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Abstract. We propose a formal approach to the modeling and analy-
sis of hybrid control systems. The approach consists of the interleaved
phases of hybrid dynamic system modeling, requirements specification,
hybrid control design and overall behavior verification. We have devel-
oped Constraint Nets as a semantic model for hybrid dynamic systems.
Using this model, continuous, discrete and event-driven components of a
dynamic system can be represented uniformly. We have developed timed
V-automata as a requirements specification language for dynamic be-
haviors. Using this language, many important properties of a dynamic
system, such as safety, stability, reachability and real-time response can
be formally stated. We have also proposed a verification method for
checking whether a constraint net model satisfies a timed V-automaton
specification. The method uses the induction principle and generalizes
both Liapunov stability analysis for dynamic systems and monotonicity
of well-foundedness in discrete-event systems. The power of these tech-
niques 1s demonstrated with a simple elevator system. An elevator system
is a typical hybrid system with continuous motion following Newtonian
dynamics and discrete event control responding to users’ request. We
model the complete elevator system using Constraint Nets and verify
the overall behavior of the system against the requirements specification
in timed V-automata.

1 Introduction

Hybrid dynamic systems are systems that consist of coupled discrete and contin-
uous components. Any electromechanical system with a computerized controller
is a hybrid system in general. In the past, the modeling and analysis of a hybrid
system have been done separately for its discrete and continuous components.
The overall system is designed in a rather empirical fashion. Since computer-
aided control is becoming more and more significant in modern system design



practice, we face a major challenge: the development of intelligent, reliable, ro-
bust and safe computer-controlled systems. The foundation for modeling and
analysis of hybrid systems must be established.

1.1 Owur approach

We advocate a formal modeling and analysis framework for the development
of hybrid control systems. The framework consists of the interleaved phases of
hybrid system modeling, requirements specification, hybrid control design and
behavior verification. System modeling can also be called system specification,
which precisely defines how a system is structured in terms of its components
and inter-connections, and how each of its component works. Requirements spec-
ification expresses global properties of a system such as safety (i.e., a bad state
will never be reached), stability (i.e., a final state will be reached), reachability
(i.e., a state is reachable) and real-time response (i.e., a state will be reached
in bounded time). Control system design takes a system model (including the
plant and its envoronment), which in general is continuous or hybrid, and its re-
quirements specification, produces a control system, which in general 1s discrete
or hybrid. Behavior verification ensures that the behavior of the coupled overall
system (i.e. plant+environment+-control) satisfies the specified requirements.

For hybrid system modeling, we have developed the Constraint Net (CN)
model [37,34]. CN provides a formal syntax and semantics of a hybrid dynamic
system so that its continuous and discrete (fixed sampling time or event-driven)
components can be modeled uniformly. CN provides aggregation operators so
that a complex system can be modeled hierarchically. Therefore, a system and
its control can be modeled individually in CN and then be composed to generate
an overall system model. The overall hybrid system is defined mathematically
so that it can be analyzed without ambiguity. CN also supports multiple levels
of abstraction, based on abstract algebra and topology; therefore, a system can
be modeled and analyzed at different levels of detail.

For requirements specification, we have developed timed V-automata [36, 35].
Timed V-automata are essentially finite automata modified from V-automata
[24] by generalizing to continuous time and adding timing constraints; yet they
are powerful enough to specify global system properties of sequential and timed
behaviors of hybrid dynamic systems, such as safety, stability, reachability and
real-time response.

For control design, we have proposed constraint-based techniques [38,39]. In
this paper, we advocate a two-level design architecture. A hybrid control system
can be developed in a two-level structure, with the lower level as a continuous
component guided by an analog control law and the higher level as a discrete
logic component driven by events from the lower level or from the environment.

For behavior verification, we have proposed a formal model checking method
[35,34]. The method uses the induction principle and combines Liapunov sta-
bility analysis for dynamic systems and monotonicity of well-foundedness in
discrete-event systems. This verification method can be semi-automated for dis-
crete time systems and further automated for finite domain systems.



1.2 Related work

Much work has been done on the modeling and analysis of hybrid control systems
[10]. Various formal models/languages have been developed for this purpose.

Roughly speaking, formal models/languages for modeling and analysis can be
characterized as belonging to one of the four categories: (1) state transition mod-
els, (2) algebraic processes, (3) block diagrams/nets/dataflow/equations, and (4)
temporal logics/w-languages.

For example, Phase Transition Systems [23, 26] are a typical state transition
model, where computation consist of alternating phases of discrete transitions
and continuous activities. Similarly, Nerode and Kohn’s Hybrid Automata [25]
consist of a digital control automaton and a plant automaton. The plant au-
tomaton can be modeled as a state transition system over intervals. Alur et al.
[1] develop a model for hybrid systems which generalizes timed automata [3,2].
Lynch’s group at MIT has been using Timed Automata [22] for modeling and
verification of automated transit systems [21].

In the formalism of algebraic processes, Gupta et al. [11] proposes Hybrid cc,
a generalization (or a new member) of the cc family [28], for modeling systems
with timers and continuous activities.

The Constraint Net model we have developed belongs to the category of
block diagrams / nets / dataflow / equations. In this formalism, a system is
a network of processes, processes are represented by blocks, and interactions
between processes are represented by connections between blocks. All processes
are considered to be running in parallel and data flow through these processes
where operations on the data are performed. An equational representation of
the model can also be obtained, with each process corresponding to an equation.
For example, SIGNAL [6] is a typical language in this formalism. Conventional
continuous or discrete control structures are best modeled in block diagrams.
Krogh [17] develops condition/event signal interfaces for block diagrams, which
extends block diagrams with logic operators. Brockett [8] studies motion control
systems with an equational event-driven model. Some commercial products for
control simulation are also belong to this category, such as Simulink [14] and
SystemBuild [13].

Timed V-automata we have developed are closely related to temporal logics/w-
languages. Many extensions of temporal logics/regular languages to timed and/or
hybrid systems have been proposed. For example, Lamport [18] develops TLAY,
an extension to TLA (Temporal Logic of Action), for modeling hybrid systems.
Alur and Henzinger [4] propose a really temporal logic with metric time. Dura-
tion Calculus [33], a generalization of interval temporal logics, has also been ap-
plied to the formal design of hybrid systems. From the formal automata/language
point of view, TBA (Timed Buchi Automata) [2] are developed to generate timed
w-languages, and its properties and decision procedures are also studied.

Related work is also been done in software engineering for safety issues. For
example, the Requirements State Machine (RSM) [16] provides semantic anal-
ysis of real-time process-control software requirements, and the Requirements
State Machine Language (RSML) [19] is then designed to write requirements



specifications for an industrial aircraft collision avoidance system. Time Petri
Nets are applied to modeling and verification of time dependent systems [7].

From a methodological point of view, there are two schools: one uses a sin-
gle general model/language (e.g. state transition systems or temporal logics) for
both system modeling and requirements specification; the other proposes differ-
ent formalisms for modeling and specification: e.g., state transition systems for
modeling and temporal logics for specification. Our approach here belongs to
the second school.

1.3 Owur contributions

Our contributions to the modeling and analysis of hybrid control systems are
three-fold.

First of all, we develop Constraint Nets for modeling complex structured
hybrid dynamic systems. Like all the net-based models, CN is modular and
hierarchical with a formal syntax and semantics for simulation. Unlike all the
other existing models, CN is developed on abstract time and domain structures.
Instead of combining models of discrete and continuous dynamic systems, we
start from a general model of dynamic systems, of which both discrete and
continuous systems are special cases. As a result, CN provides a powerful and
formal model for complex hybrid dynamic systems.

Secondly, we develop timed V-automata for specifying simple global prop-
erties of hybrid dynamic systems. Unlike most existing timed automata, timed
Y-automata have finite state without clock or data variables. Timed V-automata
are similar to propositional temporal logics. However, timed V-automata are de-
fined on abstract time structures which can be either discrete or dense. With
notions of both local and global timeout, timed V-automata can represent real-
time responses as well. As a result, timed V-automata provide a simple and useful
specification language for timed behaviors.

Thirdly, we develop a formal behavior verification method that uses the in-
duction principle and generalizes both Liapunov stability analysis for dynamic
systems and monotonicity of well-foundedness in discrete-event systems.

1.4 A simple elevator system

We use a simple elevator system here to demonstrate the use of our approach.
Elevator systems have been used in various communities as benchmark examples
of methodologies for software engineering and real-time systems [15,27,12,5,9].

However, most previous examples of elevator systems focus on discrete-event
structures. In this paper, we model an elevator system as a hybrid system with
continuous motion following Newtonian dynamics and discrete control respond-
ing to users’ request. In particular, we show how the coupling of the discrete and
continuous components can affect the behavior of the overall system.

A simple elevator system for an n-floor building consists of one elevator.
Inside the elevator there is a board with n floor buttons, each associated with



one floor. Outside the elevator there are two direction buttons for service call
on each floor, except the first floor and the top floor where only one button
is needed (see Figure 1). Any button can be pushed at any time. After being
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Fig.1. A simple 3-floor elevator

pushed, a floor button will be on until the elevator stops at the floor, and a
direction button will be on until the elevator stops at the floor and is going to
move in the same direction. (Note that a more complex elevator would have open
and close door buttons, and alarm or emergency buttons which, for simplicity,
we do not model in this paper.)

Using constraint nets, we first model this elevator system at two levels of
detail. At the lower level, the dynamics of continuous motion is modeled; and
at the higher level, the abstraction of the desired discrete system is represented.
Then we model the overall hybrid system, the elevator with control in black
boxes, in Constraint Nets.

A well-designed elevator system should satisfy the property of real-time re-
sponse, 1.e., any request will be served within some bounded time. Using timed
V-automata, we explore the meaning of such requirements and specify them pre-
cisely.

Then we design a continuous controller and a discrete controller by analyzing
the requirements.

Finally, we explore approaches to verifying the behavior of a dynamic system
against its requirements specification. For the elevator case study, we propose
and answer the question: is the elevator system well-designed?

1.5 Outline of this paper

The rest of this paper is organized as follows. Section 2 briefly introduces Con-
straint Nets, and demonstrates constraint net modeling using the elevator exam-
ple. Section 3 presents timed V-automata and gives the requirements specification
of the real-time behavior of the elevator system. Section 4 designs the control
system for the elevator by analyzing the requirements specification. Section b
develops a model checking method which determines whether the constraint net



model of the elevator system satisfies the timed V-automaton specification of the
desired behavior. Section 6 draws some conclusions.

2 System Modeling in Constraint Nets

A complex dynamic system should be modeled in terms of its components and
interconnections, at multiple levels of abstraction. We model the elevator system
this way using Constraint Nets.

2.1 Concepts of dynamic systems

We start by introducing some general concepts of dynamic systems which we
use later. For formal definitions of these concepts, the reader is referred to [34].

— Twme T 1s a linearly ordered set with a minimal element as the start time
point, for example, the set of natural numbers or the set of non-negative real
numbers with the arithmetic ordering. The former is called discrete time and
the latter is called continuous time.

— A trace v# : T — A is a function from time 7 to a domain A of values.

— An event trace ey : T — B is a special type of trace whose domain B 1s
boolean. An eventin an event trace is a transition from 0 to 1 or from 1 to 0.
An event trace characterizes some event-based time where the set of events
in the trace is the time set. The time domain of an event trace is called the
reference time of the event-based time.

— A transduction F' : Vi — Vo 1s a mapping from a tuple of input traces to a
tuple of output traces, which satisfies the causality constraint between the
inputs and the outputs, i.e., the output values at any time depend only on the
inputs up to that time. For instance, a state automaton with an initial state
defines a transduction on discrete time; a temporal integration with a given
initial value i1s a typical transduction on continuous time. Just as nullary
functions represent constants, nullary transductions represent traces.

— A transduction F' is called a transliteration if it is a pointwise extension of a
function f, i.e. F\(v)(t) = f(v(t)). Intuitively, a transliteration is a transfor-
mational process without memory (internal state), such as a combinational
circuit.

— States or memories are introduced by delays. A delay transduction is a se-
quential process where the output value at any time is the input value at a
previous time, i.e., §(v)(t) = v(¢t — ). Normally, unit delays are for discrete
time and transport delays are for continuous time.

— The linkages between discrete and continuous components are modeled by
event-driven transductions. An eveni-driven transduction is a transduction
augmented with an extra input which i1s an event trace; the event-driven
transduction operates at every event and its output value holds from each
event to the next.



2.2 Constraint net model

The Constraint Net model is built upon these general concepts of dynamic sys-
tems. It is a net/dataflow- or equation-based model with formal syntax and
semantics. It also provides modular structures with composition hierarchy.

Syntax and semantics A constraint net consists of a finite set of locations,
a finite set of transductions and a finite set of connections. Intuitively, loca-
tions represent states, memories, variables or communication channels; trans-
ductions represent processes, operating according to a global reference time or
activated by external events; and connections represent the interaction struc-
tures or data flows of the modeled system. Formally, a constraint net is a triple
CN = (Le,Td,Cn), where Lc is a finite set of locations, Td is a finite set of
labels of transductions, each with an output port and a set of input ports, Cn is
a set of connections between locations and ports, with the following restrictions:
(1) there is at most one output port connected to each location, (2) each port
of a transduction connects to a unique location and (3) no location is isolated.

A location is an output of the constraint net if it 1s connected to the output
of some transduction; otherwise it is an input. A constraint net is open if there
is an input location; otherwise it is closed.

A constraint net represents a set of equations, with locations as variables
and transductions as functions. The semantics of the constraint net, with each
location denoting a trace, is the least solution of the set of equations. The se-
mantics 1s defined on abstract data types and abstract reference time which can
be discrete or continuous. For detailed formal semantics, the reader is referred
to [37, 34].

Graphically, a constraint net is depicted by a bipartite graph where locations
are depicted by circles, transductions by rectangular blocks and connections by
arcs.

For example, the graph in Figure 2, where f is a transliteration and 6 is a
unit delay, depicts a state transition system. This open net, with discrete time,
can be represented by the equation: s(n) = f(u(n — 1),s(n — 1)), s(0) = sg. We
can also simply write s’ = f(u,s),s(0) = sg where s’ denotes the next state of
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Fig. 2. The constraint net representing a state transition system

Similarly, the net depicted by the graph in Figure 3, with continuous time,
models the differential equation s = f(u, s), s(0) = sq.
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Fig. 3. The constraint net representing a differential equation

Modules and composition A complex system is generally composed of mul-
tiple components. We define a module as a constraint net with a set of locations
as its interface. A module is depicted by a box with rounded corners. For ex-
ample, the state transition system in Figure 2 is grouped to a module in Figure
4 where u and s are the input and output interface, respectively. The double
circles depict its interface.
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Fig.4. A module and its representation

A constraint net can be composed hierarchically using modular and aggrega-
tion operators on modules. There are three basic operations — union, coalescence
and hiding — that can be applied to obtain a new module from existing ones.
The union operation generates a new module by putting two modules side by
side. The coalescence operation coalesces two locations in the interface of a mod-
ule into one, with the restriction that at least one of these two locations is an
input location. The hiding operation deletes a location from the interface. We
can model non-determinism with hidden inputs and model internal states with
hidden outputs.

A hybrid system can be modeled by a composition of continuous components
with event-driven discrete components. For example, Figure 5 depicts a hybrid
system consisting of a state transition system and a differential equation. The
event input port of the event-driven state transition is illustrated by a small
circle. Events can be generated by clock signals from outside of the net as shown
in (a) or by outputs within the net itself as shown in (b) (where events at e are
generated by module event with input from y).

2.3 Models of the elevator system

An elevator system 1s a typical hybrid system with continuous motion following
Newton’s dynamics and event-based control responding to users’ request. In the



(a) Open net (b) Closed net

Fig.5. Hybrid systems in Constraint Nets

rest of this section, we will model the elevator system in Constraint Nets. The
controllers are left as black boxes and will be designed and modeled in Section
4, after the section on requirements specification.

Continuous model We model the elevator body by a second order differential
equation following Newton’s Second Law

F—Kh=h (1)

where F' is the motor force, K is the coefficient of friction and h is the height of
the elevator (Figure 6). Here we assume that the mass of the body is 1 since it

Fig.6. The BODY module

can be scaled by F' and K. We also ignore gravity since it can be added to F' to
compensate its effect.

Let the separation between floors be H. Given the current height A, the
current floor number can be obtained as

f=Mh/H+1 2)

where [z] denotes the integer closest to z, and the distance to the nearest floor
is

dy=h—(f—1)H. (3)



Furthermore, we say that the elevator is in a home position if
en :|ds] < e 4)

for some ¢ > 0. In real life, f, d; and the home event ej can be either sensed
directly or calculated from h.

The continuous component of the elevator system is depicted in Figure 7
where Com is the higher level command which can be 1, —1 and 0, denoting up,
down and stop, respectively, and CONTROLO is an analog controller that generates
the signal that determines the force to drive the elevator body, BODY is the module
in Figure 6, FLOOR is Equation 2 and HOME is Condition 4.

ELEVATOR

Fig.7. The continuous components of the elevator system

Discrete model For an n-floor elevator system, the relationship between the
command Com and the current floor f modeled in the continuous component of
the elevator system can be abstracted by a state transition system with state
transition function: f' = NextFloor(f, Com) where

min(f + 1,n) if Com =1
NexztFloor(f,Com) = < max(f —1,1) if Com = —1
f if Com=10

provided that CONTROLO works correctly.

We model push buttons as an array of flip-flops. A button will be set to 1
when it is pushed by a user and be reset to 0 when the request is served.

Formally, let Ub, Db and F'b denote up, down and floor buttons, respectively.
For an n-floor elevator, Ub, Db, F'b € {0,1}" are boolean vectors of n-elements
with Ub(n) = 0 and Db(1) = 0. The request state of a push button is determined
by two factors: the users’ input and the reset signal when the request has been
served. Let the users’ inputs, the states of the push buttons and the reset signals



be (Ub;, Db;, Fb;), (Ubs, Dbs, Fbs) and (Ub,, Db, F'b,), respectively. If a button
is pushed by a user, the state of the button is set (to 1); or, if the request has
been served, the state is reset (to 0); otherwise, the state is unchanged. The state
transition function of the flip-flop is a logical expression:

b'; = FllpFlOp(bw br7 bs)
= bz \Y (_‘br A bs)

Note that this flip-flop has higher priority for set than for reset, i.e., if a user
pushes a button for service while the elevator is just finishing the service, the
elevator should still consider the new request at that time.

Let s be the serving state of the elevator which can be up, down or idle.
The reset signal b, indicates which requests have been served, formally:

b, = ResetSignal(f, Com,s)
such that V1 < k < n,

Ub.(k) = (f = k)N (Com =0) A (s = up)
Db, (k) = (f = k) A(Com = 0) A (s = down)
Fb. (k)= (f = k)N (Com =0) A (s # idle).
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Fig.8. The BUTTON module

For a continuous reference time, we assume that the event-driven time (which
could be generated by a built-in clock) of the push button module has much
higher frequency than users’ inputs.



Hybrid model Let CONTROL1 be a discrete control with the current floor num-
ber f and the current button states b, as inputs and with command Com and
serving state s as outputs. CONTROL1 is driven by event e which is the “event-or”
(for the concepts of event logics, the reader is referred to [30]) of the following
three events: (1) a user pushes a button at the elevator’s idle state (s = idleA
Vicken(Ubs(k) VvV Dby (k) V Fby(k))), (2) the elevator comes to a home position
(|ds] < ¢€) and (3) a request has been served (Com = 0A=(Fbs(f)V(Ubs(f)As =
up) V (Dbs(f) A's = down)) for certain time. If it takes 7 seconds to serve a re-
quest, a transport delay of 7 will be used.

Finally, the hybrid model of the elevator and its control is shown in Figure 9,
where EVENT implements the event logic that produces the events for triggering
the discrete control, BUTTON is Figure 8 and ELEVATOR is Figure 7.

OEPECNO

ELEVATOR

Fig.9. The hybrid model of the elevator system

3 Requirements Specification in Timed V-Automata

While modeling focuses on the underlying structure of a system, the organiza-
tion and coordination of components or subsystems, the overall behavior of the
modeled system is not explicitly expressed. However, for many situations, it is
important to specify some global properties and guarantee that these properties
hold in the system being designed. For example, a well-designed elevator system
should service any request within some bounded waiting time. Requirements
specification in timed V-automata provides a formal method for this purpose.



3.1 Timed V-automata

Discrete V-automata are non-deterministic finite state automata over infinite se-
quences. These automata were originally proposed as a formalism for the speci-
fication and verification of temporal properties of concurrent programs [24]. We
augment discrete V-automata to timed V-automata by generalizing time from
discrete to continuous and by specifying time constraints on automaton-states.

A V-automaton A is a quintuple (@, R, S,e,c¢) where @ is a finite set of
automaton-states, R C @ 1s a set of recurrent states and S C @ is a set of stable
states. With each ¢ € ), we associate an assertion e(q), which characterizes the
entry condition under which the automaton may start its activity in ¢q. With
each pair ¢, ¢’ € @, we associate an assertion c¢(q, "), which characterizes the
transition condition under which the automaton may move from ¢ to ¢’. R and
S are the generalization of accepting states to the case of infinite inputs. We
denote by B = @ — (RU S) the set of non-accepting (bad) states.

A V-automaton can be depicted by a labeled directed graph where automaton-
states are depicted by nodes and transition relations by arcs. Furthermore, some
automaton-states are marked by a small arrow, an entry arc, pointing to it. Each
recurrent state is depicted by a diamond inscribed within a circle. Each stable
state is depicted by a square inscribed within a circle. Nodes and arcs are labeled
by assertions. A node or an arc that is left unlabeled is considered to be labeled
with true. The labels define the entry conditions and the transition conditions
of the associated automaton as follows.

— Let ¢ € @ be a node in the diagram corresponding to an automaton-state.
If q is labeled by % and the entry arc is labeled by ¢, the entry condition
e(q) is given by e(q) = ¢ A 9. If there is no entry arc, then e(q) = false.

— Let g, ¢’ be two nodes in the diagram corresponding to automaton-states. If
q' is labeled by 1, and arcs from ¢ to ¢’ are labeled by ¢;,7 = 1---n, the
transition condition ¢(q, ¢') is given by ¢(q,¢') = (p1 V-V @, ) A . If there
is no arc from ¢ to ¢’, ¢(q,q¢’) = false.

aF TE

o F
J Q 7 ) e

@ (b) ©

2]
W)

m

Fig.10. V-automata: (a) reachability (b) safety (c) bounded response

Some examples of V-automata are shown in Figure 10: (a) states that the system
should finally satisfy G; (b) states that the system should never satisfy D and



(c) states that whenever the system satisfies F, it will satisfy F' in some bounded
time.

The formal semantics of V-automata is defined as follows. Let A be a domain
of values. An assertion @ on A corresponds to a subset V(a) of A. A valuea € A
satisfies an assertion a on A, written a = «, iff a € V(a). Let 7 be the time
domain and v : 7 — A be a trace. Given a V-automaton A as (@, R, S,e,c), a
run of A over v is a mapping r : 7 — @ such that the following two conditions
are satisfied:

1. Initiality: Let 0 € T be the start time point, v(0) = e(r(0)); and
2. Consecution: If T is discrete time, then for all ¢ > 0, v(t) |= e(r(pre(t)), r(2)),
where pre(t) is the previous time point of ¢. If 7 is continuous time, the
following two conditions must be satisfied:
(a) Inductivity: Vt > 0,3¢ € Q,t' < t,Vt" t' <" < t,r(t") = q and v(t)
e(r(t"),r(t)) and
(b) Continuity: Vt,3q € Q,t' > t,Vt'" 1 <t < t',r(t") = ¢ and v(t") |
o{r(t), ("))
These two conditions are derived from continuous induction principle. Con-
dition (a) corresponds to a right-closed transition and condition (b) corre-
sponds to a left-closed transition.

If 7 is a run, let Inf(r) be the set of automaton-states appearing infinitely
many times in r, i.e., Inf(r) = {q|Vt3to > ¢, 7(t0) = ¢}. A run r is defined to be
accepting iff:

1. Inf(r)NR # 0, i.e., some of the states appearing infinitely many times in r
belong to R, or

2. Inf(r) C S, i.e., all the states appearing infinitely many times in r belong
to S.

A V-automaton A accepts a trace v, written v |= A, iff all possible runs of A
over v are accepting.

For example, Figure 10(a) accepts the trace z(t) = Ce™" for G =4.5 |z| < €.
Figure 10(b) accepts the trace z(t) = sin(t) for D =4.5 |2z| > 1. Figure 10(c)
accepts the trace z(t) = sin(t) for £ =4.¢ ¢ > 0 and F =4.5 z < 0.

Timed V-automata are V-automata augmented with timed automaton-states
and time bounds. Let R be the set of non-negative real numbers. A timed V-
automaton T A is a triple (4, T,7) where A = (@, R, S, ¢,c) is a V-automaton,
T C @ is a set of timed automaton-states and 7 : T'U {bad} — Rt U {oo} is a
time function. A V-automaton is a special timed V-automaton with 7' = ) and
7(bad) = oco. Graphically, a T-state is denoted by a nonnegative real number
indicating its time bound. Figure 11 shows two examples of timed V-automata.

The formal semantics of timed V-automata is defined as follows. Let I C 7T be
a time interval and p(I) € R* be the real-time measurement of I. Let 7 : 7 — @
be a run of A. For any P C @, let Sg(P) be the set of consecutive P-state
segments of r, i.e., |y € Sg(P) for some interval I iff Vt € I, r(t) € P. A run r
satisfies the time constraints iff
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Fig.11. Examples of timed automata

1. (local time constraint) for any ¢ € 7" and any interval I of 7 , if |1 € Sg({q})
then p(7) < 7(¢) and

2. (global time constraint) let B = @ — (RU S) and xp : @ — {0,1} be the
characteristic function for set B; for any interval I of 7, if r; € Sg(B U S)
then fI xp(r(t))dt < r(bad).

Condition 1 says if 7 is the local timing bound for ¢, then the time duration of
any segment of ¢’s must be no more than 7. Condition 2 says if 7 is the global
timing bound, then the total time on bad states must be no more than .

Let v : T — A be a trace. A run r of T A over v is a run of A over v; r is
accepting for T A iff

1. 7 is accepting for A and
2. r satisfies the time constraints.

A timed V-automaton TA accepts a trace v, written v = TA, iff all possible
runs of 7 A over v are accepting. For example, Figure 11 (a) specifies a real-time
response property meaning that any event (F) will be responded to (F') within
30 time units. Figure 11 (b) specifies a conditioned real-time response property
meaning that R will always be reached within 30 time units of B, i.e., the time
in S is not counted.

Tt has been shown [24] that discrete V-automata have the same expressive
power as Buchi automata [31] and the extended temporal logic (ETL) [32], which
are strictly more powerful than the propositional linear temporal logic (PLTL)
[31,32]. However, timed V-automata are not directly comparable with TBA [2].
A local timing constraint in (discrete) timed Y-automata can also be specified in
TBA. However, global timing constraints cannot be specified within TBA | since
it is not possible to stop a clock except by resetting it. On the other hand, there
are properties of timed behaviors that can be specified by TBA but cannot be
specified by timed V-automata.

3.2 Requirements specification for elevator systems

A well-designed elevator system should guarantee that any request will be served
within some bounded time. We can specify such requirements in timed V-automata.



There are three kinds of requests: to go to a particular floor after entering
the elevator, or to go up or down when waiting for the elevator. The following
are some examples of assertions.

— R2: Fbs(2) = 1 denotes that “there is a request to go to the second floor.”
— R2S : Fbs(2) = 0 denotes that “the request to go to the second floor is

served.”

— RU2 : Ubs(2) = 1 denotes that “there is a request to go up at the second
floor.”

— RU2S : Ubs(2) = 0 denotes that “the request to go up at the second floor is
served.”

Notice that an elevator may stop at a floor forever given that a request
button in that floor is pushed continuously. The real-time response specification
in Figure 11 (a) will not be satisfied in general (e.g. given E =4, R2 and F =4.¢
R25S). Instead, a conditioned real-time response specification in Figure 11 (b)
should be adopted. For example, let S =4.; Com =0, B =4.¢ RU2A(Com # 0)
and R =4.; RU2S, the specification in Figure 11 (b) means that a request to go
up in the second floor will be served within 30 time units of elevator’s motion
time.

4 Hybrid Control System Design

Given a model of the system and its requirements specification, 1t is always a
challenge to design a “correct” control system so that the overall system satisfies
the specification. There is no automatic method in general. However, there are
design principles that can be applied case by case.

In section 2, we have modeled the complete elevator system with modules
CONTROLO and CONTROL1 as the black boxes. CONTROLO is an analog controller that
generates force to drive the elevator body, and CONTROL1 is a discrete controller
with the current floor number f and the current button states bs as inputs and
with command Com and serving state s as outputs. In this section, we will design
these two control modules as a case study.

4.1 Continuous control design

The simplest analog controller is a linear proportional and derivative (PD) con-
troller. Let

Fy if Com=1

—Kpd, — Kyd, if Com =0

where d; is the distance to the closest floor, Fyy is a positive constant, K, is a
proportional gain and K, is a derivative gain. The rest of design is to choose Fyp,
K,, K, so that the following two conditions are satisfied:

1. Continuous Stability: the continuous control is stable;



2. Hybrid Consistency: the interface to the discrete control is consistent.

— Stability .
Notice that A = dy, so for Com = 0, we have

ds + (K + K,)d, + Kpd, = 0. (6)
by combining Equation 1 with Equation 5.

The stability theorem for the second order differential equation tells us that
if both K+ K, and K, are positive, the continuous system is stable, because
the roots of the characteristic equation have negative real parts.

Consistency

The home position is defined as |ds| < ¢ for some € > 0. In order to have
hybrid consistency, we have to make sure that if Com = 0, then Com = 0
implies |ds| < e for all time (this formal requirement is represented by a
V-automaton in Figure 12), i.e., no overshoot above ¢ should happen after a
stop command is 1ssued.

' S Com=0=> ldd< ¢

o]

~— C: Com=0

C

Fig.12. The specification of the stop control

Let
K! =K + K, (7)
and
(K,)? = 4K,. (8)
The solution to the differential equation Equation 6 is
dy = (Cy + Cyt)e 7501 (9)
where Cy = —eand C7 = Vp— %Kée, where Vj 1s the initial speed at distance

€.

The maximum distance to the floor D can be computed as follows: The
maximum distance is achieved at d; = 0. Derived from Equation 9, we
have C7 = %K,ﬁ(Co + Cit), i.e., the maximum distance happens at time



t = 2/K] — Cy/Cy. Putting this ¢ back to Equation 9, this control will
overshoot at most D where

D = (20, /K!)e™ 1~ Co/(2C1/K,)
= (2Vo/K! — ¢)e™ 1/ Vol Ko=),

If we choose

K! = Vy/e, (10)
we have D = ee~2. Therefore, max; |ds(t)| < e.
Given Fy, the maximum speed of the elevator is then

Vo = Fo/K (11)

since the solution to Equation 1is h = (Fyo/K)(1 — e=K?) given that F is
Fy. If the maximum acceleration of the motor is a, we have to choose

Fy<a (12)

since F = h + Kh. On the other hand, if the maximum deceleration of the
motor is d, Vy must satisfy

K!'Vo— Kpe<d (13)

according to Equation 6. Combining Equation 13 with Equation 10 and
Equation 8, we have

Vo < v/4ed/3. (14)
Combining Equation 12 and Equation 14,
Fy < min(K\/4¢d/3, a). (15)
For the rest of parameters, we can have
K] = Fo/(Ke) (16)
using Equation 10 and Equation 11. Then
K, =Ky — K (17)

using Equation 7 and
K, = K2/4 (18)

using Equation 8.

Suppose K = 1.0, a = d = 0.5, and ¢ = 0.15, we can set Fy = 0.33 that
satisfies Equation 15, K, = 1.2 and K, = 1.21.



4.2 Discrete control design

The discrete controller CONTROL1 is a logical component. It receives the current
request from the state of push buttons b,, according to the current floor number
f and the current serving state s, determines the next motion of the elevator
Com and the next serving state s. We assume here three kinds of serving states:
up, down and idle. Furthermore, we assume that the elevator is always parked
(idle) at the first floor.

There are three types of request to the elevator: UpRequest, DownRequest
and StopRequest.

— Let Ur indicate whether or not there is a request for the elevator to go up:

Ur = UpRequest(f,Ub, Db, F'b)

=Ub(f)v \/ (Ub(k)V Db(k)V Fb(k)).
n>k>f

— Let Dr indicate whether or not there is a request for the elevator to go down:

Dr = DownRequest(f,Ub, Db, F'b)

=Db(f)v \/ (Ub(k)V Db(k)V Fb(k)).
1<k<f

— Let Sr indicate whether or not there is a request for the elevator to stop and
the request is consistent to the current serving state s:

Sr = StopRequest(f,Ub, Db, F'b, s)

[ Db(f)V Fb(f)if s = down
T L Ub(f) Vv Fb(f) otherwise.

In order to satisfy the requirements specification that any request is served in
some bounded time, we have to make sure that there is no dead-lock or live-lock
for all possible situations. For example, a control that always serves the nearest
floor may get stuck and never respond to a request further away. Here is a simple
strategy we use: the elevator will move persistently in one direction until there
is no request in that direction. More specifically, if there is a request for the
elevator to go up and either the last serving state is up or there is no request to
go down, the current serving state will be up; if there is no request to go up and
the elevator is not at the first floor, or the last serving state is down and there is
a request to go down, then the the current serving state will be down; otherwise
the current serving state will be idle, that is, the elevator will be parked at the
first floor if there are no more requests. Formally,

s' = ServingState(f,s,Ur, Dr)

up if Ur A (s # down V —Dr)
=< downif (=Ur A f>1)V(DrAs = down)
tdle otherwise



Then, the current command can be determined as follows:

Com = Command(Sr, s)

0 1if Sr or s =dle
=<1 if =Srand s =up
—1 otherwise.

Putting all the functions together, the constraint net model of the discrete
controller is shown in Figure 13.

Fig.13. The discrete control module

5 Behavior Verification Using Model Checking

Given a constraint net model of a system and a timed V-automaton specification
of a behavior, the behavior of the system satisfies the requirements specification
if and only if the (behavior) traces of the system are accepting for the timed
Y-automaton.

We develop a model checking method that uses the induction principle and
generalizes both Liapunov stability analysis for dynamic systems and monotonic-
ity of well-foundedness in discrete-event systems.

A representation between constraint nets and timed V-automata is a state-
based transition system, such as a Kripke structure. The verification rules are
applied to the Kripke structure.



5.1 Generalized Kripke structure

A useful and important type of behavior is state-based and time-invariant. In-
tuitively, a state-based and time-invariant behavior is a behavior whose traces
after any time are totally dependent on the current snapshot. State-based and
time-invariant behaviors can be defined using generalized Kripke structures [35].

A generalized Kripke structure K as a triple (S, —,0) where S is a set of
states, =C S x Rt x § is a state transition relation, and @ C & is a set of
initial states. We denote (s1,1,52) €— as s; 4 s9. The state transition relation
— satisfies the following conditions:

mitiality: s 5 s;
— transitivity: if sq BZN s9 and s9 5 s3, then s titfa $3;
infinity: Vs €S,3 > 0,5’ €S, 5 - 5.

For example, the behavior of £ = —z can be represented by a generalized Kripke

structure (R, —, @) with s; A 59 1ff 59 = 5771,

Let ¢ and 1 be assertions on states and time durations. For a generalized
Kripke structure K = (S, —, ), let {¢} {1} denote the validity of the following
two consecution conditions:

— Inductivity {o}K={1}: 36 > 0,Y0 < t < 6,¥s, (p(s) A (s 5 5') = (s, 1)).
— Continuity {p}K+{¢}: ¢(s) = 36 > 0,Y0 < t < 6,Ys', (s — ') = ¢(s', 1)).

These two conditions are derived from the continuous induction principle. If time

is discrete, these two conditions reduce to one, i.e., p(s) A (s 2, s') = Y(s',6)
where 6 is the time duration between s and 5.

5.2 Verification rules

The formal method for behavior verification consists of a set of model-checking
rules , which is a generalization of the model-checking rules developed for con-
current programs [24].

There are three types of rules: invariance rules (T), stability or eventuality
rules (L) and timeliness rules (T). Let A be a V-automaton (@, R, S, e, ¢) and K
be a generalized Kripke structure (S, —, @). The invariance rules check to see if
a set of assertions {a},eq is a set of invariants for .4 and K, i.e., for any trace v
of K and any run r of A over v, Vt € T, v(t) |= ay(y). Given B = Q —(RUS), the
stability or eventuality rules check if the B-states in any run of A over any trace
of K will be terminated eventually. Given 7 A as a timed Y-automaton (A, T, 1),
the timeliness rules check if the T-states and the B-states in any run of A over
any trace of K are bounded by the time function 7. The set of model-checking
rules can be represented in first-order logic, some of which are in the form of
(P {v).

Here are the model-checking rules for a behavior represented by K = (S, —
,0) and a specification represented by 7.A = (A, T, 7) where A = (Q, R, S, ¢, c):

Invariance Rules (I): A set of assertions {«,}qeq is called a set of invariants

for K and A iff



(11) Initiality: Vq € Q,0 Ne(q) = ay.
(12) Consecution: ¥Vq,q' € Q,{ag}K{c(q,q") = ay}.

The Invariance Rules are the same as those in [24] except that the condition for
consecution is generalized.

Stability or Eventuality Rules (L): Given that {ag}eeq is a set of invariants
for K and A, a set of partial functions {p;}4eq : & — RT is called a set of
Liapunov functions for K and A iff the following conditions are satisfied:

(L1) Definedness: Vq € Q, oy = Jw,p; = w.

(L2) Non-increase: Vg € S,¢' € Q, {ag Apy = wiK {c(q,¢") = py < w} and
VeeQ, ¢ €S, {a;Ap, =wlKt{c(q,q') = py < w}.

(L3) Decrease: 3¢ > 0,V¥q € B,q¢' € Q, {a, A p, = wiK~{c(q,¢') = 2 < —¢}

13
and Vq E Qaql E Ba {aq /\Pq = w}K+{C(Qaq/) :> pqlt_w S _6}'

If time is discrete, KT rules will not be used. The Stability or Eventuality Rules
generalize both stability analysis of discrete or continuous dynamic systems [20]
and well-foundedness for finite termination in concurrent systems [24].

Timeliness Rules ('T): Corresponding to two types of time bound, we define
two timing functions. Let {a,}eq be invariants for K and .A. A set of partial
functions {v,}ser is called a set of local timing functions for K and 7A iff
74 : 8 — RT satisfies the following conditions:

(T1) Boundedness: Yqg € T, g = 74 < 7(q) and Vq € T,¢' € Q, {ag Ny, =

wiK {e(q,q") => w > t}.
(T2) Decrease: Yq € T, {ag Avyq = w}K{e(q, q) = 1= < —1}.

A set of partial functions {n, }4eq is called a set of global timing functions for K
and T A iff n, : § — RT satisfies the following conditions:

(T3) Definedness: Vq € Q, ag = Jw,n, = w.

(T4) Boundedness: Yq € B, aqg = 1y < 7(bad).

(T5) Non-increase: Vg € S,¢" € Q, {ag Ay = w}K {e(q,¢") = ny < w} and
VeeQ, ¢ €S, {a; An, = wiKT{c(q,¢) = ny < w}.

(T6) Decrease: ¥q € B,q' € Q, {ag Ang = wiK {c(q,¢') = ”qlt_w < —1} and
Ve €Q,q' € B, {ag Ang = wiKH{e(q, ¢') = 75— < 1}

If time is discrete, Kt rules will not be used. The Timeliness Rules are modifica-
tions of the Eventuality Rules; they enforce real-time boundedness, in addition
to termination.

A set of model-checking rules is sound if verification by the rules guarantees
the correctness of the behavior against the specification; it is complete if the
correctness of the behavior against the specification guarantees verification by
the rules. The soundness and completeness of the rules are discussed in [35].

Also notice that the set of verification rules are formal guidance for the proof
of a system; it is by no means automatic. However, if the system is discrete and

there are computer-aided proof systems available, semi-automatic proofs can be
applied. If the system is discrete and finite, automatic algorithms can be derived
from the rules [34].



5.3 Is the elevator system well-designed?

This question can be answered only if we can answer the following three ques-
tions: (1) Does the model reflect the real system at the appropriate level of
abstraction? (2) Is the set of requirements complete? and (3) Does the model
satisfy the requirements? The method that we propose here will answer the third
question.

Given a 3-floor elevator system, we can check whether or not a request to
go up at the second floor will be served within some bounded time units of
elevator’s motion time, i.e., if the constraint net model in Figure 9 satisfies the
timed V-automaton specification in Figure 11 (b).

Our method involves the following steps:

First, find a Kripke structure of the constraint nets corresponding to the level
of specification. A continuous system can have a discrete Kripke structure if the
specification is on high level. In this case, if there is a request to go up in the
second floor, a Kripke structure of the behavior of the system can be obtained
(Figure 14). Each state is of form (f, s, Com) indicating the current floor, the
serving state, and the command of the elevator, with (1, up, 0) as the initial state.
The dashed transitions indicate the transitions inhibited by the control given the
current request state, and self loops indicate the stationary transitions.

(3,down,0)

(Lup.1)

(L.up,0)

S=(f,s,Com)

Fig.14. Generalized Kripke structure of the behavior



Since the Kripke Structure we use is finite for this case, automatic proof can
be applied. The algorithm is directly obtained from the rules, so we will illustrate
how the rules are applied here.

1. Find a set of invariants for the timed V-automaton in Figure 11 (b) that
satisfies the Invariance Rules. In this case, let q1, q2, g3 be states with B, S
and R assertions respectively. If B =4.¢ RU2A(Com # 0), S =4.5 Com =0,
and R =4.; RU2S, we can see that B, S and R are invariants for ¢, ¢2 and
q3 respectively.

2. Find a set of Liapunov functions. Let p be a function whose value for each
state is the longest possible path from that state to the desired shaded state,
without self loops (see the number in each state in Figure 14). Tt is easy
to see that rho (for all q1, q2 and ¢3), together with the invariants, satisfy
the Stability or Eventuality Rules. That is, the request will be served within
bounded time of motion.

3. Find a set of global timing functions. Let the maximum traversal time of the
elevator from one floor to another be T', we define a global timing function
as follows:

n(2, up,0

(1, up, 1

n(1, up,0
7(2, down, —1
n(2, down, 0
n(3, down, —1
n(3, down, 0

n(2, up, 1

It is easy to see that 5 (for all ¢1, ¢2 and ¢3), is a global timing function iff
4T <30.

we can calculate the maximum traversal time 7' of the elevator from one
floor to another as follows. Since h = (F/K)(1 — e~ %%) and h(0) = 0, we
have h = (F/K)(t + (1/K)e~X%) — F/(K?). Suppose the distance between
floors i1s H. The time to traverse one level from stationary state will be
H > (F/K)t) - F/(K?),ie,t<HK/F+1/K.If H=2.0, K = 1.0 and
F =0.33, we have t < 7.061. Therefore T' = 7.061.



6 Conclusions

We have presented a formal approach to the modeling and analysis of hybrid
control systems. The approach consists of four interleaving or concurrent phases:
hybrid dynamic system modeling, requirements specification, hybrid control de-
sign and behavior verification. We have used Constraint Nets for modeling hybrid
dynamic systems, timed V-automata for specifying requirements, coupled con-
tinuous control with event-driven logic, and the rule-based model checking for
verifying behaviors of the overall systems.

Our approach is demonstrated by an elevator case study. The hybrid con-
trol system of the elevator couples a quite complex discrete control logic with
an analog control law. The inconsistent behavior between the discrete and con-
tinuous components, as well as the incorrect behavior at each level, may cause
the malfunction of the overall system. We have simulated the elevator system
modeled by Constraint Nets in both Simulink and SystemBuild.

As we reviewed in this paper, much work has been done in modeling and
analysis of hybrid systems [10]. Which method to use is largely dependent on
the problems at hand.

Like most dataflow/net formalisms, Constraint Nets are modular and hierar-
chical so as to model complex hybrid systems. Developed from abstract algebra,
CN provides a uniform representation for hybrid systems with a formal syntax
and semantics for simulation. However, since there are no closed-form solutions
for most problems, the analysis is, in general, hard.

Timed V-automata are simple for requirements specification, However, they
are not powerful enough to represent all the possible behaviors.

Our verification method provides a set of formal model checking rules, which
can be used to guide a formal proof procedure. However, the invariants, Liapunov
and timing functions are not automatically created and the verification of the
rules is not automatic, in general.

Nevertheless, the approach we developed here can be used to solve many
problems in hybrid systems modeling, designing, specification and verification.
With this approach, we have also developed controllers for robot soccer players
[39] and hydraulically controlled robot arms [34]. The same approach can be
applied to the modeling and control of most complex electromechanical systems.
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