]). Two other major aspects of the
segmentation process are similarly conservative.

In the search for primary cues there are many bor-
der-line cases of cue instances. These are all re-
jected: the criteria are always very tight. We
must guarantee that no false cues are found. The
obvious price is that many real cues are ignored.
Finally, given a c¢ne, it must be fleshed out with
the picture fragments corresponding to its various
subparts, The search for these in the picture is
conservative. 1In looking for a region associated,
in a certain direction, with a primary cue, for
example, MATSEE crawls carefully from a starting
point in the given direction. If it finds a region
within a very short distance, well and good, but if
it doesn't it gives up even though the region may
be found by continuing, because if it continued it
could pick up the wrong one. If it gives up it
creates a region ghost [4] which stands for the re-
gion that should be there but hasn't yet been found.

Thus, there are four classes of discrepancy '
between the partial segmentation and the segmenta-—
tion intended by the user: the wnissing cues, the
region ghosts, the missing regions and the extra
regions. 7The effect of each of these discrepancies
on the interpretation process is unique, but they
have in common the vital property that they can not
cause the elimination of interpretations that would
remain if the segmentation were perfect. This is
the true sense of the word "conservative" that has
been used to characterize all aspects of this seg-
mentation.

The missing cues have no serious cffect on the
consistency process, provided, of course, that suf-
ficient remain. A missing cue simply faills to

supply its extra constraints on the possible inter-
pretations of the chaiuc and regions. Tn thie do-
main, however, there is such a welter of cues in-
voking consistent models that there 1s a multitude
of partially independent but mutually confirming
inference paths. Breaking a few of those infererce
paths causes no degredation in the intcrpretation,
1t is tempting to postulate that most perceptual
tasks, in the real world as opposed to the psycho-
logical laboratory, have the rich semantics which
give rise to this robustness property if we can but
discover the appropriate language for the inferences
and appropriate mechanisms for carrying them out.

The region ghosts are, 1f you like, region in-
tenslons while the found regions are (imperfect)
region extensions [27]. A glost is an intension in
that it may be specified as, for example, "the re-
gion on the reflex angle side of this acute L."
The intension/extension distinction forms a spec-—
trum rather than a strict dichotomy here. Recall
that a phost arises when a cue fails to fZ.d an
associated region. It may fail either because it
stopped looking too soon even though there is a
found vegion there or because there is no found re-
gion. The ghosts participate in the consistency
process just as do the found regions. The single
cue that c¢reated a region ghost constrains it and
it is quite possible for interpretations of the
ghost Lo be progressively ruled out. After the
consistency process we still do not know the exten-
sion of a ghost but we may know more about it than
before; for example, it may now be forced to have
the interpretation "land".

The missing regions, as in the river delta, for
example, also do not seriously affect the consis-
tency process. The cues in the neighbourhood of a
missing region will have used ghosts in its stead,
But, standing in for a single missing region there
will be several ghosts so the constraining effect
will be weakened somewhat.

Similarly, the extra regions created by the
splitting of a single intend2d region participate
independently din the consistency process thereby
exerting a weaker constraining effect than if the
region had not been split. However, the semantic
richness overcomes that weakening and forces the
three found regions corresponding to the single
intended land region to have that single interpre-
tation. Again, as in the other cases, if the re-
gion splitting is so severe as to cut too many in-
ference paths then the process will degrade grace-
fully. In that case the various found regions
would not have the intended interpretation uniquely
—it would simply be in the intersection of the
possible interpretations of the found regions.

We can go further and use the results of the
consistency process to refine the injtial partial
segmentation. There are four ways, currently being
implemented, in which this can be done: a) est-
abllshing distinct ghosts with the same interpreta-
tion and location as co-extensive b) considering
the merge of found regions with the same interpre-
tation c¢) establishing a found region as the ex-
tension of a ghost with the same interpretation and
d) discovering a new found region as the extension
of one or more ghosts. These all involve revisiting
the picture and segmenting more purposefully, more
carefully and at a finer level of detail in the
particular areas concerned.



The above description of MAPSEL is only a sup—
erficial sketch. For full details on the program,
the cuc-model structure, the n-ary network wuvusis-
tency algorithm and a tracc of its interprcetationof
the sketch nap of Figure 1 sec [147. 7The descrip~
tion given here, though, shonld suffice to indicate
the power of this approach to vision,

One of the fundamental advantages of a cau-
tious segmentation combined with cue-juvoked des-
criptive models that are made to intervpret the
picture consistently is that the constraining ef-
and incremental not all-or-none. As additional
information 1s discovered in the plicture it con-
tributes its own specialized constraints to the
interpretation in a uniform way. As a result, pic-
ture objects missed in the segmentation, objects
split 4n two, undiscovered relations between ob~
jects and picture objects hallucinated to stand in
for ones that cannot be found 211 can cause, at
best, a slower convergence to the same interpreta-
tion or, at worst, a graceful degradation [115] to
a more ambiguous interpretation rather than a cata-i
strophic failure.

5. The Search for Generality:

Model Descriptions

One of the legitimate criticisms of the mini-
world approach to vision or artificial intelligence
advocated here is that it can degenerate inLo aser-
ies of implementations for a series of worlds with
little transfor of theory (or code) from one to the
nexlt, This can be avoided if the worlds are chosen
with regard to the needs of the theory, not vice
versa. Moreover, in the search for generality, one
should consider families of worlds which allow a
high degree of theory~sharing. Here, for example,
the family of sketch worlds and the organization of
MAPSEE allow us tocontemplate a PLANSEE, for sketch
plans of a building, a FLOWCHARTSLEE, . . . even a
BLOCKSEL for sketches of blocks! To change to such
a new world minimally requires a new primary cue
interpretation table and, perhaps, extending the
vocabulary of primary cues. The modularity of
this paradigm 1s one of its encouraging aspects:
the domain dependence is highly localized within
the code.

. Note that the primary cue interpretation
table is implicitly compiled from a set of

models of cartographic objects. To further ex-
plore the problem of generality that process of
compilation must be made explicit and then auto-
mated., This would require a source language in
which to specify the structure of the scene ob-
jects which could exist (here the cartographic
objects: mwountains, bridges, roads, towns,

river systews, shorelines, lakes, seas, . . . )
and their possible interaction in terms of a spec—
ified repertoire of primary cues. The compila--
tion would essentially invert those descriptions
to construct the primary cue interpretation table.
Note that we would not then throw away the model
description. The primary cue interpretation table
only captures local knowledge. The primary cues
serve as indices into the set of models: their -
complete intexpretations could thewn impose more |
global constraints on the consistency process.

As a short range strategy, this would lcad
even further in the direction of satilsfying goal
TIl--factoring out the highly domain-specific know-
ledge. But, although network counsistency algorithms

are probably the best uniform procedure for satis-
{ying descriptive models, we are, in the long run,
goiug to be Forced to abandon thewm if we want to ex—
plore goal V: exploring control strategics for
schema-based theorles of perception. This couflict
will lead to a divergence in the project. One path
wlll continue to crplore descriptive models, network
consistency and modular vision programs while the
other will explore the concept of models as proce-
dural schemata.

6. A Ptolemaic Thcory of Perception

This paper started with an appeal to the his-
tory of sclence so it is appropriate, given that
perception is a snake swallowing its tail, for it to
end with such an appeal. I have always preferred
the Ptolemaic description of the motion of the
heavenly bodies to the Keplerian-Coperuican view so,
although Ptolemy's model is currently in disfavour
for the terial universe, I shall offer it, scmi-
seriously, as a metaphor for the universe cf percep-
tion.

This approach to perception assumes that Helm-—
holtz, Bartlett, Minsky, Clowes and Gregory are
right! Although such knowledge-based theories of
perception are riddled with large hol =, hand-wav—
ing, errors and mystifications, there is enough
evidence from both machines and huians to know that
they are, in cssence, correct. One view of Roberts'
achievement in crcating a machine vision paradigm
is the realization that he established a working
model of perception as an alternation of segmenta-
tion and interprctation or, in more detail, as a
cycle of four processes: discovering cues, activa-
ting a hypothesis, testing the hypothesis and in-
ferring the consequences of an established hypoth-
esis.

il

MODEL
/ BLABORATION
i
v MODEL
Qe VERIFICATION
DISCOVERY A .
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Figure 2. 7The cycle of perception
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In Figurce 2 these four processcs are called cue dis-
covery, model tuvocation, model verification and
model elaboration. Everyday human puerception is an
ongoing equilibrium of similar processis. Although
we can so do, we are rarcly called upon to starl up
the cycle context-free in either botltom~up or top-
down modc. But we place our prograws In that situa-
tion all the time and then argue about whether
bottom-up or top-down methods are more appropriate.
In this metaphor, the chicken-and-egg problem simply
reflects the fact that the circle is indeed unbroken.

} It is possible to characterize almost all
vision programs by the way they treat the cycle of
perceptlon while ignoring many other issues of des-
ceriptive and procedural adequacy. Roberts' program
starts with the cues and goes through the cycle sev~
eral times—-—cach time in a different area of the

picture: i

The Ruffman-Clowes-Waltz approach starts with con-
text—-free cue discovery and does not complete the
cycle:

Among other things, MAPSEE has closed that gap. The
several programs that use a planning approach such
as Kelly's [8] and Shirai's [21] are bi-cycle
theories or, as the English might say, penny~-farth-
ing theories:

i{n that the first cycle, on a reduced picture, pro-
vides the context for the sccond.

The semantics-driven region segmentation
sehemes dnvented by Yakimovsky and Feldman [ 28],
generalizod by Tenenbaum and Barrow [247]) and wodi-
filed by Starr and Mackworth [22]] start with context-
free segmentation of the "strongest" regions as
cuss. These regions are interpreted and thelr din—
terpretations then provide the context for further !
segmentation and interpretation. This process con-
tinues until the entire picture 1Is segmented/inter-
preted. This "island-driving" approach (which is

strongly analogous to similar approaches in speech
understanding [197] can be dragramncd as:

We showed [22] that a version of this technique is
much more effective than traditional pattern recog-
nition techniques in the interpretation of LANDSAT
image data in -hat it allows 2D spatial and mean-—
ing contexts to guide the segmentation process.

Finally, in this metaphor, we need to dis—
cuss the use of hierarchies of cues and models.
Mackworth [12] presents a variety of intelligent
uses of composition (part-of) and generalization
(is-a) hierarchies in the blocks world. 1Iu
Minsky's [16] seductive vision of frame systems
such hierarchies produce epicycles on the cyclic
structure! (The image of this is left to your
imagination.) From the metaphor it should be clear
that the top—down control strategy with shared
terminals transferred on failure suggested by
Minsky and elaborated by Kuipers [9] is an attrac-
tive but inadequate control structure. MHavens 773,
in a coniribution to the solution of the chicken—
and-cgg problem, has provided mechanisms in a pro-
gramning language, MAYA, which allow the user to
specify how bottom-up and top-down techniques are
to intermingle in a perceptual task. Havens is
pursuing the possibilities of this approach in a
frame system for the blocks world. The procedural
fork of our project will continue to explore the
adequacy of control structures for schema-based
theories of perception.

7. Conclusion

The thesis that visicn research benefits
most from choosing to understand limited but non-
sterile domains that stretch the current theory
has been supported by the example given from the
sketch world., In that context, some light has
been thrown on a wide variety of vision issues,
such as a conservative partial segmentation, its
effect on the interpretation, the possibility of a
uniform control structure: network conslstency with
descriptive models, using the interpretation to
refine the segmentation, the incremental nature of
constiraint methods, cue/model hierarchies, conven—
tional versus optical semantics, and the modularity
and generality problems that conflict with the pro-
cedural adequacy requirement placed on any theory
of perception.
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