Adaptive Synchronisation for a RoboCup Agent

Jefferson D. Montgomery and Alan K. Mackworth

Computer Science Department of the University of British Columbia
Vancouver, B.C., Canada, V6T 1Z4
{jdm,mack}@cs.ubc.ca

Abstract. We describe an algorithm that adaptively synchronises an
agent with its environment enabling maximal deliberation time and im-
proved action success rates. The method balances its reliance upon noisy
evidence with internal representations, making it robust to interaction
faults caused by both communication and timing. The notion of action
correctness is developed and used to analyse the new method as well as
two special cases: Internal and External synchronisation. Action correct-
ness is determined online by a novel action accounting procedure that
determines the outcome of commanded actions. In conjunction, these el-
ements provide online analysis of agent activity, action confirmation for
model prediction, and a coarse measure of the agent’s coherence with
the environment that is used to adapt its performance.

1 Introduction

Distributed systems, with relevant coordination, can be more efficient and pro-
ductive than independent entities. This fact has not escaped those in search
of a computational model of intelligence where intelligent, distributed agents
also promise more efficient and productive solutions. Accordingly, multi-agent
systems have become an important and widely researched topic. For example,
robot soccer was presented as a suitable domain for exploring the properties of
situated, multi-agent systems [9] and has since been developed into a popular
yearly competition between artificial soccer teams [7].

However, distributed systems are subject to problems such as partial fail-
ure, incomplete observability, and unreliable communication. Therefore, it is an
important property for successful distributed systems to be able to efficiently co-
ordinate between individuals, including the environment. Unified operation — a
synchronised system — can be achieved using accurate system specification [4]
or through sufficient communication [6,12]. Asynchronous operation can result
in irrelevant sensing, inconsistent representations, and delayed or failed action;
problems which can affect event the most sophisticated skills and plans [2, 5, 10,
14].

Considerable research has been done in the related areas of clock skew detec-
tion and distributed system monitoring [6, 8], particularly given recent interest in
streaming multimedia. In the RoboCup Simulation league, however, the commu-
nication protocol is too restrictive to support the standard solutions developed

in these efforts. Accordingly, simple solutions have been adopted often entailing
unjustified assumptions. In this paper, we describe a new adaptive algorithm for
synchronising the agent with its environment that is robust to communication
delays, lost messages, and timing faults.

In Section 2, we develop the notion of correct action, which defines criteria
for a solution and forms the basis of our evaluation and analysis. Section 3
presents a taxonomy of practical issues which is used to motivate and compare
typical synchronisation techniques in Section 4. Sections 5 and 6 present a novel,
adaptive synchronisation algorithm based on an online accounting procedure for
action commands. Finally, the results of an empirical comparison of the presented
techniques are included and discussed in Section 7.

2 Robots that Act Correctly

In general, a robotic system is the coupling of a robot with its environment.
Further, a robot can be viewed as a controller embedded in a plant, through which
the robot senses and acts in the environment. A general robotic system is shown
in Fig. 1. In the RoboCup Simulation league, two distinct software programs (the
agent and SoccerServer) interact through a lossy communication channel. This
can be viewed as a robotic system where the SoccerServer is the environment,
the communication channel is the plant, and the agent is the controller.

59
32
QS
= Q
A
=]
3| 4
3
2
|
Y
°
o
3
3
c
=3
T
g5
>
0
=0
E
=l
2
‘\
ia
El
=
S
8
S i
|
v
©wm
g2
Q3
=2
$3
32

Fig. 1. A general robotic system showing the interactions between the robot’s controller
and plant as well as with the environment.

The environment effects action and provides stimuli to the robot. SoccerServer,
shown in Fig. 2, simulates real-life robotic soccer and disseminates stimulus to
each of the competing agents [11]. The simulation cycles with a period of 100
milliseconds and can be described by four states. Each cycle begins in the SB state
(where sense_body stimulus describing the agent’s condition is provided) and
ends in the E state (where the domain dynamics are simulated). SoccerServer
accepts actions in the R state and enters the SE state every one and a half
cycles to provide visual sensor data in the see stimulus. Because of the inherent
frequency mismatch, state-space is traversed sequentially through three distinct
cycle types: type 1 (SB - SE -+ R — E), type 2 (SB - R — SE - R — E), and
type 3 (SB—+R — E).

stimulus stimulus : stimulus .
(sense body) (see) action (sense body) 2tion
A A i A i
I I ‘ I !
(%
o}
Q
)
&
i ! i !
I v I v
. stimulus] stimulus
action (sense_body) action (se0)

Fig. 2. States and state transitions for the SoccerServer environment. To emphasize
the three cycle types, state transitions are multiplied out and the cycle type is denoted
by a subscript to the state label.

The controller supplies a command trace to the plant to achieve the desired sys-
tem behaviour. For simplicity, we assume an agent capable of rational thought
based on a sense-plan-act architecture, as shown in Fig. 3. This agent receives
percepts while in state S, then deliberates in state P, and finally commands the
desired action in state A.

5
R Ca0s

B |

! Y
percept

(see, sense_body) command

Fig. 3. States and state transitions for the agent.

Successful agents must generate action that is consistent with the current
environment. To achieve this coherence, an agent must make decisions based
on sensor data and command action in such a way that it is effected while the
relevant sensor data is still valid. We call this correct action.

Definition 1 (Correct action). In the RoboCup Simulation domain, an agent’s
actions are correct when the following temporal precedence constraints are sat-
isfied, where X < Y constrains state X to happen before state Y.

1) A<E
2) SB<PASE <P!
! In cycle type 3, which does not include the SE state, the second term of the conjunc-

tion is ignored. Otherwise, where SB < SE is considered a tautology, the first term
can be ignored.

The first constraint is strict: SoccerServer must receive one action command
before it begins simulating the dynamics. If A £ E, the agent will remain idle un-
til the next simulation cycle. If SoccerServer receives more than one command
in a single cycle, the second and any subsequent command is ignored. There-
fore, whether action is effected on time is determined not only by the command
reception time, but also by that of the previous cycle as described in Table 1.

Table 1. SoccerServer rules for effecting action based on command reception times.

Command reception Current action

Aprev < Eprev AA<E Effected on time

Apreu 74 Ep'rev ANA<E Failed
Aprev <Eprev ANA AE Effected late
Aprev A Eprev NA AE Effected late

The second constraint is soft: the agent should consider action only after suf-
ficient sensing. If this constraint is violated then the agent is basing its action on
possibly inconsistent sensor data. For example, the CMUnited98 agent acts at
the beginning of each simulation cycle [13]. This virtually ensures the first con-
straint by abandoning the second: all decisions are based on dead-reckoning from
the previous cycle and not from current sensor data. Though this method has
proven successful in competition where the environmental dynamics are struc-
tured and easy to simulate, this approach is ill-advised in general.

3 Desired System Behaviour

Given the required computation for sensor processing, deliberation, and simu-
lation, the constraints in Definition 1 imply that there is an optimal time, t*,
within the simulation cycle when actions should be commanded. If commanding
at the optimal time, the agent will receive relevant stimuli, have the maximum
amount of time to deliberate, and have all action occur as expected. This ideal
behaviour is shown in Fig. 4.

In practice, however, there are several factors that disrupt the ideal be-
haviour. The simulation cycle is not observable by the agent and appears to
fluctuate in its periodicity. These fluctuations are the result of one or more of
the following practical considerations which make acting correctly difficult. For
example, see Fig. 5.

Clock inaccuracies. The quartz oscillations that computers use to keep time
are inaccurate. Typically, a clock can deviate from real time by as much as 30
milliseconds over a 10 minute period [12]. Also, since the system is typically
not run over a real-time operating system, interval timers tend to overrun

%%&1 2 3

o[s] e [s[r [=[r [e sl e |
1 \ \ 1
L ‘ ‘ ‘
s I [als | plals | I [als |
Time:'\ 3 3 3

Fig. 4. An event timing diagram depicting ideal, coherent behaviour for each of the
three cycle types: all three actions are correct

when the processor is overly taxed. These anomalies occur independently
across the system which, over the course of a full game, can incur timing
deviations that constitute significant portions of the simulation cycle period.

Varying communication reliability. Varying network traffic causes unob-
servable and unpredictable communication delays. Further, since the system
uses a lossy communication protocol, messages can arrive out of order or be
lost entirely in the transport layer. Therefore, the sensitivity of a synchroni-
sation method to such communication faults is extremely relevant.

s8[R E

[P E

Fig. 5. An example showing possible faults associated with clock inaccuracies and
varying network reliability. In the first cycle, the sense_body is delayed, arriving out of
order with the see stimulus. Also, the SoccerServer’s interval timer overruns causing
the next sense_body (which ends up being lost in transit) to be delayed. In the second
cycle, the action command is delayed and not effected until the third cycle. Since this
action arrives late, the agent remains idle and the action commanded in the third cycle
is ignored by SoccerServer.

4 Synchronisation Algorithms

In order to synchronise with the environment, each agent must determine its best
estimate of the environment’s state, which is not directly observable. This section
presents two estimation techniques based on internal and external evidence and
compares them based on their likelihood of producing correct aciton.

4.1 Synchronisation using Internal Evidence

Internal synchronisation uses internal evidence to coordinate with the environ-
ment. The evidence commonly used is the expiration of an interval timer that
mimics the simulation periodicity: the agent assumes a new simulation cycle
upon the timer’s expiry every 100 milliseconds [3]. The agent then commands
an action at some fixed internal time, £*. An example is shown in Fig. 6.

1 2 3

ESB\SE\R [E ESB‘R][R [E ESB‘R E \

; [N [

o slp a s A L [sle A |
;fk—> } 100 ms }

Fig. 6. An example of Internal synchronisation where an internal cycle is initiated
upon expiration of an interval timer. The first and third cycles show correct action,
although the agent is not fully utilizing the available deliberation time. In the second
cycle, the action is scheduled before the see stimulus. Therefore, the action decision is
based on previous (possibly inconsistent) sensor data.

Due to the internal nature of this algorithm, there are no observed fluctua-
tions due to network variation. However, there will always exist a temporal offset,
d, between the true simulation cycle and the agent’s internal representation:

SoccerServer cycle ‘ ‘

Agent cycle }Lﬂ |

Time |

The fundamental assumption behind Internal synchronisation is that the in-
ternal and external cycles are in phase (i.e., § = 02). If this assumption holds
the internal method produces excellent results, but assuming correlation is un-
justified. In general, § is uniformly distributed depending on when the agent is
initiated and varies dynamically due to clock inaccuracies.

L if t € [-50,50]
— 4 = J 100 1)
P@=t)= { 0 otherwise 1)

In order to determine how violation of this fundamental assumption effects
action correctness, we consider how likely it is that Definition 1 will hold under

2 Unless otherwise specified, this paper describes time in integer milliseconds. Units
will be omitted for the remainder of the paper.

these conditions. Taking Table 1 into consideration, the probability of correct
action is

P (Correct action) = P ((Aprey < Eprey AA<E)A(SB<PASE<P)) (2)

To proceed, we assume that the communication channel introduces a trans-
mission delay, Tgeiay, that is exponentially distributed with expected delay T,
and independent of time [1].

Le~7 if 0
P(Tpetay =t) =4 7¢ 7~ 112 3
(Tactay = 1) {0 if t <0 ®)

If Tiee is the external cycle time that the see stimulus is provided (or the

sense_body stimulus during cycle type 3), then

% ift=0
P(Toee =t)={ &+ ift=50 (4)
0 otherwise

Finally, if Tyei5 and T;y, are the time required to decide on and to simulate
an action respectively (both of which are assumed constant) then the probability
of correct action using Internal synchronisation follows directly from Equation 2:

(6 — 100+ £ + T3, + Tyim < 0)

Internal _ A @) '
synchronisation) =P A (6 + 7+ Tgetay + Tsim < 100)
A (Tsee + Ty + Taeis < 0+ t*)

elay

P (Correct

action

()

Equation 5 can be computed analytically, and a partial elevation plot is
shown in Fig. 7. It shows that Internal synchronisation is not very sensitive to
network variation, but that the probability of correct action is low because ¢ is
unlikely to fall in the desired range.

4.2 Synchronisation using External Evidence

As demonstrated in Section 4.1, the probability of correct action is directly
related to the validity of the internal representation. External synchronisation
abandons the internal timer and uses an external indicator to achieve a more
favourable § distribution. Perception of a sense body stimulus is used as evi-
dence of the SB state and of a new SoccerServer cycle. As shown in Fig. 8, this
evidence triggers a new internal cycle and action commands are scheduled after
a fixed internal time, £* [3,10].

The fundamental assumption behind External synchronisation is that vari-
ation in communication delay is negligible and that an appropriate value for
the command time, ¢*, is known. Under these conditions, this method produces

Probability of a Correct Action using Internal Synchronisation

N

T
Tswm + Tdel\b =10 ms

=20ms
=30ms []

+
= = Toim * Taeio

o
©
T

+
sim ™ Taeiib

o o

~)
T
L

o
Y

Probability of a Correct Action
& 2 &

o
)

o
[N

I I I I I - I 1
[10 20 30 40_ i 50 60 . 70. i 80 90 100
Expected Communication Delay, T, in milliseconds

o

Fig. 7. The probability of correct action using Internal synchronisation.

Fig. 8. An example of External synchronisation where action is commanded a fixed
time, t*, after sense_body perception. In the first cycle, the action command is not
received in time and the agent remains idle. In the second cycle, the sense_body message
is lost: no internal cycle is initiated, and no action is commanded. The second action
(in the third cycle) is correct.

excellent results. In real systems these assumptions are often violated, however,
and reliance upon an external indicator introduces sensitivity to lost stimuli (as
shown in Fig. 8). The effect of this assumption on action correctness is shown,
continuing from Equation 2, by the corresponding likelihood of correct action in
Equation 6 and Fig. 9.

1 - 2
. N (Titbay + & + Ty + Toim < 100)
orrect xterna. _ (3) e (4)))
(action synchronisation) =PA (Tdel“y +z + Taelay + Ts"z < 100
A (Tsee + Téel)ay + Tdelib S T,gel)ay + t*)

(6)

Probability of a Correct Action using Enternal Synchronisation
1 T T T T T T T T

T
Toim = Taein = > ™S
097\ **Ts\m’Tuelm’mmsi
' ‘\ Tsim = Taeip = 15MS
\

o o
~)
T T

o
Y
T

Probability of a Correct Action
& 2 &

o
)
T

o
[N
T

-

o

i . S
10 20 30 40_ i 50 60 . 70. i 80 90 100
Expected Communication Delay, T, in milliseconds

=)

Fig. 9. The probability of correct action using External synchronisation.

If the communication assumptions are valid then the sense_body percept is a
good indicator of a new simulation cycle. This is clear from the peak in probable
correct actions for low 7, but when transmission delay varies the probability
decreases rapidly. This is particularly evident with large communication delays

where, as shown in Fig. 10, External synchronisation can perform worse than
the naive Internal synchronisation.

5 Adaptive Synchronisation

The analysis in Section 4 (specificly Fig. 10) motivates a more robust synchro-
nisation algorithm. Ideally, such an algorithm would combine the reliability of
Internal synchronisation with external information to improves the § distribu-
tion.

The proposed Dynamic Action Index algorithm uses an interval timer as the
internal representation of the simulation cycle, and schedules action commands
at the action inder, I, as shown in Fig. 11. The action index s - the agent’s
estimate of the optimal internal time to command an action, t* — §, which is
approximated using separate estimates of § and ¢*:

I =t-4% (7)

As described in Sections 5.1, 5.2, and Table 3, the Dynamic Action Index
algorithm generalises Internal and External synchronisation and relaxes their
fundamental assumptions by using improved, adaptive estimates.

Probability of a Correct Action

\ — Internal synchronisation
\ — — External synchronisation

N

o
©
T

o o
~)
T T
L L

o
Y

Probability of a Correct Action
& 2 &

o
)

o
[N

‘ o e e
10 20 30 40_ i 50 60 . 70. i 80 90 100
Expected Communication Delay, T, in milliseconds

o

=)

Fig. 10. A comparison of the Internal and External synchronisation algorithms when
Tsim + Tderiv = 10. As communication delays increase, External synchronisation per-
formance degrades more rapidly. Internal synchronisation becomes favourable when
7>8.

SoccerServer cycle ‘SB‘ ‘E \
| B
Agent’sinternal cycle L»‘ ‘A ‘ ‘
[——
Time | !

Fig. 11. Synchronisation using a Dynamic Action Index (showing correct estimates),
where action is commanded at an internal time, I, which is modified based on its
inferred validity.

5.1 Estimating the Internal Cycle Offset

The internal cycle offset, 4, is estimated by modeling noise in sense_body per-
ception times. The model is based on the conservative assumption that a quick
transmission is likely to occur within a small number of simulation cycles [4,1].

If we assume that one out of N sense_body messages will be delivered promptly,
()
sense_body

then a good estimate of the cycle offset is given by Equation 8, where ¢
is the internal perception time of the i¢th previous sense _body.

N
§ = mi £ b0 ®)
mlni:LJl { b dy}

Although § is always an over-estimate (because it includes the transit time
of the quickest message), the bias can be neglected by considering necessary
communication delays while estimating the optimal time to command action,
i.e., by assuming known cycle offset.

5.2 Estimating the Optimal Time to Command Action

Because both network delays and processor strain vary over time, so too does
the optimal time, t*, to command action. Therefore, it is beneficial to adapt the
estimate of the optimal command time, ¢*, during operation. The validity of the
current estimate can be inferred if the agent can confirm how action is being
effected. This inference is summarised in Table 2 and because it operates on
the timescale of cycles (where communication delay can be deemed negligible)
and does not depend on sense_body perception times, reliance upon network
responsiveness is minimal.

Table 2. Inferring the validity of the optimal command time estimate assuming known
cycle offset.

Action Cause Inference
Effected on time I<t"—9§ <t
Effected late I>t"—3§ >t
Failed (I +6) mod 100 ~0 ¢* mod 100 ~0

If the action was effected on time, then the action index was not too large.
However, if the estimate is less than optimal then it can be increased (thereby
increasing sensing and deliberation) while still commanding action on time. Be-
cause the optimal time is not observable, there is little indication of how much
to increase the estimate where there is risk of commanding future actions late.

If the action was effected late, then the action index was too large and should be
decreased. Because the true amount is unknown, the estimate is decreased by
some fixed amount for each late action.

If the action failed, then the command was either lost in transport (which has no
implication on synchronisation), or it was ignored by SoccerServer. The latter
case occurs often if the estimate is on the simulation cycle boundary (in which
case the estimate can be reset to its initial value) or intermittently when a single
command is excessively delayed (which does not imply an incorrect estimate).

Each inference case can be adversely affected by periodic communication
delays. This side effect can be avoided by assuming that each delay is independent
and identically distributed and by requiring successive evidence of any inference.

Table 3. The internal cycle offset and optimal command time estimates used in the
Internal, External, and Dynamic Action Index synchronisation algorithms.

Algorithm Estimates
Internal cycle offset (§) Optimal command time (£*)
Internal 0 constant (e.g., 70)
External tS,,,,se_body constant (e.g., 70)
Dynamic Action Index min UiV:Bl {tiense_body} inferred and modified online

6 Confirming Commanded Action

The validity of the optimal command time estimate is inferred based on the
outcome of commanded action. Each action is classified by assiging it to one
of two disjoint sets: P is an ordered set of pending action, and C' is a set of
confirmed action. Actions initially belong to P and only become members of C'
if they obey a specific causal relationship between time and the count of effected
actions, n..°

Definition 2 (Action age). The age of a commanded action is the number of
sense _body’s perceived while waiting for its confirmation.

Definition 3 (Confirmed action). The ith pending action is confirmed, if
ne 2 [|C]| + 1.

If a pending action of age 1 is confirmed, that action was effected on time.
Otherwise, it can be difficult to distinguish between late and failed action. The
distinction can be made by imposing a bound, 7,4z, On communication delays,
above which unaccounted messages are assumed lost. The confirmation relation-
ship is made explicit in Table 4.

Table 4. Inferring the outcome of an unambiguous action from the count of effected
actions.

Count of ith pending action
effected actions Age Confirmed outcome
Ne > 1 1 Effected on time
e > 1 [2, 142 [”{6‘(‘)“]) Effected late
ne <i [1+2[mmee], 00) Failed

3 A count of effected actions is included as part of the sense_body stimulus. Any two
stimuli can be used to determine the number of actions effected between them.

However, ambiguities arise if a new action is commanded before a previous
action has been confirmed, which often occurs while waiting to distinguish be-
tween late and failed action. The ith pending action is ambiguous if i < || P].
In such circumstances, all hypotheses are maintained until the ambiguity can be
resolved or can be proven to be undecidable.*

The basis of the disambiguation procedure are the strict rules that govern how
an action command is handled by SoccerServer, based on when it is received
(see Table 1). In particular, we exploit the fact that an action cannot be effected
on time following late action. The procedure is outlined in Table 5.

Table 5. A procedure for disambiguating the set of pending actions, P = {pa,...}
based on the property that late-on time action pairs can not exists in P.

if p; effected on time then
Vj < i action p; effected on time
else if p; effected late Vne = ||C'U P|| then
Vj > i action p; effected late
else if p; lost then
if p;_1 effected on time then
Vj <4 —1 action p; effected on time
else if p;_1 effected late then
for each jin1lup to?—2do
if p; effected late then
Vk > j action py, effected late
else if { = ||P|| then
Vj < ¢ action p; ambiguous, ||C' U P|| — ne of which are lost

7 Comparing of Synchronisation Algorithms

Synchronisation algorithms can be compared in a number of ways. Butler et al.
develop a system for automatically extracting team activity as well as idle and
failure ratios from game log files [3]. However, these measures do not encode
the notion of action correctness (for example, late and failed actions increase
activity). The online procedure described in Section 6 provides information that
is more expressive. In fact, the measures used in [3] can be directly calculated

4 Ambiguities are only undecidable when a failed action cannot be assigned to a specific
pending command. For the purpose of t* estimation, this does not matter because
failure is certain, but this does effect model prediction and activity analysis since
the agent does not know which action failed.

using counts of correct, late, and failed actions. The ability is a special feature
of the online algorithm, which combines the intended action time with inferred
status.

The three synchronisation methods described in this paper were tested in
competition against previous RoboCup competitors [15]. All algorithms were
implemented using the Dynamic Action Index framework (i.e., action commands
were scheduled £*—§ after internal cycle initiation) using the parameters specified
in Table 3. The status of commanded actions was recorded throughout # partial
games played using a network that introduced varying transmission delays of
approximately 20 £+ 15 milliseconds. The fraction of correct action varied with
synchronisation algorithm as shown in Fig. 12.

. @ Correct actions
Observed Action Correctness H Late actions

O Lost actions

100%

80% T

—

60%

40%

20%
0% T T

Internal External Dynamic Index

Percent of Actions

Synchronisation algorithms

Fig. 12. Experimentally observed distributions of correct, late, and failed action for
agents using the Internal, External, and Dynamic Action Index synchronisation algo-
rithms.

The higher variance observed using Internal synchronisation is significant. It
corresponds to the uniform distribution of possible cycle offsets. If the internal
cycle happens to be synchronised with the external cycle the agent is able to
perform a high fraction of correct action. However, poor synchronisation is just
as likely.

External synchronisation was observed to produce fewer correct actions than
the other algorithms on average. For External synchronisation, variance from the

average is a result of sensitivity to sense_body perception times: small changes
in communication delay can cause a large change in the fraction of actions that
are correct.

The Dynamic Action Index synchronisation algorithm produces the most
correct actions on average. Also, the observed variance is low because the § and
t* estimates continually converge on optimal values making the algorithm robust
to varying conditions.

8 Conclusion

This paper introduces the Dynamic Action Index synchronisation algorithm that
estimates internal cycle offset and optimal action command times online. We
have shown that the Internal and External synchronisation algorithms are each
extremal special cases of the new algorithm, providing a satisfying theoretical
framework. Moreover, our experimental results show that our new algorithm
outperforms the other two approaches under varying network delays. We have
shown that combining an internal synchronisation algorithm with estimates de-
rived from the external SoccerServer performs better than either alone. In
general, any agent must weight and integrate its internal representation with ex-
ternal evidence for optimal performance. Qur results demonstrate how this can
be achieved for even the low-level task of synchronisation. Practically, agents us-
ing the algorithm can choose the optimal time to act and make good decisions,
approaching the rational ideal.

References

1. Jean-Chrysostome Bolot. Characterizing End-to-End Packet Delay and Loss in the
Internet. Journal of High-Speed Networks 2(3):305-323, December 1993.

2. Hans-Dieter Burkhard, Joscha Bach, Kay Schrter, Jan Wendler , Michael Gollin,
Thomas Meinert, and Gerd Sander. AT Humboldt 2000 (Team Description). In
P. Stone, T. Balch, and G. Kraetzschmar, editors, RoboCup 2000: Robot Soccer.
World Cup IV (LNAI No. 2019), pages 405—408, Springer-Verlag, Berlin, 2000.

3. Marc Butler, Mikhail Prokopenko, and Thomas Howard. Flexible Synchronisation
within RoboCup Environment: a Comparative Analysis. In P. Stone, T. Balch, and
G. Kraetzschmar, editors, RoboCup 2000: Robot Soccer. World Cup IV (LNAI No.
2019), pages 119-128, Springer-Verlag, Berlin, 2000.

4. F. Cristian. Probabilistic Clock Synchronization. Distributed Computing 3:146-158.
1989.

5. Klaus Dorer. Improved Agents of the magmaFreiburg2000 Team. In P. Stone, T.
Balch, and G. Kraetzschmar, editors, RoboCup 2000: Robot Soccer. World Cup
IV (LNAI No. 2019), pages 417-420, Springer-Verlag, Berlin, 2000.

6. Orion Hodson, Colin Perkins, and Vicky Hardman. Skew Detection and Com-
pensation for Internet Audio Applications. Proceedings of the IEEE International
Conference on Multimedia and Expo, New York, NY, July 2000.

7. Hiroaki Kitano, Minoru Asada, Yasuo Kuniyoshi, Itsuki Noda and Eiichi Osawa.
RoboCup: The Robot World Cup Initiative. In W. Lewis Johnson and Barbara

10.

11.

12.

13.

14.

15.

Hayes-Roth, editors, Proceedings of the First International Conference on Au-
tonomous Agents (Agents’97), pages 340-347. ACM Press, New York, 1997.

J. L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System.
Communications of the ACM 21(7):5568-565, 1978.

Alan K. Mackworth. On Seeing Robots. In A. Basu and X. Li, editors, Computer
Vision: Systems, Theory, and Applications, pages 1-13, World Scientific Press,
Singapore, 1993.

Birgit Schappel and Frank Schulz. Mainz Rolling Brains 2000. In P. Stone, T.
Balch, and G. Kraetzschmar, editors, RoboCup 2000: Robot Soccer. World Cup
IV (LNAI No. 2019), pages 497-500, Springer-Verlag, Berlin, 2000.

Itsuki Noda. Soccer Server: a Simulator for RoboCup. JSAI AI-Symposium 95:
Special Session on RoboCup, Dec. 1995

Rafail Ostrovsky and Boaz Patt-Shamir. Optimal and Efficient Clock Synchro-
nization Under Drifting Clocks. In Proceedings of ACM Symposium on PODC
’99. Atlanta, GA, 1999.

Peter Stone, Manuela Veloso, and Patrick Riley. The CMUnited-98 Champion
Simulator Team. (extended version) In M. Asada and H. Kitano, editors, RoboCup-
98: Robot Soccer World Cup II (LNAI No. 2019), Springer-Verlag, Berlin, 2000.
Shahriar Pourazin. Pardis. In Manuela M. Veloso, Enrico Pagello and Hiroaki Ki-
tano, editors, RoboCup-99: Robot Soccer World Cup III. (LNCS No. 1856), pages
614-617, Springer-Verlag, Berlin, 2000.

The RoboCup Simulator Team Repository,
http://medialab.di.unipi.it/Project/Robocup/pub/, January 31, 2002.

