o]

Handbook of Constraint Programming 13
Edited by F. Rossi, P. van Beek and T. Walsh
© 2006 Elsevier B.V. All rights reserved

Chapter 2

Constraint Satisfaction:
An Emerging Paradigm

Eugene C. Freuder and Alan K. Mackworth

This chapter focuses on the emergence of constraint satisfaction, with constraint languages,
as a new paradigm within artificial intelligence and computer science during the period
from 1965 (when Golomb and Baumert published “Backtrack programming” [34]) to 1985
(when Mackworth and Freuder published “The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems” [55]). The rest of this hand-
book will cover much of the material introduced here in more detail, as well as, of course,
continuing on from 1986 into 2006.

2.1 The Early Days

Constraint satisfaction, in its basic form, involves finding a value for each one of a set of
problem variables where constraints specify that some subsets of values cannot be used
together. As a simple example of constraint satisfaction, consider the task of choosing
component parts for the assembly of a bicycle, such as the frame, wheels, brakes, sprockets
and chain, that are all mutually compatible.

Constraint satisfaction, like most fields of artificial intelligence, can be separated into
(overlapping) concerns with representation and reasoning. The former can be divided into
generic and application-specific concerns, the latter into search and inference. While con-
straint satisfaction has often been pigeon-holed as a form of search, its real importance
lies in its broad representational scope: it can be used effectively to model many other
forms of reasoning (e.g. temporal reasoning) and applied to many problem domains (e.g.
scheduling). For this reason, constraint satisfaction problems are sometimes encountered
in application domains that are unaware that an academic community has been studying the
subject for years: one reason for the importance of a handbook such as this. Furthermore,
while heuristic search methods are a major concern, the distinguishing feature of constraint
satisfaction as a branch of artificial intelligence is arguably the emphasis on inference, in
the form of constraint propagation, as opposed to search.

14 2. Constraint Satisfaction: An Emerging Paradigm

Constraint satisfaction problems have been tackled by a dizzying array of methods,
from automata theory to ant algorithms, and are a topic of interest in many fields of com-
puter science and beyond. These connections add immeasurably to the richness of the
subject, but are largely beyond the scope of this chapter. Here we will focus on the basic
methods involved in the establishment of constraint satisfaction as a branch of artificial
intelligence. This new branch of artificial intelligence, together with related work on pro-
gramming languages and systems that we can only touch upon here, laid the groundwork
for the flourishing of interest in constraint programming languages after 1985.

Constraint satisfaction of course, predates 1965. The real world problems that we now
identify as constraint satisfaction problems, like workforce scheduling, have naturally al-
ways been with us. The toy 8-queens problem, which preoccupied so many of the early
constraint satisfaction researchers in artificial intelligence, is said to have been proposed in
1848 by the chess player Max Bazzel. Mythology claims that a form of backtrack search,
a powerful search paradigm that has become a central tool for constraint satisfaction, was
used by Theseus in the labyrinth in Crete. Backtrack search was used in recreational math-
ematics in the nineteenth century [51], and was an early subject of study as computer
science and operations research emerged as academic disciplines after World War II. Bit-
ner and Reingold [2] credit Lehmer with first using the term ‘backtrack’ in the 1950’s [50].
Various forms of constraint satisfaction and propagation appeared in the computer science
literature in the 1960’s [16, 15, 34, 75].

In artificial intelligence interest in constraint satisfaction developed in two streams. In
some sense a common ancestor of both streams is Ivan Sutherland’s groundbreaking 1963
MIT Ph.D. thesis, “Sketchpad: A man-machine graphical communication system” [73].

In one stream, the versatility of constraints led to applications in a variety of domains,
and associated programming languages and systems. This stream we can call the language
stream. In 1964 Wilkes proposed that algebraic equations be allowed as constraint state-
ments in procedural Algol-like programming languages, with relaxation used to satisfy the
constraints [80]. Around 1967, Elcock developed a declarative language, Absys, based on
the manipulation of equational constraints [22]. Burstall employed a form of constraint
manipulation as early as 1969 in a program for solving cryptarithmetic puzzles [9]. In the
very first issue of Artificial Intelligence in 1970, Fikes described REF-ARF, where the REF
language formed part of a general problem-solving system employing constraint satisfac-
tion and propagation as one of its methods [23]. Kowalski used a form of constraint prop-
agation for theorem proving [48]. Sussman and others at MIT applied a form of constraint
propagation to analysis, synthesis and fault localization for circuits [6, 17, 18, 67, 71], and
Sussman with Steele developed the CONSTRAINTS language [72]. Borning used con-
straints in his ThingLab simulation laboratory [4, 5], whose kernel was an extension of the
Smalltalk language; Lauriere used constraints in Alice, a language for solving combina-
torial problems [49]. In the planning domain, Eastman did “constraint structured” space
planning with GSP, the General Space Planner [21], Stefik used “constraint posting” in
MOLGEN, which planned gene-cloning experiments in molecular genetics [68, 69], and
Descotte and Latombe’s GARI system, which generated the machining plans of mechani-
cal parts, embedded a planner which made compromises among “antagonistic constraints”
[20]. Fox, Allen and Strohm developed ISIS-II [25] a constraint-directed reasoning system
for factory job-shop scheduling.

In the other stream, an interest in constraint solving algorithms grew out of the ma-
chine vision community; we cite some of the early work here. We refer to this stream as

E. C. Freuder, A. K. Mackworth 15

the algorithm stream. The landmark ‘Waltz filtering’ (arc consistency) constraint propa-
gation algorithm appeared in a Ph.D. thesis on scene labeling [79], building upon work
of Huffman [41] and Clowes [10]. Montanari developed path consistency and established
a general framework for representing and reasoning about constraints in a seminal paper
entitled “Networks of constraints: fundamental properties and applications to picture pro-
cessing” [60]. Mackworth exploited constraints for machine vision [52], before providing
a general framework for “Consistency in networks of relations” and new algorithms for arc
and path consistency [53]. Freuder generalized arc and path consistency to k-consistency
[26] shortly after completing a Ph.D. thesis on “active vision”. Barrow and Tenenbaum,
with MSYS [1] and IGS [74], were also early users of constraints for image interpretation.
Rosenfeld, Hummel and Zucker, in “Scene labeling by relaxation operations”, explored the
“continuous labeling problem”, where constraints are not ‘hard’, specifying that values can
or cannot be used together, but ‘soft’ specifying degrees of compatibility [65]. Haralick,
Davis, Rosenfeld and Milgram discussed “Reduction operations for constraint satisfaction”
[38], and Haralick and Shapiro generalized those results in a two-part paper on “The con-
sistent labeling problem” [36, 37]. Together with J. R. Ullman, they even discussed special
hardware for constraint propagation and parallel search computation in [76].

The language and algorithm streams diverged, and both became more detached from
specific application domains. While applications and commercial exploitation did prolif-
erate, the academic communities focused more on general methods. While the generality
and scientific rigor of constraint programming is one of its strengths, we face a continu-
ing challenge to reconnect these streams more firmly with their semantic problem-solving
roots.

The language stream became heavily influenced by logic programming, in the form of
constraint logic programming, and focused on the development of programming languages
and libraries. Hewitt’s Planner language [40] and its partial implementation as Micro-
Planner [70] can be seen as an early logic programming language [3]. The major early
milestone, though, was the development of Prolog by Colmerauer and others around 1972
[14] and the logic as a programming language movement [39, 47]. Prolog can be framed as
an early constraint programming language, solving equality constraints over terms (includ-
ing variables) using the unification algorithm as the constraint solver. Colmerauer pushed
this view much further in his introduction of Prolog II in 1982 [13, 12]. The integration
of constraint propagation algorithms into interpreters for Planner-like languages was pro-
posed by Mackworth [53]. Van Hentenryck developed and implemented CHIP (Constraint
Handling in Prolog) as a fully-fledged constraint logic programming language [77]. In a
parallel development Jaffar et al. developed the CLP(X) family of constraint logic pro-
gramming languages [42] including CLP(R) [44]. For more on these developments in the
language stream see the surveys in [11, 43] and other chapters in this handbook.

The algorithm stream, influenced by the paradigm of artificial intelligence as search,
as exemplified in Nilsson’s early textbook [61], and by the development of the science of
algorithms, as exemplified by Knuth’s The Art of Computer Programming [45], focused
on algorithms and heuristics. The second stream remained more firmly within artificial
intelligence, developing as one of the artificial intelligence communities built around rea-
soning paradigms: constraint-based reasoning [29], case-based reasoning, and the like. It
also focused increasingly on the simple, but powerful and general, constraint satisfaction
problem (CSP) formulation and its variants. We shall focus primarily on this stream, and
the development of the CSP paradigm, in this chapter.

16 2. Constraint Satisfaction: An Emerging Paradigm

The challenge then became to reintegrate the language and algorithm streams, along
with related disciplines, such as mathematical programming and constraint databases, into
a single constraint programming community. This process began in earnest in the 1990’s
when Paris Kanellakis, Jean-Louis Lassez, and Vijay Saraswat chaired a workshop that
soon led to the formation of an annual International Conference on Principles and Practice
of Constraint Programming, and, at the instigation of Zsé6fia Ruttkay, Gene Freuder estab-
lished the Constraints journal, which “provides a common forum for the many disciplines
interested in constraint programming and constraint satisfaction and optimization, and the
many application domains in which constraint technology is employed”.

2.2 The Constraint Satisfaction Problem: Representation and
Reasoning

Here we consider the representation of constraint satisfaction problems, the varieties of
reasoning used by algorithms to solve them and the analysis of those solution methods.

2.2.1 Representation

The classic definition of a Constraint Satisfaction Problem (CSP) is as follows. A CSP
Pis a triple P = (X, D, C) where X is an n-tuple of variables X = (z1,T2,...,Zn),
D is a corresponding n-tuple of domains D = (D, Dy, ..., Dy) such that z; € D;, C'is
a t-tuple of constraints C = (C1,Cy, ..., Ct). A constraint C; is a pair (Rg,,S;) where
Rg, is a relation on the variables in S; = scope(C;). In other words, R; is a subset of the
Cartesian product of the domains of the variables in S;.!

A solution to the CSP P is an n-tuple A = (ay,as,...,a,) where a; € D; and
each Cj is satisfied in that Rg, holds on the projection of A onto the scope S;. In a
given task one may be required to find the set of all solutions, sol(P), to determine if
that set is non-empty or just to find any solution, if one exists. If the set of solutions is
empty the CSP is unsatisfiable. This simple but powerful framework captures a wide
range of significant applications in fields as diverse as artificial intelligence, operations
research, scheduling, supply chain management, graph algorithms, computer vision and
computational linguistics, to name but a few.

The classic CSP paradigm can be both specialized and generalized in a variety of im-
portant ways. One important specialization considers the extensionality/intensionality of
the domains and constraints. If all the domains in D are finite sets, with extensional rep-
resentations, then they, and the constraint relations, may be represented and manipulated
extensionally. However, even if the domains and the relations are intensionally represented,
many of the techniques described in this chapter and elsewhere in the handbook still ap-
ply. If the size of the scope of each constraint is limited to 1 or 2 then the constraints
are unary and binary and the CSP can be directly represented as a constraint graph with
variables as vertices and constraints as edges. If the arity of constraints is not so limited
then a hypergraph is required with a hyperedge for each p-ary constraint (p > 2) connect-
ing the p vertices involved. The satisfiability of propositional formulae, SAT, is another

| This is the conventional definition, which we will adhere to here. A more parsimonious definition of a CSP
would dispense with D entirely leaving the role of D; to be played by a unary constraint C'; with scope(Cy) =

E. C. Freuder, A. K. Mackworth 17

specialization of CSP, where the domains are restricted to be {7, F'} and the constraints
are clauses. 3-SAT, the archetypal NP-complete decision problem, is a further restriction
where the scope of each constraint (clause) is 3 or fewer variables.

The classic view of CSPs was initially developed by Montanari [60] and Mackworth
[53]. It has strong roots in, and links with, SAT [16, 15, 54], relational algebra and
database theory [58], computer vision [10, 41, 79] and graphics [73].

Various generalizations of the classic CSP model have been developed subsequently.
One of the most significant is the Constraint Optimization Problem (COP) for which there
are several significantly different formulations, and the nomenclature is not always con-
sistent [19]. Perhaps the simplest COP formulation retains the CSP limitation of allowing
only ‘hard” Boolean-valued constraints but adds a cost function over the variables, that
must be minimized. This arises often, for example, in scheduling applications.

2.2.2 Reasoning: Inference and Search

We will consider the algorithms for solving CSPs under two broad categories: inference
and search, and various combinations of those two approaches. If the domains D; are all
finite then the finite search space for putative solutions is 2 = x; D; (where x is the join
operator of relational algebra [58]). 2 can, in theory, be enumerated and each n-tuple tested
to determine if it is a solution. This blind enumeration technique can be improved upon
using two distinct orthogonal strategies: inference and search. In inference techniques,
local constraint propagation can eliminate large subspaces from {2 on the grounds that they
must be devoid of solutions. Search systematically explores €2, often eliminating subspaces
with a single failure. The success of both strategies hinges on the simple fact that a CSP
is conjunctive: to solve it, all of the constraints must be satisfied so that a local failure on
a subset of variables rules out all putative solutions with the same projection onto those
variables. These two basic strategies are usually combined in most applications.

2.2.3 Inference: Constraint Propagation Using Network Consistency

The major development in inference techniques for CSPs was the discovery and develop-
ment, in the 1970’s, of network consistency algorithms for constraint propagation. Here
we will give an overview of that development.

Analysis of using backtracking to solve CSPs shows that it almost always displays
pathological thrashing behaviors [3]. Thrashing is the repeated exploration of failing sub-
trees of the backtrack search tree that are essentially identical-differing only in assignments
to variables irrelevant to the failure of the subtree. Because there is typically an exponential
number of such irrelevant assignments, thrashing is often the most significant factor in the
running time of backtracking.

The first key insight behind all the consistency algorithms is that much thrashing be-
havior can be identified and eliminated, once and for all, by tightening the constraints,
making implicit constraints explicit, using tractable, efficient polynomial-time algorithms.
The second insight is that the level, or scope, of consistency, the size of the set of variables
involved in the local context, can be adjusted as a parameter from 1 up to n, each increase
in level requiring correspondingly more work.

For simplicity, we will initially describe the development of the consistency algorithms
for CSPs with finite domains and unary and binary constraints only, though neither restric-

18 2. Constraint Satisfaction: An Emerging Paradigm

tion is necessary, as we shall see. We assume the reader is familiar with the basic elements
of graph theory, set theory and relational algebra.

Consider a CSP P = (X, D,C) as defined above. The unary constraints are C;
= (R(s,), (x:)). We use the shorthand notation R; to stand for Ry,y. Similarly, the binary
constraints are of the form Cs = (Ryg, »,), (%4, ;) where i # j. We use R;; to stand for

(Nojc;e consistency is the simplest consistency algorithm. Node 4 comprised of vertex %
representing variable x; with domain D; is node consistent iff D; C R;. If node % is not
node consistent it can be made so by computing:

D, =D;(R

A single pass through the nodes makes the network node consistent. The resulting
CSPis P! = (X, D', C) where D' = (D}, Dj},...,D.). Wesay P! = NC(P). Clearly
s0l(P) = sol(P'). Let Q' =m; D; then || < |9].

Arc consistency is a technique for further tightening the domains using the binary con-
straints. Consider node ¢ with domain D;. Suppose there is a non-trivial relation R;;
between variables z; and x;. We consider the arcs (3, j) and (J, ¢) separately. Arc (1, j) is
arc consistent iff:

D; C ’/Ti(Ri]' X D])

where 7 is the projection operator. That is, for every member of D;, there is a correspond-
ing element in D; that satisfies R;;. Arc (4, j) can be tested for arc consistency and made
consistent, if it is not so, by computing:

D; = D,ﬂﬂ‘l(R” X D])

(This is a semijoin [58]). In other words, delete all elements of D, that have no correspond-
ing element in D, satisfying R;;. A network is arc consistent iff all its arcs are consistent.
If all the arcs are already consistent a single pass through them is all that is needed to ver-
ify this. If, however, at least one arc has to be made consistent (i.e. D} # D; — there is a
deletion from D;) then one must recheck some number of arcs. The basic arc consistency
algorithm simply checks all the arcs repeatedly until a fixed point of no further domain
reductions is reached. This algorithm is known as AC-1 [53].

Waltz [79] realized that a more intelligent arc consistency bookkeeping scheme would
only recheck those arcs that could have become inconsistent as a direct result of deletions
from D;. Waltz’s algorithm, now known as AC-2 [53], propagates the revisions of the
domains through the arcs until, again, a fixed point is reached. AC-3, presented by Mack-
worth [53], is a generalization and simplification of AC-2. AC-3 is still the most widely
used and effective consistency algorithm. For each of these algorithms let P’ = AC(P)
be the result of enforcing arc consistency on P. Then clearly sol(P) = sol(P’) and
1] < 9.

The best framework for understanding all the network consistency algorithms is to see
them as removing local inconsistencies from the network which can never be part of any
global solution. When those inconsistencies are removed they may propagate to cause

E. C. Freuder, A. K. Mackworth 19

inconsistencies in neighboring arcs that were previously consistent. Those inconsistencies
are in turn removed so the algorithm eventually arrives, monotonically, at a fixed point
consistent network and halts. An inconsistent network has the same set of solutions as
the consistent network that results from applying a consistency algorithm to it; however,
if one subsequently applies, say, a backtrack search to the consistent network the resultant
thrashing behavior can be no worse and almost always is much better, assuming the same
variable and value ordering.

Path consistency [60] is the next level of consistency to consider. In arc consistency
we tighten the unary constraints using local binary constraints. In path consistency we
analogously tighten the binary constraints using the implicit induced constraints on triples
of variables.

A path of length two from node ¢ through node m to node j, (¢, m, 7}, is path consistent
iff:

Rij C 7rij(Rhn X Dm X ij)

That is, for every pair of values (a, b) allowed by the explicit relation R;; there is a value
c for z,, such that (a, c) is allowed by R;,,, and (c, b) is allowed by R,,,;.

Path (4, m, j) can be tested for path consistency and made consistent, if it is not, by
computing:

R;J = Ri] an (Rmn M Dm X ij)
Ry — Rj;

If the binary relations are represented as Boolean bit matrices then the combination of the
join and projection operations (which is relational composition) becomes Boolean matrix
multiplication and the) operation becomes simply pairwise bit A operations. In other
words, for all the values (a, b) allowed by R;; if there is no value ¢ for x,,, allowed by R;,,,
and R,,; the path is made consistent by changing that bit value in R;; from 1 to 0. The
way to think of this is that the implicit constraint on (¢, j) imposed by node (m) through
the relational composition R, o R,,; is made explicit in the new constraint jo when
path {i,m, j) is made consistent.

As with arc consistency the simplest algorithm for enforcing path consistency for the
entire network is to check and ensure path consistency for each length 2 path (i, m, j). If
any path has to be made consistent then the entire pass through the paths is repeated again.
This is algorithm PC-1 [53, 60].

The algorithm PC-2 [53] determines, when any path is made consistent, the set of other
paths could have become inconsistent because they use the arc between that pair of vertices
and queues those paths, if necessary, for further checking. PC-2 realizes substantial savings
over PC-1 just as AC-3 is more efficient than AC-1 [55].

Typically, after path consistency is established, there are non-trivial binary constraints
between all pairs of nodes. As shown by Montanari [60], if all paths of length 2 are con-
sistent then all paths of any length are consistent, so longer paths need not be considered.
Once path consistency is established, there is a chain of values along any path satisfying
the relations between any pair of values allowed at the start and the end of the path. This
does not mean that there is necessarily a solution to the CSP. If a path traverses the entire
network with a chain of compatible values, if that path self-intersects at a node the two

20 2. Constraint Satisfaction: An Emerging Paradigm

values on the path at that node may be different. Indeed, it is a property of both arc consis-
tency and path consistency that consistency may be established with non-empty domains
and relations even though there may be no global solution. Low-level consistency, with no
empty domains, is a necessary but not sufficient condition for the existence of a solution.
So, if consistency does empty any domain or relation there is no global solution.

Parenthetically, we note that our abstract descriptions of these algorithms, in terms
of relational algebra, are specifications not implementations. Implementations can often
achieve efficiency savings by, for example, exploiting the semantics of a constraint such as
the all different global constraint, alldiff, that requires each variable in its scope to assume
a different value.

Briefly, let us establish that consistency algorithms do not require the finite domain
or binary constraint restrictions on the CSP model. As long as we can perform x, 7 and
() operations on the domain and relational representations these algorithms are perfectly
adequate.

Consider, for example, the trivial CSP P = ({z1,%2), ([0,3], [2,5]), (=, (z1,z2)))
where x1 and x, are reals. That is, z; € D1 = [0,3],z2 € Dy = [2,5]. Arc consistency
on arc (1,2) reduces D to [2, 3] and arc consistency on arc (2, 1) reduces D5 to [2, 3].

If some of the constraints are p-ary (p > 2) we can generalize arc consistency. In this
case we can represent each p-ary constraint C' = (Rg,, S;) as a hyperedge connecting the
vertices representing the variables in S;. Consider a vertex z; € S;. We say we make the
directional hyperarc (x;, S; — (z;)) generalized arc consistent by computing:

Dj = Di \mi(Rs; % (Mmes,—(2) D))

In other words the hyperarc is made generalized arc consistent, if necessary, by deleting
from D; any element that is not compatible with some tuple of its neighbors under the
relation R,. As with AC-3 any changes in D; may propagate to any other hyperarcs di-
rected at node 1. This is the generalized arc consistency algorithm GAC [53]. One can
also specialize arc consistency: Mackworth, Mulder and Havens exploited the properties
of tree-structured variable domains in a hierarchical arc consistency algorithm HAC [57].

While there is no immediately obvious graph theoretic concept analogous to nodes,
arcs and paths to motivate a higher form of consistency, the fact that consideration of paths
of length two is, in fact, sufficient for path consistency, provides a natural motivation for
the concept of k-consistency introduced by Freuder in 1978 [26]. k-consistency requires
that given consistent values for any k — 1 variables, there exists a value for any kth variable,
such that all k& values are consistent (i.e. the k& values form a solution to the subproblem
induced by the k variables). Thus 2-consistency is equivalent to arc consistency, and 3-
consistency to path consistency. Freuder provided a synthesis algorithm for finding all the
solutions to a CSP without search by achieving higher and higher levels of consistency.

Freuder went on in 1985 to generalize further to (¢, j)-consistency [28]. A constraint
network is (4, j)-consistent if, given consistent values for any ¢ variables, there exist values
for any other j variables, such that all ¢ 4 j values together are consistent. k-consistency
is (k — 1, 1)-consistency. Special attention was paid to (1, j)-consistency, which is a gen-
eralization of what would now be termed ‘singleton consistency’.

E. C. Freuder, A. K. Mackworth 21

2.2.4 Search: Backtracking

Backtrack is the fundamental ‘complete’ search method for constraint satisfaction prob-
lems, in the sense that one is guaranteed to find a solution if one exists. Even in 1965,
Golomb and Baumert, in a JACM paper simply entitled “Backtrack programming” [34],
were able to observe that the method had already been independently ‘discovered’ many
times. Golomb and Baumert believed their paper to be “the first attempt to formulate the
scope and methods of backtrack programming in its full generality”, while acknowledging
the “fairly general exposition” given five years earlier by Walker [78].

Indeed, Golomb and Baumert’s formulation is almost too general for our purposes
here in that it is presented as an optimization problem, with the objective to maximize
a function of the variables. Arguably Golomb and Baumert are presenting ‘branch and
bound programming’, where upper and lower bounds on what is possible or desirable at
any point in the search can provide additional pruning of the search. What we would now
call a classic CSP, the 8-queens problem, they formulate by specifying a function whose
value is 0 when the queens do not attack each other, and 1 otherwise. It is worth noting also
that in this optimization context, again even in 1965, Golomb and Baumert acknowledge
the existence of “learning programs and hill climbing programs” that converge on relative
maxima. They observe dryly that while “the backtrack algorithm lacks such glamorous
qualities as learning and progress, it has the more prosaic virtue of being exhaustive”.

Basic backtrack search builds up a partial solution by choosing values for variables
until it reaches a dead end, where the partial solution cannot be consistently extended.
When it reaches a dead end it undoes the last choice it made and tries another. This is done
in a systematic manner that guarantees that all possibilities will be tried. It improves on
simply enumerating and testing of all candidate solutions by brute force in that it checks
to see if the constraints are satisfied each time it makes a new choice, rather than waiting
until a complete solution candidate containing values for all variables is generated. The
backtrack search process is often represented as a search tree, where each node (below the
root) represents a choice of a value for a variable, and each branch represents a candidate
partial solution. Discovering that a partial solution cannot be extended then corresponds
to pruning a subtree from consideration. Other noteworthy early papers on backtracking
include Bitner and Reingold’s “Backtrack programming techniques” [2] and Fillmore and
Williamson’s “On backtracking: a combinatorial description of the algorithm” [24], which
used group theory to address symmetry issues.

Heuristic search methods to support general purpose problem solving paradigms were
studied intensely from the early days of artificial intelligence, and backtracking played a
role in the form of depth-first search of state spaces, problem reduction graphs, and game
trees [61]. In the 1970’s as constraint satisfaction emerged as a paradigm of its own, back-
track in the full sense we use the term here, for search involving constraint networks, gained
prominence in the artificial intelligence literature, leading to the publication in the Artifi-
cial Intelligence journal at the beginning of the 1980’s of Haralick and Elliott’s “Increasing
Tree Search Efficiency for Constraint Satisfaction Problems” [35]. This much-cited paper
provided what was, for the time, an especially thorough statistical and experimental evalu-
ation of the predominant approaches to refining backtrack search.

There are two major themes in the early work on improving backtracking: control-
ling search and interleaving inference (constraint propagation) with search. Both of these
themes are again evident even in Golomb and Baumert. They observe that “all other things

22 2. Constraint Satisfaction: An Emerging Paradigm

being equal, it is more efficient to make the next choice from the set [domain] with fewest
elements”, an instance of what Haralick and Elliott dubbed the “fail first principle”, and
they discuss “preclusion”, where a choice for one variable rules out inconsistent choices
for other variables, a form of what Haralick and Elliott called “lookahead” that they pre-
sented as “forward checking”. Of course, preclusion and the smallest domain heuristic
nicely complement one another.

In general, one can look for efficient ways to manage search both going ‘forward’ and
‘backward’. When we move forward, extending partial solutions, we make choices about
the order in which we consider variables, values and constraints. This order can make an
enormous difference in the amount of work we have to do. When we move backwards
after hitting a dead end, we do not have to do this chronologically by simply undoing the
last choice we made. We can be smarter about it. In general, constraint propagation, most
commonly in the form of partial or complete arc consistency, can be carried out before,
and/or during, search, in an attempt to prune the search space.

Haralick and Elliott compared several forms of lookahead, carrying out different de-
grees of partial arc consistency propagation after choosing a value. Oddly their “full looka-
head” still did not maintain full arc consistency. However, restoring full arc consistency
after choosing values had been proposed as early as 1974 by Gaschnig [31], and McGre-
gor had even experimented with interleaving path consistency with search [59]. Mack-
worth observed that one could generalize to the alternation of constraint manipulation and
case analysis, and proposed an algorithm that decomposed problems by splitting a variable
domain in half and then restoring arc consistency on the subproblems [53].

Basic backtrack search backtracks chronologically to undo the last choice and try some-
thing else. This can result in silly behavior, where the algorithm tries alternatives for
choices that clearly had no bearing on the failure that induced the backtracking. Stallman
and Sussman, in the context of circuit analysis, with “dependency-directed backtracking”
[67], Gaschnig with “backjumping” [33], and Bruynooghe with “intelligent backtracking”
[8] all addressed this problem. These methods in some sense remember the reasons for
failure in order to backtrack over legitimate ‘culprits’. Stallman and Sussman went further
by “learning” new constraints (“nogoods”) from failure, which could be used to prune fur-
ther search. Gaschnig used another form of memory in his “backmarking” algorithm to
avoid redundant checking for consistency when backtracking [32].

2.2.5 Analysis

While it was recognized early on that solving CSPs was in general NP-hard, a variety
of analytical techniques were brought to bear to evaluate, predict or compare algorithm
performance and relate problem complexity to problem structure. In particular, there are
tradeoffs to evaluate between the effort required to avoid search, e.g. by exercising more
intelligent control or carrying out more inference, and the reduction in search effort ob-
tained.

Knuth [46] and Purdom [63] used probing techniques to estimate the efficiency of
backtrack programs. Haralick and Elliott carried out a statistical analysis [35], which was
refined by Nudel [62] to compute “expected complexities” for classes of problems de-
fined by basic problem parameters. Brown and Purdom investigated average time behavior
[7, 64]. Mackworth and Freuder carried out algorithmic complexity analyses of worst case
behavior for various tractable propagation algorithms [55]. They showed the time com-

E. C. Freuder, A. K. Mackworth 23

plexity for arc consistency to be linear in the number of constraints, settling an unresolved
issue. This result turned out to be important for constraint programming languages that
used arc consistency as a primitive operation [56]. Of course, experimental evaluation was
common, though in the early days there was perhaps too much reliance on the n-queens
problem, and too little understanding of the potential pitfalls of experiments with random
problems.

Problem complexity can be related to problem structure. Seidel [66] developed a dy-
namic programming synthesis algorithm, using a decomposition technique based on graph
cutsets, that related problem complexity to a problem parameter that he called “front
length”. Freuder [27] proved that problems with tree-structured constraint graphs were
tractable by introducing the structural concept of the “width” of a constraint graph, and
demonstrating a connection between width and consistency level that ensured that tree-
structured problems could be solved with backtrack-free search after arc consistency pre-
processing. He subsequently related complexity to problem structure in terms of maximal
biconnected components [28] and stable sets [30].

2.3 Conclusions

This chapter has not been a complete history, and certainly not an exhaustive survey. We
have focused on the major themes of the early period, but it is worth noting that many
very modern sounding topics were also already appearing at this early stage. For exam-
ple, even in 1965 Golomb and Baumert were making allusions to symmetry and problem
reformulation.

Golomb and Baumert concluded in 1965 [34]:

Thus the success or failure of backtrack often depends on the skill and ingenu-
ity of the programmer in his ability to adapt the basic methods to the problem
at hand and in his ability to reformulate the problem so as to exploit the char-
acteristics of his own computing device. That is, backtrack programming (as
many other types of programming) is somewhat of an art.

As the rest of this handbook will demonstrate, much progress has been made in making
even more powerful methods available to the constraint programmer. However, constraint
programming is still “somewhat of an art”. The challenge going forward will be to make
constraint programming more of an engineering activity and constraint technology more
transparently accessible to the non-programmer.

Acknowledgements

We are grateful to Peter van Beek for all his editorial comments, help and support during
the preparation of this chapter. This material is based upon works supported by the Science
Foundation Ireland under Grant No. Grant 00/P1.1/C075 and by the Natural Sciences and
Engineering Research Council of Canada. Alan Mackworth is supported by a Canada
Research Chair in Atrtificial Intelligence.

24

2. Constraint Satisfaction: An Emerging Paradigm

Bibliography

(1]
(2]

(4]

[9]

[10]
[11]
[12]
(13]

[14]

(18]

[19]
[20]

H. G. Barrow and J. M. Tenenbaum. MSYS: A system for reasoning about scenes.
In SRI AICenter, 1975.

J. R. Bitner and E. M. Reingold. Backtrack programming techniques. Comm. ACM,
18:651-656, 1975.

D. G. Bobrow and B. Raphael. New programming languages for artificial intelligence
research. ACM Computing Surveys, 6(3):153-174, Sept. 1974.

A. Borning. Thinglab — an object-oriented system for building simulations using
constraints. In R. Reddy, editor, Proceedings of the 5th International Joint Confer-
ence on Artificial Intelligence, pages 497-498, Cambridge, MA, Aug. 1977. William
Kaufmann. ISBN 0-86576-057-8.

A. Borning. Thinglab: A constraint-oriented simulation laboratory. Report CS-79-
746, Computer Science Dept., Stanford University, CA, 1979.

A. Brown. Qualitative knowledge, casual reasoning and the localization of failures.
Technical Report AITR-362, MIT Actificial Intelligence Laboratory, Nov. 6 1976.
URL http://dspace.mit.edu/handle/1721.1/6921.

C. A. Brown and P. W. Purdom Jr. An average time analysis of backtracking. SIAM
J. Comput., 10:583-593, 1981.

M. Bruynooghe. Solving combinatorial search problems by intelligent backtracking.
Information Processing Letters, 12:36-39, 1981.

R. M. Burstall. A program for solving word sum puzzles. Computer Journal, 12(1):
48-51, Feb. 1969.

M. B. Clowes. On seeing things. Artificial Intelligence, 2:79-116, 1971.

J. Cohen. Constraint logic programming languages. CACM, 33(7):52-68, July 1990.
ISSN 0001-0782. URL http://www.acm.org/pubs/toc/Abstracts/
0001-0782/79209.html.

A. Colmerauer. Prolog II reference manual and theoretical model. Technical report,
Groupe d’Intelligence Arificielle, Univeristé d’ Aix-Marseille 11, Luminy, Oct. 1982.
A. Colmerauer. Prolog and infinite trees. In K. L. Clark and S.-A. Térnlund, editors,
Logic Programming, pages 231-251. Academic Press, 1982.

A. Colmerauer and P. Roussel. The birth of Prolog. In R. L. Wexelblat, editor,
Proceedings of the Conference on History of Programming Languages, volume 28(3)
of ACM Sigplan Notices, pages 37-52, New York, NY, USA, Apr. 1993. ACM Press.
ISBN 0-89791-570-4.

M. Davis and H. Putham. A computing procedure for quantification theory. J. ACM,
7:201-215, 1960.

M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-proving.
Comm. ACM, 5:394-397, 1962.

J. de Kleer. Local methods for localizing faults in electronic circuits. Technical
Report AIM-394, MIT Artificial Intelligence Laboratory, Nov. 6 1976. URL http:
//dspace.mit.edu/handle/1721.1/6921.

J. de Kleer and G. J. Sussman. Propagation of constraints applied to circuit synthesis.
Technical Report AIM-485, MIT Artificial Intelligence Laboratory, Sept. 6 1978.
URL http://hdl.handle.net/1721.1/5745.

R. Dechter. Constraint Processing. Morgan Kaufmann, 2003.

Y. Descotte and J.-C. Latombe. GARI : A problem solver that plans how to machine

[21]
[22]

(23]
[24]
[25]

(26]
(27]

(28]
[29]

(30]

[31]
(32]

(33]

(34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

E. C. Freuder, A. K. Mackworth 25

mechanical parts. In International Joint Conference on Artificial Intelligence (IJCAI
’81), pages 766-772, 1981.

C. M. Eastman. Automated space planning. Artificial Intelligence, 4(1):41-64, 1973.
E. W. Elcock. Absys: the first logic programming language - A retrospective and a
commentary. Journal of Logic Programming, 9(1):1-17, July 1990.

R. E. Fikes. REF-ARF: A system for solving problems stated as procedures. Artificial
Intelligence, 1:27-120, 1970.

J. P. Fillmore and S. G. Williamson. On backtracking: A combinatorial description
of the algorithm. SIAM Journal on Computing, 3(1):41-55, Mar. 1974.

M. S. Fox, B. P. Allen, and G. Strohm. Job-shop scheduling: An investigation in
constraint-directed reasoning. In AAAIS2, Proceedings, pages 155-158, 1982.

E. C. Freuder. Synthesizing constraint expressions. Comm. ACM, 21:958-966, 1978.
E. C. Freuder. A sufficient condition for backtrack-free search. J. ACM, 29:24-32,
1982.

E. C. Freuder. A sufficient condition for backtrack-bounded search. J. ACM, 32:
755-761, 1985.

E. C. Freuder and A. K. Mackworth. Introduction to the special volume on constraint-
based reasoning. Artificial Intelligence, 58:1-2, 1992.

E. C. Freuder and M. J. Quinn. Taking advantage of stable sets of variables in con-
straint satisfaction problems. In Proceedings of the Ninth International Joint Confer-
ence on Artificial Intelligence, pages 1076-1078, Los Angeles, 1985.

J. Gaschnig. A constraint satisfaction method for inference making. In Proc. 12th
Annual Allerton Conf. on Circuit System Theory, pages 866-874, U. Illinois, 1974.
J. Gaschnig. A general backtracking algorithm that eliminates most redundant tests.
In Proceedings of the Fifth International Joint Conference on Artificial Intelligence,
page 457, Cambridge, Mass., 1977.

J. Gaschnig. Experimental case studies of backtrack vs. Waltz-type vs. new algo-
rithms for satisficing assignment problems. In Proceedings of the Second Canadian
Conference on Artificial Intelligence, pages 268277, Toronto, 1978.

S. Golomb and L. Baumert. Backtrack programming. J. ACM, 12:516-524, 1965.
R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

R. M. Haralick and L. G. Shapiro. The consistent labeling problem: Part I. IEEE
Trans. Pattern Analysis and Machine Intelligence, 1(2):173-184, Apr. 1979.

R. M. Haralick and L. G. Shapiro. The consistent labeling problem: Part Il. IEEE
Trans. Pattern Analysis and Machine Intelligence, 2(3):193-203, May 1980.

R. M. Haralick, L. S. Davis, A. Rosenfeld, and D. L.. Milgram. Reduction operations
for constraint satisfaction. Inf. Sci, 14(3):199-219, 1978. URL http://dx.doi.
org/10.1016/0020-0255(78)90043-9.

P. J. Hayes. Computation and deduction. In Proc. 2nd International Symposium on
Mathematical Foundations of Computer Science, pages 105-118. Czechoslovakian
Academy of Sciences, 1973.

C. Hewitt. PLANNER: A language for proving theorems in robots. In Proceedings
of the First International Joint Conference on Artificial Intelligence, pages 295-301,
Bedford, MA., 1969. Mitre Corporation.

D. A. Huffman. Impossible objects as nonsense sentences. In B. Meltzer and
D. Michie, editors, Machine Intelligence 6, pages 295-323. Edinburgh Univ. Press,

26 2. Constraint Satisfaction: An Emerging Paradigm

1971.

[42] J. Jaffar and J.-L. Lassez. Constraint logic programming. In Fourteenth Annual
ACM Symposium on Principles of Programming Languages (POPL), pages 111-119,
Miinchen, 1987.

[43] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of Logic
Programming, 19(20):503-581, 1994.

[44] J. Jaffar, S. Michaylov, P. J. Stuckey, and R. H. C. Yap. The CLP(R) language
and system. TOPLAS, 14(3):339-395, July 1992. ISSN 0164-0925. URL http:
//www.acm.org/pubs/toc/Abstracts/0164-0925/129398.html.

[45] D. E. Knuth. Fundamental Algorithms, volume 1 of The Art of Computer Program-
ming. Addison-Wesley, 1973.

[46] D.E. Knuth. Estimating the efficiency of backtrack programs. Mathematics of Com-
putation, 29:121-136, 1975.

[47] R. A. Kowalski. Predicate logic as a programming language. Proc. IFIP 74, pages
569-574, 1974.

[48] R. A. Kowalski. A proof procedure using connection graphs. J. ACM, 22(4):572-595,
1975.

[49] J.-L. Lauriere. A language and a program for stating and solving combinatorial prob-
lems. Artificial Intelligence, 10:29-127, 1978.

[50] D.H. Lehmer. Combinatorial problems with digital computers. In Proc. of the Fourth
Canadian Math. Congress, pages 160173, 1957,

[51] E. Lucas. Récréations Mathématiques. Gauthier-Villars, Paris, 1891.

[52] A.K. Mackworth. Interpreting pictures of polyhedral scenes. Artificial Intelligence,
4:121-137, 1973.

[53] A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence, 8:
99-118, 1977.

[54] A. K. Mackworth. The logic of constraint satisfaction. Artificial Intelligence, 58:
3-20, 1992.

[551 A. K. Mackworth and E. C. Freuder. The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems. Artificial Intelligence,
25:65-74, 247, 1985.

[56] A.K. Mackworth and E. C. Freuder. The complexity of constraint satisfaction revis-
ited. Artificial Intelligence, 59:57-62, 1993.

[57] A. K. Mackworth, J. A. Mulder, and W. S. Havens. Hierarchical arc consistency:
Exploiting structured domains in constraint satisfaction problems. Computational
Intelligence, 1:118-126, 1985.

[58] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.

[59] J. J. McGregor. Relational consistency algorithms and their application in finding
subgraph and graph isomorphisms. Inform. Sci., 19:229-250, 1979.

[60] U. Montanari. Networks of constraints: Fundamental properties and applications to
picture processing. Inform. Sci., 7:95-132, 1974.

[61] N. J. Nilsson. Problem-Solving Methods in Artificial Intelligence. McGraw-Hill,
New York, 1971.

[62] B. Nudel. Consistent-labeling problems and their algorithms: Expected-complexities
and theory-based heuristics. Artificial Intelligence, 21:135-178, 1983.

[63] P. W. Purdom Jr. Tree size by partial backtracking. SIAM J. Comput., 7:481-491,
1978.

E. C. Freuder, A. K. Mackworth 27

[64] P. W. Purdom Jr. Search rearrangement backtracking and polynomial average time.
Artificial Intelligence, 21:117-133, 1983.

[65] A.Rosenfeld, R. A. Hummel, and S. W. Zucker. Scene labelling by relaxation oper-
ations. IEEE Trans. on Systems, Man, and Cybernetics, SMC-6:420-433, 1976.

[66] R. Seidel. A new method for solving constraint satisfaction problems. In Proceedings
of the Seventh International Joint Conference on Artificial Intelligence, pages 338—
342, Vancouver, 1981.

[67] R. M. Stallman and G. J. Sussman. Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis. Artificial Intelligence,
9:135-196, 1977.

[68] M. Stefik. Planning with constraints (MOLGEN: Part 1). Artificial Intelligence, 16:
111-140, 1981.

[69] M. J. Stefik. Planning and meta-planning (MOLGEN: Part 2). Artificial Intelligence,
16:141-169, 1981.

[70] G. Sussman and T. Winograd. Micro-planner reference manual. Technical Re-
port AIM-203, MIT Artificial Intelligence Laboratory, July 1 1970. URL ftp:
//publications.ai.mit.edu/ai-publications/0-499/ATM-203.
ps;ftp://publications.ai.mit.edu/ai-publications/pdf/
AIM-203.pdf.

[71] G.J. Sussman and R. M. Stallman. Heuristic techniques in computer-aided circuit
analysis. IEEE Trans. on Circuits and Systems, CAS-22(11), 1975.

[72] G.J. Sussman and G. L. Steele. CONSTRAINTS: a language for expressing almost-
hierarchical descriptions. Artificial Intelligence, 14, 1980.

[73] I. E. Sutherland. SKETCHPAD: A man-machine graphical communications system.
Technical Report 296, MIT, Lincoln Laboratory, Jan. 1963.

[74] J. M. Tenenbaum and H. G. Barrow. Experiments in interpretation-guided segmenta-
tion. Artif. Intell, 8(3):241-274, 1977.

[75] J. R. Ullmann. Associating parts of patterns. Information and Control, 9(6):583-601,
1966.

[76] J.R. Ullmann, R. M. Haralick, and L. G. Shapiro. Computer architecture for solving
consistent labelling problems. Comput. J, 28(2):105-111, 1985.

[77] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. MIT Press, 1989.

[78] R. L. Walker. An enumerative technique for a class of combinatorial problems. In
Combinatorial Analysis, Proceedings of Symposium in Applied Mathematics, Vol X,
Amer. Math. Soc., Providence, RI, USA, pages 91-94, 1960.

[79] D. Waltz. Understanding line drawings of scenes with shadows. In P. H. Winston,
editor, The Psychology of Computer Vision, pages 19-91. McGraw-Hill, 1975.

[80] M. V. Wilkes. Constraint-type statements in programming languages. CACM, 7(10):
587-588, 1964. URL http://doi.acm.org/10.1145/364888.364967.

