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Scale-Based Description and Recognition of Planar
Curves and Two-Dimensional Shapes

FARZIN MOKHTARIAN anp ALAN MACKWORTH

Abstract—The problem of finding a description, at varying levels of
detail, for planar curves and matching two such descriptions is posed
and solved in this paper. A number of necessary criteria are imposed
on any candidate solution method. Path-based Gaussian smoothing
techniques are applied to the curve to find zeros of curvature at varying
levels of detail. The result is the “generalized scale space” image of a
planar curve which is invariant under rotation, uniform scaling and
translation of the curve. These properties make the scale space image
suitable for matching. The matching algorithm is a modification of the
uniform cost algorithm and finds the lowest cost match of contours in
the scale space images. It is argued that this is preferable to matching
in a so-called stable scale of the curve because no such scale may exist
for a given curve. This technique is applied to register a Landsat sat-
ellite image of the Strait of Georgia, B.C. (manually corrected for skew)
to a map containing the shorelines of an overlapping area.

Index Terms—Cartography, computational vision, curve recognition,
generalized scale space, map generalization, path-based Gaussian
smoothing, remote sensing, shape description, uniform cost algorithm,
zeros of curvature.

1. INTRODUCTION

OMPUTATIONAL vision systems interpret images of

two-dimensional or three-dimensional objects. Two-
dimensional shapes (such as letters of the alphabet, chro-
mosomes and shorelines in satellite images are bounded
by, or composed of, planar curves. Various curve repre-
sentations have been proposed in the computational vision
literature. A reliable representation, suitable for match-
ing, should be essentially invariant with the rotation, scal-
ing, and translation of the curve to make recognition of
the curve possible after arbitrary instances of those trans-
formations. Moreover, it should represent the curve at
varying levels of detail rather than at only one level.

The goals of this paper are:

1) To find a method of obtaining a representation for a
two-dimensional curve which is invariant under rotation,
scaling, and translation of the curve.

2) To develop a matching algorithm to find the best
match of two such representations. Such an algorithm
should also be able to match one representation to part of
another, to account for incomplete data.
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3) To apply the techniques developed to satisfy 1) and
2) to register a Landsat satellite image of an area to a map
which contains the shorelines of an overlapping area.

II. SoME CRITERIA FOR A RELIABLE REPRESENTATION

A number of necessary criteria that any reliable method
for curve description and recognition must satisfy are pre-
sented here.

a) The representation must be computable efficiently.

b) The representation should be essentially invariant
under rotation, uniform scaling, and translation of the
curve; otherwise, reliable recognition will not be possible.

c) The representation should contain information about
the curve at varying levels of detail. Moreover, it should
be clear from the representation which features of the
curve belong to coarser levels of detail and which features
to finer levels

d) The amount of change in the representation should
correspond to the amount of change made to the curve. In
other words, a small change to part of the curve should
create a small local change in the representation.

e) Arbitrary choices should not affect the representa-
tion.

f) In case of open curves intersecting the frame, the
representation should only change locally with the loca-
tion of the cutoff points.

g) The representation should uniquely specify a single
curve, otherwise it would be possible to match a curve
against a class of curves all of which have the same rep-
resentation. This criterion only requires uniqueness up to
the curve equivalence classes induced by requirement b)
above.

Several shape representation techniques may be judged
by these criteria. For example, the Hough transform has
been used to detect straight lines [1], circles [2], and ar-
bitrary shapes [3] in images. O’Gorman and Clowes [4]
used the direction of the gradient to improve the efficiency
and accuracy of the transform. In a typical Hough trans-
form technique, ““edge’ elements in the image vote for
the parameters of the objects they could be located on. All
the votes are registered in a parameter space. The highest
peaks indicate the location of the objects in the image.
The Hough transform can suffer from false peaks in the
accumulator array due to accidental matches with the data.
Poor results will be obtained for incomplete data even if
the existing data matches well with the model. In order to
account for rotation, scaling, and translation of the shape,
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more parameters must be added to the parameter space
which makes the implementation impractical. The gener-
alized Hough transform [3] also suffers from the arbitrary
choice of the required reference point for the shape.

Chain encoding [5], [6] and polygonal approximations
[7], [8] have been used as representations for signals and
curves. These representations do not usually reflect con-
siderations of invariance b) or detail c).

Shape factors and quantitative measurements [9]-[11]
have been used to describe shapes. These methods involve
a substantial reduction in data and do not meet require-
ment g) as well as others.

Another class of methods are those which find hierar-
chical straight line or angle approximations to the curve
[12]-[15]. A hierarchy of straight line approximations to
the curve is formed by initially joining the endpoints and
recursively refining each approximation by breaking it at
the point on the curve furthest away from it. The algorithm
stops when every point on the curve is within some thresh-
old distance from the straight line segment which approx-
imates the portion of the curve containing the point. This
method does combine information about the curve at var-
ious levels of detail but the representation can change
greatly due to a small change in the curve. Moreover, if
the curve is closed, an arbitrary choice of endpoints must
be made which will certainly affect the representation.
Strip trees also use a similar idea in order to represent a
curve. The only difference is that a rectangle which con-
tains all of the points on a segment is used to represent
that segment. Smaller and smaller rectangles are used to
give a finer representation of the curve. The deficiencies
of the previous method also make this one unattractive.

The *““‘codon” representation proposed by Hoffman and
Richards [16] satisfies many of our criteria in that it is
based on segmenting at minima of curvature. However, it
does not reflect considerations of detail c) or sensitivity
d).

The “curvature primal sketch” introduced by Asada and
Brady [17] also satisfies many of our criteria. However,
they use only a limited number of well-defined shapes
which can be approximated well by analytical functions.

A final candidate method breaks the curve into several
segments (if needed) such that each segment is a single-
valued function y = y(x). Then the Stansfield-Witkin
method [18], [19] can be used to construct a scale space
image of the curve. The effectiveness of this method de-
pends on the number of segments the curve has to be di-
vided into. In the special case where the curve already is
a single-valued function, no divisions are needed and the
method would work but in general (when divisions are
necessary), there will be problems with handling the
boundary conditions at each break in the curve. This
method violates criterion b) in that the representation is
not invariant under rotation.

III. ScaLE-BASED DESCRIPTION OF PLANAR CURVES

This section describes a method for computing a rep-
resentation of a curve invariant under rotation, uniform

scaling, and translation of the curve as explained in [20].
This method is based on finding points of inflection on the
curve at varying levels of detail using a path length param-
eter and combining them to obtain the scale space image
of the curve.

A. Finding Points of Inflection on a Planar Curve

It is desired to find zero-crossings in curvature of the
curve at varying levels of detail, that is, for varying de-
grees of smoothing of the curve. Since a planar curve does
not behave like a single-valued function in general, a pa-
rametrization of the curve should be found which makes
it possible to compute the curvature of the curve at varying
levels of detail. Such a parametrization is made possible
by considering a path length variable along the curve and
expressing the curve in terms of two functions x(¢#) and

¥(0):
C = {x(0, y(n}

where 7 is a linear function of the path length ranging over
the closed interval [0, 1]. If the curve is closed, x(¢) and
y(t) are periodic functions. The curvature x of a planar
curve at a point P on the curve is defined as the instanta-
neous rate of change of the slope angle ¥ of the tangent at
point P with respect to arc length s, and is equal to the
inverse of the radius p of the circle of curvature at point
P.
_dy 1
* ds p
The circle of curvature at point P is a circle tangent to the
curve at point P whose center lies on the concave side of
the curve and whose curvature is the same as that of the
curve at point P. The circle of curvature is also called the
osculating circle because it has a higher degree of contact
with the curve at point P than any other circle.
k can be computed if it is expressed in terms of the
derivatives of functions x(¢) and y(r).
Define

It is known that
K = (1 + (yl)2)3/2'

Therefore, y’ and y"” should be expressed in terms of the
first and second derivatives of x(¢) and y(z).

Denote
. _dx  dx  dy d’y
X = — X = —= _ _ 7
dt ar YT dr dr?
Then
X x?

and
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In order to compute the curvature of the curve at vary-

ing levels of detail, functions x(¢) and y(r) are convolved _
with a one-dimensional Gaussian kernel g (¢, o) of width //\.\\ wo | T
. t
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X(t, o), the convolution of x(¢) and the Gaussian kernel, is
defined as:

i X(t.0) \/’\
X(t, 0) = x() ® g, 0)
o 1 . Y(t.0) ]
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Y(¢, o) is defined similarly. ‘ '
In the smooth curve one needs X(t, 0), ¥t, 0), X(z, 0) (¢ o =04
and Y(¢, o) to compute curvature. These can be computed

from x(#) and y(¢) using /—\ Wy
\
N,

(d) o = 32

Xt 0) = 9X(r, o) _ dx(1) ® g(t, 0)] == e
’ ot ot o) —
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Fig. 2. Smoothing a curve: scale-based effects.
and
) X 3% e, B. How to Handle the Endpoint and Cutoff Point
X, o) = 3 x(f) ® <—~ga—(~t2l)> Problems

If the curve is closed, functions x(¢f) and y(f) can be
and similarly for Y(¢, o). Fig. 1 shows the coastline of Af- treated as periodic functions, which eliminates all edge
rica. Fig. 2 shows an application of this method to that effects. But if the curve is open, these functions are not
coastline, with the zeros of curvature marked on each periodic. A way must be found to convolve the mask with
smoothed curve. the curve when part of the mask is beyond the endpoint
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since the convolution value for all points on the curve
should be computed.

There is a basic difference in the nature of two open
curves, one of which is contained completely inside the
image and the other which ends at the frame boundary. In
the first case there is in fact no missing information and
the endpoint problem can be solved by creating an exten-
sion to the curve which is an extrapolation of points close
to the endpoint. As long as one is consistent, the results
for similar curves will be similar. In the second case there
is indeed a loss of information where the curve is cut off
by the frame boundary. We call this a cutoff point. It
should be noted that the cutoff point is not a true endpoint
of the curve and therefore is not perceptually important.
Furthermore, it is possible to try to match two basically
similar curves which have different cutoff points. There
are several ways to handle this problem. Each one will be
discussed.

a) One could still extrapolate the curve beyond the cut-
off points. Since this does not in general result in a recon-
struction of the original shape, the results can be different
for two similar curves which are cut at different locations
by the frame boundary.

b) The cutoff points of the curve can be joined with a
straight line to change it into a closed curve. The argu-
ments of section a) also apply here.

¢) When the cutoff point of the curve is reached, turn
back and go in the opposite direction, towards the other
endpoint. This method will also not guarantee similar re-
sults and it also suffers from the fact that artificial inflec-
tion points will be introduced at the endpoints of the curve.

d) Repeat the cutoff point of the curve as many times
as necessary: treat x(¢f) and y(f) as constant functions be-
yond the cutoff point. This method does not introduce ex-
tra inflection points and seems like the appropriate thing
to do in absence of other information. It is also the easiest
method to implement and is the one used in this paper to
handle the endpoints as well as the cutoff points.

C. The Scale Space Image of a Planar Curve

Section III-A described how to find points of inflection
on the curve at varying levels of detail. This section will
describe how to combine that information in the form of
a generalized scale space image in order to obtain a rep-
resentation for the curve.

Compute a Gaussian mask using a value of ¢ corre-
sponding to the finest level of detail desired. The limit is
o = 0 which is equivalent to convolving an impulse func-
tion with the functions x(¢) and y(z). In practice a higher
value can be used to avoid the excessive detail usually ob-
tained at very fine levels of detail. Find points of inflection
on the curve corresponding to this value of ¢ using the
techniques explained in Section III-A. Mark these points
in a coordinate system where the x-axis shows the value
of the path-length parameter 7 along the curve and the y-
axis represents o, the width of the Gaussian kernel.

Increase the value of ¢ by a small amount, find the new
inflection points and mark them also in the scale space
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Fig. 3. Generalized scale space image of Africa.

image. Repeat this process until no inflection points are
found for some value of . The whole scale space image
has been derived (Fig. 3).

The scale space image can be thought of as a binary
image which is 1 wherever there is an inflection point on
the curve corresponding to that pair of values of ¢ and ¢
and O elsewhere.

Some remarks about the scale space image are appro-
priate.

a) The scale space image contains contours which are
closed at the top and open at the bottom. There may be
contours open at the top but these contours are incomplete
ones which end at the edge of the scale space image and
are due to incomplete information.

b) It can be shown that contours in a scale space image
can intersect each other [22]. However, this is very un-
likely and we have made the assumption that it does not
happen in our application.

¢) Yuille and Poggio [23] have shown that under certain
assumptions, no new inflection points are created at higher
levels of detail (more smoothing). This property can be
used to speed up the computation of the scale space image
by a considerable amount. Indeed once one is beyond fine
levels of detail, one can track the inflection points by only
computing the curvature and looking for zero-crossings in
the neighborhood of the previous inflection points.

d) Yuille and Poggio [24] have also shown that almost
all signals can be reconstructed up to an equivalence class
from their scale space images. This implies that the scale
space image is a unique representation for those signals.

e) For some open curves, there may be one or more
incomplete contours in their scale space images. Since the
“movement” of such contours towards the edge can be
quite slow, a lot of unnecessary computation time will be
spent if such a contour is allowed to take its normal course.
A shortcut can be made by anticipating cases such as this.
As soon as only one inflection point is obtained on the
whole curve for some value of sigma, find the slope of the
corresponding contour to determine whether it is moving
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toward the right or the left edge and connect the contour
to the correct edge.

IV. AN ALGORITHM TO MATCH SCALE SPACE IMAGES

The matching is carried out in the scale space image
because of the invariance properties it displays. Further-
more, matching in the scale space image is preferable to
matching at a specific scale. A specific scale is usually
chosen by imposing some stability criterion on the fea-
tures of the curve. There does not always exist a “‘most
stable” scale for a given curve. That approach would be
unreliable for such a curve.

We proceed with a number of definitions. A scale space
image is considered to be a hierarchical representation for
a curve. An imaginary super-contour exists at the root of
this tree. This contour contains all the real contours in the
scale space image. Each real contour has zero or more
children, contours which exist inside it, and zero or more
siblings, contours which share the same parent. The peak
of a contour is defined to be the highest point on that con-
tour. The right branch of a contour consists of all the con-
nected points on the contour starting to the right of the
peak. Similarly, the left branch of a contour consists of all
the points on the contour starting to the left of the peak.
To transform a contour is to apply a scale space transform
to it. As a result, the contour may be shifted horizontally
and/or scaled uniformly. The average distance between two
contours is the average of the distances between the peaks,
the right branches, and the left branches. The cost of
matching two contours is defined to be the average dis-
tance between them after one of them has been trans-
formed.

The algorithm described in this section is an adaptation
of the Uniform Cost Algorithm [25] which is a special
case of the A* algorithm [26]. Its goal is to find the best
match of contours in a scale space image to some or all of
the contours in another scale-space image. The image
space transformation parameters which take one curve to
the other are then computed from that match. There are
four parameters which correspond to uniform scaling, ro-
tation, and translation of the curve. The two curves can
then be registered to show the goodness of match between
them.

The following is a step-by-step description of the
matching algorithm.

1) Create a number of initial nodes corresponding to
the possible match of every pair of contours in the two
scale space images.

2) For each node created in step 1, compute two scale
space transformation parameters. If there were a perfect
match, applying the transformation to the smaller contour
would make it identical to the larger contour.

3) Compute the cost of match for each node created in
step 1.

4) Remove the lowest cost node from the queue and ex-
pand it into a new node. A unique pair of contours, one
contour from each scale space image, is found. These two
must be a match for each other if the previous pair were

in fact a correct match. Compute the cost of match for the
new pair and add it to the previous cost. Add the new node
to the queue.

5) Repeat step 4 until the lowest cost node can not be
expanded further, i.e., there are no more contours in either
of the two scale space images left to match for that node.
Return that node as the best match of the two scale space
images and stop.

The following is a detailed explanation of node creation
and expansion.

A. Creating the Initial Matching Nodes

The algorithm starts by creating a queue of nodes cor-
responding to the possible match of every pair of contours
in the two scale space images. Since the two original
curves could be at different scales, it is possible for con-
tours at different levels to match with each other. There
are two scale space transformation parameters mapping
one contour to another which need to be computed for each
node. These two are the scale k£ and shift d parameters.
The relationship between the old coordinates, ¢ and o, and
the new coordinates, ¢ and o', is as follows:

kt + d
ko

t =
O', =

Only one pair of scale space points is needed to compute
k and d. These can be computed using the coordinates of
the peaks of the two contours since peaks correspond to
each other.

These parameters are always used to transform the
smaller contour so that it can be matched against the larger
one. As a result, contours do not shrink and matching
errors are reduced. The same set of parameters is used to
match the next pairs of contours when a node is expanded.

No nodes are created for incomplete contours since their
true shape is not known. Since it is desirable to find a
match corresponding to the coarse features of the curves,
there is a penalty associated with starting a match with a
small contour. This penalty is a linear function of the dif-
ference in height of that contour and the tallest contour of
the same scale space image and is added to the cost of
match computed when a node is created.

B. Expanding a Node

In order to expand a node, the next pair of contours in
the scale space images to be matched must be found. In-
stead of randomly choosing any other contour in the scale
space image and finding the next match value, this algo-
rithm makes use of the constraints of the scale space im-
age as much as possible.

To find the next two contours to match, a contour is
searched for in the first scale space image using an order-
by-height procedure. If it is found, than a contour is
searched for (but not necessarily found) in the second im-
age corresponding to the contour in the first image. The
following is a detailed description of this procedure. Note
that if at any step the program fails to find a contour from
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the first image, it will search for a contour in the second
image using the same guidelines for finding contours in
the first image before going to the next step.

a) If the last contour matched from the first scale space
image has any children, then its tallest child will be the
next contour to be matched. In order to find the next con-
tour in the second image to match, use the transformation
parameters to estimate its location. Since its parent is
known, one can search for any children of that parent
whose peaks fall inside that range. If more than one such
contour is found, choose the one whose height is closest to
that estimated by the transformation parameters. If no
corresponding contour is found in the second image, the
first contour will be matched against the null contour,
which has a height of zero.

b) If the last contour matched from the first image does
not have any children, search for its next smaller sibling.
If such a sibling exists, it will be the next contour to be
matched. To find the next contour from the second image,
use the procedure outlined in a).

c) If the last contour matched from the first image does
not have any smaller siblings either, return one level and
search for a smaller sibling of its parent. Repeat this pro-
cess until either the first ancestor which has a smaller sib-
ling is reached or there are no more ancestors left. In the
latter case, no more expansion is possible and the algo-
rithm returns with the lowest cost node.

If the curve for which the scale space image is computed
is closed, then the scale space image will be periodic:
moving right when one is at the right edge of the scale
space image will place one at the left edge and vice versa.
This must be taken into account when applying transfor-
mations to the contours since contours may wrap-around
in the scale space image.

C. Dealing with Incomplete Information

If one of the curves being matched only matches with
part of the other curve, the contours in the scale space
image for that curve will correspond to only some of the
contours in the other scale space image. This will not re-
sult in poor matches since it is easy to find a region in the
larger scale space image which corresponds to the smaller
scale space image (again wrap-around is possible for closed
curves) and extract the relevant contours which should be
used in the matching process.

V. APPLICATION

The Landsat registration problem was chosen to illus-
trate the curve description and recognition methods ex-
plained in Sections III and IV. The Landsat registration
problem is that of registering a Landsat satellite image of
an area to a map which contains the shorelines of the same
area. Shorelines must be extracted from the Landsat im-
age before they can be matched against the shorelines in
the map. It should be noted that exact registration of the
shorelines is not a goal of this paper. The purpose is to
demonstrate that the method is successful in finding
shapes which have basically the same features.

Fig. 4. Band 7 Landsat image of part of Strait of Georgia, B.C.

Section V-A explains a simple method for extracting
shorelines from the Landsat image. Section V-B describes
a way of putting together the curve description and rec-
ognition methods in order to create a working system to
solve the Landsat registration problem.

A. Obtaining Shorelines from the Landsat Image

The Band 7 (near infrared) Landsat image of part of the
Strait of Georgia, B.C., is a gray-level image showing a
clear distinction between water and land in most areas
(Fig. 4). A histogram of gray-level distributions of all the
pixels in the Landsat image was obtained [Fig. 5(a)]. There
are two main peaks in this histogram corresponding to
water and land, respectively, but there are also many
smaller peaks due to noise.

The minimum value of o, the standard deviation of a
Gaussian, which results in two peaks can be obtained using
binary search. The resulting smoothed histogram is shown
in Fig. 5(b). To find the location of the peaks, one can
simply convolve the first derivative of the Gaussian, using
the correct value of o, with the histogram and look for
transitions from positive to negative. The trough between
the two peaks can similarly be found by looking for a tran-
sition from negative to positive.

Once the location of the trough is known, the Landsat
image can be thresholded using the intensity value of the
trough as the thresholding value. Every pixel in the image
will be classified as water if its gray-level is less than the
thresholding value and as land if its gray-level is greater
than or equal to the thresholding value. The result is a
binary image where 1 pixels represent land and O pixels
represent water.

To obtain the land-water boundaries from the thresh-
olded image, one need only follow the contours of the land
masses. One simple algorithm for following the contours
of light regions in binary images is given in [27]. Fig. 6
shows the approximations to the shorelines extracted from
the Landsat image after manual correction for skew. For
a more detailed explanation see [28].
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Fig. 5. Gray-level distribution of pixels in the Landsat image. (a) Original
histogram. (b) Smoothed histogram with two peaks.

Fig. 6. Shorelines from the Landsat image after correction for skew.

B. A Working System

The complete working system to register the Landsat
image and the map is as follows.

a) Threshold the Landsat image using the value of the
trough between the land and water peaks in the smoothed
histogram of the gray-level distribution of the pixels in the
image. Follow the contours of dark regions to find land-
water boundaries.

b) Eliminate as much of the skew in the shorelines from

the Landsat image as possible. This is done manually by
finding corresponding pairs of points in the Landsat image
and a map (different from the one used in part ¢) and
using them to estimate the parameters of an affine trans-
formation which takes the Landsat image to the map. A
transformation of uniform scaling, rotation and translation
still exists between the Landsat image and the map used
in part c.

¢) Choose only a few contours from the Landsat image
and the map which are longer than all the other contours.
The purpose of this is to improve the efficiency of the pro-
gram but also to eliminate very low cost matches corre-
sponding to very small contours which may not have any
significance. From these contours keep only the ones
which are closed.

d) Compute the scale space images for the contours
which were selected by the previous step and create a hi-
erarchical representation based on that image.

e) Match every model curve against every object curve
and remember the cost of match for all those pairings.
Since every curve considered in the matching process has
a significant length, the lowest cost match should also be
a correct one. Find such a match, compute the transfor-
mation parameters predicted by that match and choose a
subset of all the matches which are consistent with that
match, in that they predict roughly the same transforma-
tion parameters. Use a least squares method to estimate
the parameters of an affine transformation from the Land-
sat image to the map using the data gathered from all the
correct matches.

f) Generate the transformed image of the Landsat
shorelines and transform the original Landsat image if so
desired.

VI. RESuULTS

The map to which the Landsat image was to be regis-
tered is shown in Fig. 7. It should be noted that the trans-
formation between the Landsat image and the map is a
general affine transform. Since currently only rotation,
uniform scaling and translation can be handled by the
matching algorithm, the skew in the Landsat image had to
be corrected before the scale space images for its shore-
lines could be computed. Since a relatively small amount
of skew still remains in the Landsat shorelines even after
manual correction, it is necessary to compute the param-
eters of an affine transformation which takes the Landsat
image to the map once a consistent subset of matches have
been found. Figs. 8 and 9 show two correct matches found
by the matching algorithm and Fig. 10 shows the Landsat
image registered to the map using the same matching al-
gorithm. The goodness of match between the Landsat im-
age and the map indicates that a small number of shore-
lines matched correctly can give a good estimate for the
transformation parameters.

It was stated in Section V that only closed curves were
chosen for matching purposes. One reason for this is that
the scale space images corresponding to closed curves are
complete and it is preferable to use complete information
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Fig. 8. Matching shorelines of Africa. (a) Complete shoreline of Africa.
(b) Part of the same shoreline. (c) Result of the match.

when available. The other reason is a potential problem
with the matching algorithm as described in Section IV
when matching open or incomplete curves. It was stated
that an initial cost is associated with every node when it
is created which is a linear function of the difference in
heights of the contour for which the node is created and
the highest contour of the scale space image. This mea-
sure is to encourage matches corresponding to larger con-
tours of the image and is reasonable when both images are
complete since the correct match does correspond to the
large contours of the image (usually the largest ones) but
it can run into problems when there is incomplete infor-

/
| /\
» (\nﬂnn Qm.ﬂ n ﬂi\ U fa. /.ﬂn&n ﬂnﬂ.ﬂ(ﬂm}\\nn.a
(a) (b)
P /ﬂﬁwja“
- g
\«A/ A,-‘av\ /\/
vaw )/\,\/

©
Fig. 9. Matching shorelines from the map and the Landsat image. (a) Scale
space image of map island. (b) Scale space image of Landsat island. (c)
Result of the match.
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Fig. 10. Registration of the Landsat image to the map.

mation since a correct match might not correspond to one
of the largest contours. The matching algorithm in its
present form is good at finding shapes which have the same
basic features but to overcome the problem associated with
open curves, one can eliminate the necessity of attaching
initial costs to nodes by matching all contours in the scale
space image (including parents and ancestors and siblings
of those) which should match as a result of matching any
two contours in the two images (not just the smaller sib-
lings and subcontours of them) and making sure that du-
plicate nodes are not created.

Since computing time is always an important constraint
in every working computational vision system, the follow-
ing is an evaluation of the computation time requirements
of the various components of the system described in this
paper.

The system was implemented at UBC’s Laboratory for
Computational Vision on a Vax' 11/780 with 4 Mbytes of
main memory running BSD 4.2 Unix.? Those parts of the
system concerned with extracting shorelines from the
Landsat image and computing the scale space images of

'Vax is a trademark of Digital Equipment Corp.
*Unix is a trademark of AT& T Bell Laboratories.
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the curves to be matched were implemented in C. The
matching algorithm was implemented in Franz Lisp.

Tracking the zero-crossings in the scale space image can
reduce the computation time required to find the contours
from hours to minutes for a typical curve. The algorithm
to match two scale space images, each with n contours in
it, 1is 0(n3) in the worst case. This is the case because the
matching algorithm initially creates n® nodes. The first
node, corresponding to the two root contours, can be ex-
panded a maximum of n — 1 times. This figure goes down
for the rest of the nodes and depends on where matching
starts. However, the matching algorithm usually does bet-
ter because many nodes are eliminated quite early due to
high costs attached to them. Therefore a typical run is
between O(n?) and O(n®) in CPU requirements. This ar-
gument is supported by experimental results. Matching
two scale space images each with four to five contours took
roughly 20 seconds and matching two scale space images
each with approximately 20 contours took roughly 300
seconds.

If real-time response is expected from the system de-
scribed in this chapter, its CPU requirements must be de-
creased further. Parallelism would significantly reduce the
CPU requirements of the system described in this paper.

VII. DiscussioN

We can now evaluate the generalized scale-space image
according to the criteria proposed in Section II. The scale
space image can be computed efficiently therefore it sat-
isfies criterion a). It is completely invariant under trans-
lation of the curve. Rotation of the curve can produce at
most a wrap-around translation in the ¢ dimension. Scal-
ing of the curve corresponds to a translation in the o di-
mension. So criterion b) is satisfied. The representation
does combine information at varying levels of detail c) and
it usually changes gradually as the shape of the curve is
changed d). No arbitrary choices need to be made to com-
pute the representation e) and changing the cutoff points
only changes the representation locally f). Finally, crite-
rion g) is usually satisfied since shorelines do have unique
scale space images. This is obviously not true for convex
shapes. Possible extensions to overcome this weakness are
given in Section VIII.

Small changes in the shape of the curve usually result
in small changes in its scale space image; however, this
may not seem to be true if a relatively small but highly
convex feature is added to the curve. Such a feature may
last through many levels of scale despite its relatively small
size and therefore create a relatively large contour in the
scale image; but it can be argued that such a feature is
easily distinguishable and hence a major feature of the
curve. Fig. 11 illustrates this.

The whole scale space image of a curve is not more
compact than the curve itself in general (this is obviously
not true for convex or nearly convex curves). Therefore,
the program which computes the scale space image of var-
ious curves usually produced fairly large binary images,
but this should not be viewed as a shortcoming of the scale
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Fig. 11. Effects of features on the scale space image. (a) Island from the
map. (b) Island from the Landsat image. (c) Scale space image of (a).
(d) Scale space image of (b).

space image since it has value as a representation for planar
curves. Furthermore, the scale space image could be ef-
ficiently encoded.

Shorelines have quite arbitrary shapes and rich scale
space images as a result, but the scale space image may
not be a suitable representation for curves which consist
of long straight segments or curves which are convex or
nearly convex to begin with.

VIII. EXTENSIONS

The shapes of the contours in the scale space image in-
dicate certain facts about the underlying features on the
curve and can be studied further. This is useful if no ex-
plicit model is available but certain shapes (cues) are
searched for on the curve. For example, a contour which
is relatively tall in the scale space image but has a small
base (distance between the points where its left and right
branches intersect the path-length axis of the scale space
image), indicates the presence of a highly convex feature
of limited extent.

Scale space images can be obtained for planar curves
which consist of more than one segment by finding a suit-
able parameterization. They can also be computed for
curves which intersect themselves, but it should be noted
that the scale space images for this class of curves will be
fundamentally different. It is, for example, possible to ob-
tain new inflection points at coarser levels of detail.

If the effect of skewing of a planar curve on its scale
space image could be determined, then the matching al-
gorithm could be modified to detect skew in a planar curve
also.

Once the Landsat image is registered to the map, the
results can be used to improve the inital segmentation of
the Landsat image. An edge detector can be used to find
the location of land-water boundaries at various levels of
scale.

The generalized scale space records only the sign of the
curvature. Thus, for example, any two wholly convex
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shapes are indistinguishable to the method. Various pos-
sible extensions could be considered to cope with this
problem. Using the locations of curvature maxima and
minima at varying scales would reduce the size of the
equivalence classes but would not eliminate the difficulty.
A second extension would follow or combine scale space
matching with image space matching based on a Euclid-
ean distance. The third (and the most satisfactory) possi-
ble extension requires generalizing the scale space image
again to record not just the sign of curvature but also its
magnitude. The matching algorithm and its associated cost
metric would have to be extended to cope with this.

Last but not least, it is possible to extend these results
to three dimensions by obtaining the three-dimensional
scale space image of a surface and using a generalized
contour matcher.

IX. CONCLUSIONS

We have posed the problem of scale-based description
of planar curves, proposed a number of criteria for any
solution method, and described a method which more
nearly satisfies those criteria than do the other candidate
methods. We have also described a matching algorithm
which optimally matches two such shape descriptions.
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