Proceedings of 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems
Septomber 28 - October 2, 2004, Sendai, Japan

Situated Robot Design
with Prioritized Constraints

Pinar Muyan-Ozcelik and Alan K. Mackworth
Departmnent of Computer Science
University of British Columbia
Vancouver, BC, Canada V6T 174
{pmuyan,mack} @cs.ubc.ca

Abstract—The Constraint-Based Agent (CBA) framework
with prioritized constraints is a simple and effective method-
ology for designing and building situated robots. This method-
ology can be seen as a formal development of the subsumption
approach. It prevents ad hoe layering of behaviors and
supports modular development of the system.

A situated robot called Ainia that repeatedly finds, tracks,
chases, and kicks a ball is presented as an illustrative case
study of this design methodology. Ainia is first modeled,
simulated, and animated with the Constraint Nets in Java
(CNJ) tool. Then, a prioritized constraint-based controller of
the simulated Ainia is vsed to control the physical robot in
the real world,

The results show that the behaviors of the physical robot
satisfy the requirements specification. Hence, this study pro-
vides evidence that the formal CBA framework with prior-
itized constraints is an effective approach for synthesizing
situated robot controllers. In addition, it supports the claim
that CNJ is an effective tool for designing and building
situated robots operating in the real world.

1. INTRODUCTION AND MOTIVATION

The Constraint-Based Agent (CBA) framework devel-
oped by Zhang and Mackworth [1] is a formal approach to
building hybrid systemns as situated agents. Situated agents
follow the “sitnatedness” principle of Brooks [2]. There is a
strong two-way coupling between the body of the agent and
its environment. Situated agents are designed for particular
tasks and environmental niches,

The CBA approach consists of several formal models
which are used for the interleaved phases of dynamic
system modeling, requirements specification (or “behavior
specification™), control synthesis, and behavior verification.
Prioritized constraints are specified and modeled in the
requirernents specification and control synthesis phases,
respectively. Asimov’s three laws of robotics are examples
of prioritized constraints [3], [4].

The CBA framework with prioritized constraints can
be seen as a formal development of Albus’ model [S]

"and subsumption architecture [6], Subsumption is a re-
active architecture developed by Brooks which focuses
on priority-based arbitration of task-achieving behaviors.
The name subsumption arises from the design, where
higher behaviors are added on top of lower behaviors by
using priority-based arbitration. Hence, complex behaviors
subsume simpler behaviors.

In subsumption, behaviors are often layered in an ad hoc
way without using any formal specification or structured

0-7803-8463-6/04/$20.00 ©2004 |IEEE

rules of hierarchy. In addition the upper and lower layers
in the architecture cannot be designed completely indepen-
dently since the upper layers interfere with lower layers.
Hence, modularity is not supported.

The CBA framework with prioritized constraints ad-
dresses these shortcomings of the subsumption architec-
ture. The interaction hierarchy of the Constraint Nets (CN)
modeling language and the formal requirements specifi-
cation used in the CBA framework avoids the ad hoc
layering of the behaviors in the system. In addition, the CN
language supports modularity. In this language, modules
can be modeled and debugged independently and then
glued together.

By supporting modularity and using prioritized con-
straints, the CBA framework proposes a practical approach
to control synthesis. To synthesize the controller, the
prioritized constraint specification of the system and the
constraint-solving behavioral modules for each of the spec-
ified constraints should be provided. Then, the controller
of the system can be synthesized with connecting modules
by the arbiters in the specified priority order.

Constraint Nets in Java (CNI) developed by Song [7]
is a visual programming environment for CN modeling,
simulation and animation. Related tools that support visual
programming for control system modeling and synthesis
are Simulink [8], ControlShell [9], and MissionLab [10].

Previous studies employing the CBA approach have
worked on a robot that can escape from mazes [11], a
two handed robot that assembles objects [11], an elevator
simulation which serves requests of the users in a building
[12], soccer-playing robots [13], [14], and the like,

All of these systems proposed that the CBA approach is
an effective and practical design framework. However, they
utilized a limited version of the CBA framework, which
did not have the prioritized constraints. Additionally, only
two of these systems were specified and animated in CNJ:
the dynamics of a soccer-playing car-like robot [7] and the
dynamics of an elevator [15]. Moreover, these two systems
were not used in the real world, after being modeled and
simulated with CNJ.

With the intention of filling the voids mentioned above,
the motivation for this study was to provide evidence
that the CBA framework with prioritized constraints, using
CN], is an effective approach to building situated robots in
the real world.

1807

As an illustrative case study of this design methodology,
a situated robot called Ainia, that repeatedly finds, tracks,
chases and kicks a red ball in the field was first designed
and simulated in CNJ. After modeling the controller, the
body, and the environment of Ainia as separate modules
and creating an animation of the system under CNJ, the
controller module was used unchanged to control a physical
robot. The body and environment modules were replaced
by the physical robot plant and the external real world,
respectively.

II, THE CONSTRAINT-BASED AGENT FRAMEWORK

The CBA framework differs from other methodologies
for hybrid systems. It proposes a formal, unitary, modular,
and constraint-based approach based on the following four
theses: 1) Hybrid systems should be modeled, specified
and verified using formal methods. 2) The approach should
have a unitary framework that supports both discrete and
continzous time/domain structures. 3) The model should
support hierarchy and modularity. 4) Agent controllers
should be specified and designed as online constraint
satisfiers.

The CBA framework proposes viewing constraints as
relations among phase space variables and constraint satis-
faction as a dynamic process of approaching the (possibly
time-varying) solution set of the constraints persistently.
Since task requirements, physical limitations and environ-
mental restrictions can usually be specified as constraints,
most robotic systems are constraint-based dynamic sys-
tems. Thus, the CBA approach to controller design, which
advocates building robotic controllers as constraint solvers
that perform online constraint satisfaction, is a dependable
and scalable approach.

The approach consists of several formal models which
are used for the interleaved phases of dynamic system
modeling, requirements specification (or “behavior speci-
fication), control synthesis and behavior verification. In
the CBA framework, a CN formal model is used for
modeling the dynamics of the plant and its environment
and for control synthesis. Timed ¥Y-automata are used for
requirements specification and a formal model checking
method is used for behavior verification,

In CN, we generate a dynamic systern model that
represents the whole system as a set of components and
their relations. The CN model can express the underlying
structure of the system; however, it can not explicitly
express the behaviors of the system. Behavior specifica-
tion is used for this purpose. In timed V-automata, we
can restrict requirements specification to constraint-based
specification. This specification explicitly represents the
desired behaviors (dynamic relationships between the robot
and its environment) of the robotic system. Hence, in the
CBA framework, a controller acts as a constraint solver to
generate behaviors.

Building a robotic controller such that the behaviors
of the robotics system meet the given requirements is
referred to as control synthesis. In the CBA framework,
requirements specification and the dynamics of plant and

its environment are needed beforehand to synthesize a
correct controller. Behavior verification is used in parallel
with control synthesis in order to built the correct robotic
system. It makes sure that behaviors of the system gener-
ated by the constraint solving controller meet the specified
constraint-based requirements.

In this paper, we focus on system modeling and con-
trol synthesis; the behaviour specification and verification
phases are not explained in detail.

Constraint-based agents modeled in CN are built in three
separate modules: the controller, body, and environment
modules (Figure 1), The controller and body modules are
coupled together to constitute the agent. Likewise, the
agent and environment modules are coupled together to
constitute the agent’s system. This structure allows CN to
model agents that are situated in their environments.

(AGENT h

I ™
CONTROLLER

CONTROLLER-n

Repo:tsT lCcmsrraints
Repo:tsT lConstraints

CONTROLLER-1

\ A y
Reports v Commands

BODY

\ 3 Y,

Reactions Actions

ENVIRONMENT

Fig. 1. The structure of a constraint-based ageni system

The body is the direct interface of the agent to its
environment. It executes actions in the outside world,
senses the changes in the environment and reports these
changes to the controller. Given the current states of the
environment and the body, the controller computes and
sends proper commands to the body that would satisfy the
constraints.

In CN, the controller can be constructed with several
levels in a hierarchy. In this hierarchy, each level solves
constraints that are set by the level above and produces
the constraints to be sent to the lower level. Typically,
the lower levels are reactive and upper levels are delib-
erative. If the situated agent needs to do dynamic planning
(e.g. it has more than one goal to achieve or it has to
change its behaviors by predicting the future) the controller
should have a deliberative level. Ainia does not have to

do dynamic planning. Thus, its controller has only one
level. Within this level the constraint-solving behavioral
modules are layered in a structured way. The layering of
the constraints corresponds to their fixed priority ordering;
it implicitly represents the robot’s static plan.

Syntactically, CN is a triple CN=<«Le, Td, Cn>> where
Lc is a finite set of locations, T'd is a finite set of
transductions, and Cn is a set of connections. Locations are
variables, each of which is associated with a data type (e.g.
integer, boolean, and the like). They denote traces, which
characterizes the sequence of values of variables over
time. Transductions act like functions; they represent casual
mappings from input traces to output traces, operating on
global reference time or activated by external events, A
transduction has a set of input potts and an output port,
which are also associated with data types. Connections,
on the other hand, represent the interaction structure of the
system by connecting locations with ports of transductions.

Semantically, the CN model is the solution of a set
of equations. The solution is a temporal trace of values
resulting from the transductions over time. Hence, CN pro-
vides an online model of computation instead of an offline
model in which a solution is a function of pre-given inputs.
In CN, equations are realized by locations (variables)
and transductions {functions). Possible input/output traces
produced by the system define behaviors of the dynamic
system. The overall semantics of a system can be obtained
hierarchically from the semantics of its subcomponents and
internal connections.

Graphically, a CN is illustrated by a bipartite graph
where locations are depicted by circles, transductions by
rectangles, and connections by arcs. Modules are depicted
by boxes with round corners. They encapsulate locations,
transductions, and connections. They may also encapsulate
other submodules. Modules have a set of exported locations
as their interfaces.

ITI. THE CONSTRAINT NETS IN Java TooL

CN1I is a vispal programming environment for CN mod-
eling, simulation and animation. Since CN has inheritance
hierarchies composed of modules and graphical nodes such
as locations, transductions and connections, it is an ideal
medel for visual programming. To provide a set of building
blocks for CN modeling, CNJ uses JavaBeans technology
that supports software components. The following nodes
in CN are realized by JavaBeans: locations, transductions,
clocks, and modules. In addition, the connection node of
CN is implemented by Java’s event mechanism,

CNJ uses Java’s Swing capabilities for its Graphical User
Interface (GUI) design, It has two main windows, namely
CN Frame and BeanPropertySheet, as shown in Figure
2.

The CNFrame window is the bigger one; it is used
for designing and drawing a CN. It includes DrogwPane
and ToolPane windows. In CN, modules are located in
a hierarchy to compose the system. To support as many
modules as possible, CNJ uses the Multiple Document
Interface approach and displays each module in a child

ToolPane CNFrama DrawPanes

BeanPropertySheet =]

Fig. 2. The GUI of CNJ

DrawPane window. To design a CN, the designer needs
to choose an element (e.g. location, transduction) from
the T'oolPane and then drag-and-drop it to the selected
DrowfPane. The locations and ports of transductions are
wired by clicking the connection element of Tool Pane.
Therefore, CNJ allows designers to program visually and
“draw” a CN mode! instead of writing code for it.

In the GUI of CNJ, the BeanPropertySheet window,
the smaller window at the bottom right, is used to display
and customize corresponding properties of the focused
node in the selected Drow Pane window.

Before the model can be simulated in CNJ, it goes
through a compiling step. This step is able to uncover some
errors in the design of CN model, such as uninitialized
values, data type incompatibility between the connected
nodes, ill-defined transductions, and so on.

In CNJ, simulation of the system is realized by Java's
event mechanism and driven by clock tick events. Clock
1s a special kind of transduction with no input locations; it
can be drawn by selecting the clock element of T'ool Pane,
During the simulation the designer can watch the results
(traces that define the behavior of the system) from the
output locations or can link these results to an animation
window in order to analyze the overall behavior of the
system. In CNJ, the animation window can be implemented
with the Java 3D APL A CN model is stored in the
Constraint Net Markup Language (CNML)}, an XML-based
interchange file format.

IV. AINIA AND ITS PRIORITIZED CONSTRAINTS

Ainia is a situated robot which has the task of repeatedly
finding, tracking, chasing and kicking a red ball in the field.

1808

Ainia is quick to react the dynamic changes in the world, so
she is named after an Amazon warrior whose name means
“swiftness”.

The body of the physical Ainia is constructed of three
main components as shown in Figure 3:

1) B14 Mobile Robot manufactured by Real World
Interface, RWI, Inc. which includes 850Mhz Intel Pentium
IIE onboard processor with 256 MB memory and Red Hat
Linux 7.2 (Enigma) operating system; 10 Mbit Compaq
wireless ethernet modem and Compaq range extender an-
tenna that allow communication to a remote computer; and
motion and power components such as batteries, wheels
and base translation/rotation motors.

2) Digiclops trinocular stereo vision color camera man-
ufactured by Point Grey Research Inc, which allows visual
sensing of the outside world. It has three identical wide
angle cameras, arranged in an L shape. However, since
stereo and depth data are not needed to accomplish Ainia’s
task, only the image taken from the bottom right camera
is used by the robot software.

3} PTU-46-17.5 pan/tilt unit manufactured by Directed
Perceptions Inc. which is mounted on top of the Bl4
Mobile Robot. It has 317° pan range and 77° tilt range.
The Digiclops camera is mounted on top this component.
Therefore, the pan/tilt unit enhances the visual sensing
of the environment by allowing the camera to have more
degrees of freedom, complementing the motions of the B14
Mobile Robot.

Trinocular.
Camera

Pan Tilt Unir

et

Fig. 3. Ainia and the red ball

In order to accomplish its task, Ainia should first find
the ball by using pan/tilt motions and base rotation motion
if necessary, Consequently, the ball should be in the
camera image. This constraint is denoted as I (short for
“Balllnfmage™) in the rest of the paper. After it finds the
ball, it should center the ball in the image, by panning and
tilting in the ball direction. This constraint is denoted as C

(short for “BalllnCenter”} in the rest of the paper. Then, it
should turn its base towards the pan direction while keeping
the T and C constraints satisfied. This constraint is denoted
as H (short for “BaseHeadingPan”) in the rest of the
paper. Finally, as soon as the pan and the base are aligned,
it should move forward to kick the ball. This constraint
is denoted as A {short for “RobotAtBall™) in the rest of
the paper. Note that, since the robot can move forward
and backward immediately, but it cannot move sideways
without turning its base first, Ainia needs to satisfy the H
constraint before it can solve the A constraint.

Thus, Ainia’s behavior specification involves four prior-
itized constraints which are ordered as follows: I > C >
H > A. Formal specification of the prioritized constraints
can be done by timed V-automata as presented in [16). Note
that in this specification X > Y denotes X has a higher
priority than Y, and thus the behaviors of the systems
should solve the X constraint before it can satisfy the ¥
constraint. However, the constraints are dynamic and may |
not stay solved. Hence, the behaviors of the system may
have to re-solve the higher priority constraints as needed.

Atnia’s goal can be defined as always eventually kicking
a red ball in the field. However, the previous requirements
specification does not explicitly specify a behavior that
would solve this goal. Instead it specifies simple behaviors
that when combined produce an “emergent” behavior that
would satisfy the goal,

Instead of using its base rotaticn motors, Ainia primarily
uses its pan and tilt motors in order to find and center
the ball. This most closely mimics the mechanism of the
human visual system, since humans turn their heads to look
for objects, instead of turning their entire body. In addition,
since the speeds of the pan and tilt motors are higher than
the speed of the base rotation motor, primary usage of the
pan and tilt motors allows the robot to explore different
parts of the world more efficiently.

V. SIMULATED AINIA

CNIJ allows us to simulate and animate Ainia’s robotic
system. This provides an important advantage of testing
and developing our system without constructing a physical
base for it. During the design phase, working with simula-
tions is less expensive than working with real systems and
it dramatically speeds up the construction of the correct
controlier.

The simulated Ainia’s robotic system can be modeled
under CNJ by coupling the Environment module and the
Robot medule as shown in Figure 4. Note that details of
the modules and descriptions of the locaticns used in the
simulated Ainia’s CN can be found in [16].

The Fnvironment module encapsulates the Bell,
Kicker, Wall, and Obstacle modules, These submodules
model the dynamics of the ball as well as interactions
of the kicker and the ball with the four walls (which
surround the environment) and the obstacles (which can
be created by the CNJ user). On the other hand, the Robot
maoxdule encapsulates coupling of the C'ontroller and Body
modules as shown in Figure 5.

1810

Fig. 4. Simulated Ainia’s Main module

Fig. 5. Simulated Ainia’s Robot module

The Body module encapsulates the Pan, Tilt,
BaseRotation, DBaseTranslation, Camera, and
BaseBump modules., These submodules model the
dynamics of the body parts of the physical robot, ie.
pan and tilt motors, base rotation and translation motors,
camera, and bump sensors.

After the prioritized constraint-based behavior specifi-
cation (I > € > H > A) and the dynamics of the
environment and body (Enuironment and Body modules)
are provided, the controller of Ainia can then be synthe-
sized. Behavior verification can be used in parallel with
control synthesis to built the controller. However, we focus
on control synthesis in this paper.

To synthesize the controllesr, first the BallInimage
module which solves the I constraint, the BallInCenter
module which solves the € constraint, the
BaseHeadingPan module which solves the H
constraint, and the Robot At Ball module which solves the
A constraint are modeled. Then, given these constraint-
solving modules and prioritized constraint specification,
the Controller module is synthesized with connecting
modules in the specified priority order using the arbiters
as shown in Figure 6.

Submodules under the Controller module work in
parallel and compete for the control of the motors. The
arbiters decide which commands of which modules to send
to the motors.

An arbiter is a transduction that takes two input vectors
(e.g. outputs of two constraint-solving modules, Signals.i
and Signaisc in Figure 6) and calculates an output
vector. All the vectors have the same structure. The first

Fig. 6. Simulated Ainia's Controller module

element of these vectors refer to the satisfaction state of
the related constraint(s). The rest of the elements refer to
the commands to send to the motors. If the constraint-
solving module does not control a specific motor it sends a
DoesntControl signal to that motor. The arbiter calculates
proper commands to be sent to all the motors, If the higher
priority constraints are satisfied and the lower priority
constraint controls the related motor, the command of the
lower order constraint is sent to this motor. Otherwise, the
command calculated by the higher priority constraint is
used.

The BaillnImage and BallinCenter behaviors con-
trol all the motors (i.e. the pan, tilt, base rotation, and base
translation). The BaseHeadingPan and RobotAtBall
behaviors do not control the pan and tili motors. In
addition, the RobotAtBall behavior does not control the
base rotation motor. Hence, as long as the I, C, and H
constraints are satisfied, the BallInCenter behavior can
control the pan and tilt motors, the BaseHeadingPan
behavior can control the base rotation motor, and the
Robot At Ball behavior can control the base translation
motor all at the same time. Note that, all behaviors except
the Robot AtBall behavior command the base translation
motor to stop.

The representation of the CN encapsulated in the
BaseHeadingPan module is provided in Figure 7 as an
example of a CNJ module.

In order to solve the H constraint the base motor should
be heading towards the pan direction. Hence, the current
pan angle (C' P A) value should be very close to 0°. Conse-
quently, the satisfaction signal of the BaseHeadingPan
module can be calculated as follows:

Satisfyh = { true fICPA| < TrHIh

false otherwise

where, TrHi_h is the threshold angle for checking
whether CPA is close to 0°.

The BaseHeadingPan module commands the base
rotation motor to turn towards the pan direction by sefting

1811

Fig. 7. Simulated Ainia’s BaseH eadingPan module

the related element in the output vector to CPA value. It
does not control the pan and tilt motors and sets the related
elements to DoesniConirol value. Finally, it commands
the translation motor to stop by setting the related element
to 0 speed value.

The animation window of the simulated Ainia is depicted
in Figure 8. Notice that this figure provides a bird’s-eye
view of the 1obotic system.

[2etitiece; - Y Y T - ;-m::ﬂm
Ainiasbody . .
'f\i,n_ié'?ﬁmﬂﬂm camera view /,
y,' s e e ped bl in e
’/- ‘ ; . ,me,-.fmagem’
\ wedball = o < v
Ve S
Voo
\ o . viewing cone
of the camera

5 it Byt byviems e e st

Fig. 8. The animation window of simulated Ainia

The animation of Ainia runs separately from its simula-
tion. When an animation is turned on by the user from the
Animation menu of CN Frame, a new thread is started.
This thread creates an animation window which displays
the behavior of the system by showing the dynamics of the
robot body, the dynamics of the ball, and the view of the
camera.

In order to paint the animation window, the thread re-
trieves current values of related locations from the simula-
tion, Hence, whenever the animation window is repainted,
new values of the locations calculated in the simulation are
used and the changes in the system behavior are displayed

immediately.
VI. PHYSICAL AINIA

The animation of the simulated Ainia shows that the
robot repeatedly finds, tracks, chases and kicks a ball on
the field. Hence, the overall behavior of the system satisfies
the requirements specification. This provides evidence that
the controller synthesized in the simulation should function
properly in the real world. Therefore to construct the phys-
ical Ainia, the Controlier module of the simulated Ainia
is used unchanged. The Environment and Body modules
of the simulated Ainia are not used in the construction of
the physical Ainia, since they are replaced with the real
world and the physical robot body, respectively.

To control the physical robot, the Controller mod-
ule shovld communicate with parts of the physical body
through the software components which run on the robot
and interface with the hardware. Since CNJ involves a GUI
and requires an intensive use of memory and CPU, running
this tool on the robot’s onboard processor would not be
an effective approach. Instead, the CNJ tool that ruas the
Controller module is installed on a remote computer and
is connected to the robot, via wireless networking, Through
this wircless connection, the remote computer and the robot
establish sockets and send data to each other.

The software architecture of the physical Ainia consists
of a CN that includes the simulated Ainia’s C'ontroller
module, a communication coordinator developed for the
physical Ainia and hardware interfaces of Human Ori-
ented Messenger Robot, HOMER [17). It utilizes the
following hardware interfaces of HOMER: RobotServer,
ImageServer, and PTU Server. These software compo-
nents interface with the B14 Mobile Robot, camera, and
pan/tilt unit, respectively. In this architecture the controller
run on a remote computer and communication coordinator
and hardware interfaces developed in C++ run on the robot.

The communication coordinator acts as a command ex-
ecutor and a report collector. It receives motion commands
from the Controller module and sends them to hardware
interfaces. In addition it retrieves reports from hardware
interfaces and sends them to the Controller module. It
communicates with hardware interfaces through the shared
memory mechanism and it connects with the C'ontroller
maodule through sockets.

The communication coordinator also creates a GUI in
order to display what the camera sees and to allow users
to interact with the program through this displayed image.
The user can interact with the program by choosing the
type of the camera image to be displayed. The user can
switch between a Color Image; a Red Image which shows
red components as white and the rest as black; and a Ball
Image, which shows a red component, that is most similar
to a ball as white and the rest as black.

In order to find the ball-like component in the image,
the communication coordinator applies a median filter to
Red Image to reduce the noise. Then, it does sequential
connected component analysis [18] on the resulting image.
Components that have fewer than a certain number of

1812

pixels are ignered. For all the components that are not
ignored, compactness measure 5;:-' (where, P = Perimeter
of the component and A = Area of the component) values
are calculated, The component with the smallest value is
selected as the ball-like component. If the shape of the
component is close to a circle the above value would
be minimized. The bail has a circle-like shape in the
image. Therefore, it is successfully selected as the ball-
like component by the communication coordinator.

VII. RESULTS

Experiments in the real world show that behaviors of
Ainia satisfies the constraints specified in the systerm. To-
gether with the dynamics of the body and the environment,
the controller acts as a constraint solver and the robot
always eventually kicks the ball with determination.

Behaviors of the physical Ainia are documented in the
companion demonstration video. From this video, it can
be seen that Ainia finds and tracks the moving ball and
kicks it repeatedly by quickly responding to the dynamic
changes in the world. In this paper photographs of the
demonstration run are presented.

When there is no red object, and thus no ball, in the
environment, the BallInImage behavior in the controller
takes control of the motors and the robot goes into a
loop searching for the ball. The state sequence of this
search cycle is documented in Figure 9. As can be seen
from this sequence, the BallInImage behavior commands
the pan, tile and base rotation motors and scans the floor
surrounding the robot. When the red ball and a red book
are placed on the floor Ainia successfully identifies the
circular component as the ball, instead of the polygonal
book. This stage is shown in Figure 10. In this figure an
external view of Ainia’s robotic system is provided. Also,

the corresponding camera view with three different image .

rypes (i.e, Color Image, Red Image, and Ball Image) are
presented.

Fig. 9. States of the Ballinfmage behavior

At this stage, since the ball is in the image the [
constraint is satisfied, the BallInCenter behavior takes

External View

1

Color Image

Red Image

Ball Image
Fig. 10. Ainia identifying the ball

the control of the motors and centers the ball in the image.
After the C constraint is satisfied, the Base HeadingPan
behavior becomes active and solves the H constraint by
turning the base towards the pan direction, Then, the
Robot At Ball behavior gets activated and the robot moves
forward towards the ball (Stagel in Figure 11). At this
stage of the demonstration run, a human kicker kicks
the ball (Stage2 in Figure 11} while the robot is moving
forward. Since the (C constraint becomes unsatisfied the
robot is stopped by the Bali/nCenter behavior. This
behavior once again takes the control of the motors and
centers the ball in the image (Stage3 in Figure 11). Next,
the BaseHeadingPan behavior becomes active again and
solves the H constraint. Finally, the Robot At Bali behavior
gets activated once more and the robot moves forward and
kicks the ball (Stage4 in Figure 11).

Note that the BallInCenter and BaseHeadingPan
behaviors take turns in controlling the motors until the
H constraint is solved. This is because when the ball is
centered in the image, the BaseHeadingPan behavior
takes over the control of the motors and turns the base
towards the pan direction. When the base is turned, the pan
motor attached to the top of the base also turns and the ball
becomes off-centered. In this case, the BallInCenter be-
havior takes over the control of the motors and once more it
centers the ball in the image. Then, the Base HeadingPan
behavior again takes over the control and so on.

Ainia has some limitations. For instance, it is not always
safe in the environment, By being unsafe we mean that it
might bump into an object on the field and trip over. This
limitation can be overcome by giving the highest priority to
the safety constraint in the requirements specification and
adding a safety module that solves this constraint on top
of the BallInImage module in the controller. In addition,
there are some situations in which Ainia does not perform
very well. If the ball is going too fast or it is located too far
away from the robot or there are some other red circle-like
objects in the environment other than the ball, Ainia might
not be able to achieve its goal.

1813

e

Stage3 Staged
Fig. 11. Ainia tracking and chasing the ball

VIII. CONCLUSION

Results in the real world show that the overall be-
havior of the physical Ainia satisfies the constraint-based
requirements specification. If the system limitations are not
violated, the robot always eventually kicks the ball on the
field.

These results provide evidence that the CBA approach
with prioritized constraints is an effective framework
for situated robot construction. The effectiveness of this
method demonstrate that the usefulness of the subsumption
approach can be enhanced by embedding it in the formal
CBA framework. It also demonstrates that controlters for
-situated robots can be synthesized practically using this
approach.

In addition, exactly the same controller was used for
both the simulated and the physical Ainia. No changes
were demanded in the controller while moving from the
simulation to the real warld. This supports the claim
that CNJ is an effective real-time tool for designing and
building situated robots, which operate in the real world.
Hence, the CNJ tool has been proposed as a reliable and
scalable tool for future research on the CBA framework.

There are many opportunities for improving Ainia. Ideas
for future work include the implementation of a safety
module in the controller to ensure that robot would always
be safe in the environment. In addition, dynamic prioritiza-
tion of the constraints in the controller can be investigated
as future work. Static prioritization as used in Ainia, would
not be adequate for designing and building more challeng-
ing sitvated robots, These systems would require dynramic
planning and thus a deliberative level in the controller. For
instance, a situated robot that can play soccer would have
more than one goal to achieve (e.g. defending a goal as well
as kicking the ball) which would require dynamic planning.
Likewise, making Ainia track the ball more intelligently
by predicting the future (e.g. beyond just using a Kalman
Fiiter [19]) would alsc require a deliberative level. Hence,
to allow for greater scalability of the approach, we could

implement dynamically prioritized constraints by adding a
deliberative level onto the controller.

ACKNOWLEDGMENT

This research was funded by NSERC and Precarn/IRIS
under the RObot PARtners project. Alan K. Mackworth
holds a Canada Research Chair. We would like to thank
Ying Zhang and Fenguang Song for their contributions to
the development of the methods used in this study.

REFERENCES

[11 A.K.Mackworth and Y, Zhang, “A formal approach to agent design:
An overview of constraint-based agents,” Constraints, vol. 8, no. 3,
Pp. 229-242, 2003,

[2] R. A. Brooks, “Intelligence without reason.” in Proc. of I2th
Intemational Joint Conference on Artificial Intelligence - IJCAIL-91,
Sydney, Australia, I. Mylopoulos and R. Reiter, Eds. San Mateo,
CA: Morgan Kaufmann, 1991, pp. 56%-395.

[3] 1. Asimov, I, Robot. Gnome Press, 1950.

[4] D. Weld and O. Etzioni, “The first law of robotics (a call to arms),”
in Proc. of the 12th National Conference on Artificial Intelligence
- AAAT 1994, Seantle, WA. AAAI Press, 1994, pp. 1042-1047.

{51 1. 8. Albus, Brains, Behavior and Roborics. BYTE Books,
McGraw-Hill, 1981,

{61 R. Brooks, “A tobust Iayered conirol system for a mobile robot,”
IEEE Journal of Robotics and Automation, vol. RA-2, no. 1, pp.
14-23, 1986,

{7t F. Song and A. K. Mackworth, “CNJ: A visual programming
environment for constraint nets,” in Proc. of Al, Simulation and
Planning in High Autonomy Systems - AIS 2002, Lisbon, Portugal,
2002, pp. 131-135,

[8) Simulink: User's Guide, The MathWorks Inc., Natick, MA, 1992,

[9]1 §. A. Schneider, V. W. Chen, and G. Pardo-Castellote, “The Control-
Shell component-based real-time programming system,” in Proc. of
IEEE International Conference on Robotics and Automarion, 1995,
Pp. 2381-2388.

[10] D. C. MacKenzie, R, C. Arkin, and J. M, Cameron, “Multiagent
mission specification and execution,” in Antonomous Robots, 1997,
vol. 4, no. 1, pp. 29-52.

[11] Y. Zhanp and A. K. Mackworth, "Will thc robot do the right thing?”
in Proc. of Canadian Artificial Inteliigence Conference - AI 1994,
Banf, Alberta, 1994, pp. 255-262.

f12] . “Modeling and analysis of hybrid systems: An elevator case
study,” in Logical Foundations for Cognitive Agenis, H. Levesque
and F Pirri, Eds. Springer Verlag, 1999, pp. 370-396.

[13] ——, “A constraint based controller for soccer playing robots,” in
Proc. of Int. Conf. on Inteilligent Robots and Systems - IROS 1998,
Victoria, BC, 1998, pp. 1290-1295.

[14] F. D. Montgomery and A. K. Mackworth, “Adaptive synchronization
for a RoboCup agent,” in Proc. RoboCup-2002: robot soccer world
cup VI, Fukuoka, Japan, ser. LNAL G. A. Kaminka, P. U. Lima,
and R. Rojas, Eds. Springer Verlag, 2003, vol, 2752, pp. 135-149.

[15] F. Seng, “CNJ: A visual programming environment for constraint
nets,” Master's thesis, Department of Computer Science, University
of British Columbia, Vancouver, 2002.

[16] P. Muyan-Ozgelik, “Prioritized consiraints in the design of a situated
robot,” Master’s thesis, Department of Computer Science, University
of British Columbia, Vancouver, 2004,

[17] P. Elinas, J. Hocy, and J. J. Little, “Human oriented messenger
robot,” in Proc. of AAAT Spring Symposium on Human Interaction
with Autonomous Systems in Complex Environments, Stanford, CA,
2003, pp. 45-51.

[E8]) R. lain, R. Kasturi, and B. Schunck, Machine Vision.
and McGraw-Hill, 1995.

[191 R, E. Kalman, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME—Journal of Basic Engineering,
vol. 82, no. Series D, pp. 3545, 1960.

MIT Press

1814

