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Abstract. In this paper we take a step beyond the generalized arc consis-
The concept of local consistency plays a central role in constraintency approach and propose a new family of generalized local con-
satisfaction and has been extended to handle general constraint-basestency concepts for the junction graph representation of CBI prob-
inference (CBI) problems. We propose a family of novel generalizedems. These concepts are based on a general condition that depends
local consistency concepts for the junction graph representation afnly on the existence and properties of the multiplicative absorbing
CBI problems. These concepts are based on a general condition thelement and does not depend on other semiring properties of CBI
depends only on the existence and property of the multiplicative abproblems. We present several local consistency enforcing algarithm
sorbing element and does not depend on the other semiring propewith various levels of enforcement and corresponding theoretic and
ties of CBI problems. We present several local consistency enfprcinempirical complexity analyses. We show in this paper that some of
algorithms and their approximation variants. Theoretical complexthese algorithms can be seen as generalized versions of well-known
ity analyses and empirical experimental results for the applicatioiocal consistency enforcing techniques in CSPs and can be exported
of these algorithms to both MaxCSP and probability inference ardo other domains. Other abstract local consistency concepts are novel
given. We also discuss the relationship between these local consits the constraint programming community and provide efficient pre-
tency concepts and message passing schemes such as junction fpeecessing results with a user-specified approximation threshold. We
algorithms and loopy message propagation. also discuss the relationship between these local consistency con-
cepts and message passing schemes such as junction tree algorithms
and loopy message propagation. Local consistencies can be achieved
along with message propagation and can improve the efficiency of
The concept of local consistency plays a central role in constrainfiessage passing schemes.
satisfaction. Given a constraint satisfaction problem (CSP), local In this paper, we use bold letters to denote sets of elements and
consistency can be characterized as deriving new, possibly tightefegular letters to denote individual elements. Given a set of elements
constraints based on local information. The derived constraints simX and an elemenf € X, X_z denotes the set of elemerXs —
plify the representation of the original CSP without the loss of solu-{Z}.
tions. This can be seen as a preprocessing procedure. For example,
a value may be removed from a variable domain by the preprocess- .
ing because it violates these derived constraints. Both systematic af- The Constraint-Based Inference Framework
proaches, such as inference or propagation algorithms, and stoch

. . .~ .Constraint-Based Inference (CBI) is an umbrella term for a class of
tic approaches, such as local searches, benefit from these simplifi- . e . . . A
) S . ; various superficially different problems including probabilistic in-
cations or domain size reduction. Among the family of local con- - . . . . .
) : . T - . ference, decision-making under uncertainty, constraint satisfaction
sistency enforcing algorithms or filtering algorithms, arc consistency . P .
. . . ; : roblems, propositional satisfiability problems, decoding problems,
[16] is one of the most important techniques for binary classic CSPs; L . .
) . . . . nd possibility inference. We abstract these problems into a sin-
It is straightforward to extend it as generalized arc consistency [17 . i C
le formal framework [5] using the algebraic semiring structure

to handle non-binary classic CSPs. Many stronger local consister (A,®, ) where constraint combination (constraint aggrega-
cies [18, 25, 14] have been studied within the constraint program:. . P 99reg

ming community. Based on the Semiring CSP [4] and Valued CSIJ"O”) 1S _representec_;l b)./ the abStfaCt mult!pllce_ltlve operatoand
. constraint marginalization (domain reduction) is represented by the
[22] frameworks, arc consistency has also been extended, axsoft

consistency [7, 3], to handle over-constrained and preferersmdba abstract additive operatey. This framework, based on the synthesis

problems that can be modelled as soft CSPs. Recently, we presentgrglthe existing abstract representation and algorithmic frameworks

- - om various fields [4, 22, 11, 10, 1, 21], provides a broader cove
a weaker condition [6] based on a semiring based framework foEi e of both the problem space and the inference aldorithm space
constraint-based inference (CBI) problems [5]. More specificakly, w g P P 9 pace.

reduce a CBI problem to its underlying classic CSP according to th?/vhir(e:gil E);O:lig I;f":/;::blfézge\go;k clf)r?e;:grel(ol)i(r;gDéS{ if)’fi-
weaker condition and then apply the generalized arc consistency aDs e domains for the variable§ — (A, &, ®) is a commutative
proach to general CBI problems beyond classic and soft CSPs. Ths?emiring andF is a set of constraint37 E:ach constraint is a func-
weaker condition proposed in [6] has also been relaxed to fit genet. that'maps a subset of variables fo valuesAinMore specif-
alized approximate preprocessing schemes.

ically, we useScope(f) to denote the subset of variables that is

1 Department of Computer Science, University of British Columilianada,  in the scope of the constrairft and Dx to represent the domain
email: {lechang,mack@cs.ubc.ca of variable X. Two constraint operations then are defined: (1) A
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constraintg = f1 ® fo is the combination of two constraints Input: A CBI problemP = (X,D,S,F) and its initialized junc-

fi1 and fa if Scope(g) = Scope(fi) U Scope(fz) andg(w) = tion graph representatiafi = (C, S)

F1(W scope(f1)) ® f2(W scope(ry)) fOr every value assignment Output: A Single Cluster Consistent CBI probler®’ =
of variables inScope(g); and (2) A constraing = @ f is the (X,D’,S,F)

constraint that marginalizes ot € Scope(f) from a constrain{f 1: foreachC; € C do

if Scope(g) = Scope(f) — {X} andg(w) = D, p, f(2i, W) 2. foreach X € Domain(¢c,) do

for every value assignmemt of variables inScope(g). Given a CBI 3 if REVISEX, ¢¢, ) then

problem and the two constraint operations specified above, the infer-4: foreachC; € C do

ence task is defined as computingsr (Z) = P~ ®f€F f,where 5: if X € Scope(¢c,) then

Z is a subset of variables of interest aWd= X — Z. If & of the 6: Remove all tuples i, with the value that is re-
semiringS is idempotent, the allocation task is defined as computing moved fromX

y = arg Dy & ;cr f, Wherearg is a prefix of operato®. In other 7 end if

words,arg @ is an operator that returns the arguments of¢hep- 8: end for

erator. For example, the classic CSP can be seen as a CBI problere: end if

using the commutative semirif§csp = ({FALSE TRUE}, v, A) 10: end for

to embed it into the framework. The inference task of classic CSP ig1: end for

to compute the truth value @icsr() = Vx Ajcr f and the allo-  12: ReturnP’ := P
cation task is find a complete assignment of variables that satisfies

gcBI-

Our local consistency concepts are based on this CBI framewor
and apply to CBI problems with commutative semirings that are
eliminative. A commutative semirin§ = (A, ®,®) is elimina-
tive [6] if there exists amultiplicative absorbing elementy, € A the multiplicative absorbing elementg that is equal to the addi-
(ag ® a = ag,Va € A) andag is equal to theadditive identity  tive identity elemeno for an eliminative commutative semiring, and
elemen® (0 ® a = a,Va € A). Furthermore, our approximate lo- Using<g to replace# in the following definitions.
cal consistency concepts apply to CBI problems with commutative
semirings that are eliminative and monotonic. A commutative semir-, . . . .
ing S = (A, ®,®) is monotonid6] if there exists a total ordex g 3.1 Smgl.e' Dlre.Ctlonal and Neighborhood Cluster
on A, the additive identity elemertt is the minimum element w.r.t. Consistencies

<s,as<sbimpliesa@cssb®canda®c<sb®c,Va,b,c € A.FOr  1he fyndamental concept of local consistency for an initialized junc-
example, Weighted CSPs can be embedded into the CBI framewoli,, graph of a CBI problem with an eliminative commutative semir-
using the semirin@wosp = (N, min, +). Because the multiplica- i s single cluster consistencylere we consider only the local

tive absorbing element of the semiringSwcsp is equal to the  straints attached to a single cluster and do not consider the effects
additive identity elemen that is equal tetco, Swcsp is elimina- of other clusters. Formally:

tive. Also we can show th&@wcsp is monotonic. More details on
eliminative and monotonic semirings can be found in [6].

Eigure 1. Single cluster consistency enforcing algorithBCC-Enforcing

. ” Definition 1 (Single Cluster Consistency (SCC))A cluster C; of
A junction graph 7 = (C,5) of a CBI problemP = . "iyialized junction graph is locally consistent WX
(X,D,S,F)is deflned_ as followsC = {C1, - ‘_’C"} IS a ;et of Scope(¢pc,), Ve € Dx, 3w, a value assignment of variables
clusters, each clust€r; is an aggregation of variables that is a sub- Scope(de, ) st.éc, (z,w) # as. An initialized junction graph
i) =X 2O .

set of X and has attached initially a local constraint; with null ¢ o g problem is Single Cluster Consistent if all the clusters are
scope andl as the default constraint value or codtié the iden- consistent

tity element for®); S = {S:;|C;,C; € C} is a set of separators
betweenC; andC; if C; N C; # 0 andS;; is an aggregation of
variables that consists 6f; N C;. A junction graph satisfies the con-
dition that for any constrainf € F, there exists a cluste?; € C s.t.
Scope(f) C C;. The definition of junction graph ensures that the
subgraph induced by any variable is connected. We say a junctio
graph isinitialized if for each constrainf € F, we choose a cluster
C; s.t.Scope(f) C C; and updatesc, by ¢c, ® f 2.

Single cluster consistency covers the definition of Generalization
of Generalized Arc Consistency (GGAC) [6], which abstracts Gen-
eralized Arc Consistency (or Hyper-Arc Consistency) in constraint

rogramming. If the junction graph of a CBI problem is primal, in
ther words, there is one cluster that corresponds to exactly one con-
straint (bijection), SCC is identical to GGAC. If the junction graph
is constructed without satisfying this special structural requirement,
SCC is stronger than GGAC in general.
3 Local Consistency for CBI Problems Figure 1 shows a generalized routine for enforcing single clus-
ter consistency for an initialized junction graph of a CBI problem
We present here novel local consistency concepts for initialized juncp — (X, D, S, F) with an eliminative commutative semirir&y The
tion graphs of a CBI problem with an eliminative semiring. If the procedureREVISEDf SCC-Enforcings shown in Figure 2.
semiring used to represent a CBI problem is both eliminative and We also introduce two other local consistencies for an initialized
monotonic, it is straightforward to modify these concepts to approXjunction graph of a CBI problem that are stronger than Single Cluster
imate local consistencies using an elemerg& A to approximate  Consistency. They are Directional Cluster Consistency and Neigh-
2 Alternatively, we can keep a set of constraints inside edaster and not borhood CIUSter.ConSiStency' Effec_ts .Of O.ther clusters in the junction
initialize the potential with a combination of the consttairCombination ~ 9raph are taken into account. The distinction between these two local

of constraints can be computed along with the local congigtenforce-  consistencies is based on which clusters are selected for considera-
ment using more space-efficient methods. tion.




Input: A variable X € X and a constrainf with X € Scope(f) Input: A CBI problemP = (X,D, S, F), its initialized junction

Output: TRUEIf a value is removed from the domain &f, FALSE graph representatioy = (C,S), and a total ordering@C of
for else clusters inC
1: flag := TRUE Output: A Directional Cluster Consistent CBI proble®®’ =
2: foreachz € Dx do (X,D’,S,F")
3:  for eachvalue assignment of Scope(f)_ do 1 fori=|C|—1toldo
4: if f(z,w) # ag then 2. LetC; = OCJi
5: flag := FALSE 3 old = b
6: Break loop 4: forj=|C|toi+1do
7 end if 5: LetC; = OCJj]
8: end for 6: pc, = ¢c; @ (B¢, _s,, ¢c;)
9: if flag then 7. endfor
10: Remover from D x 8. if REVISEX, ¢¢,) then
11 ReturnTRUE 9: foreachCy, € C do
12:  endif 10: if X € Scope(éc,) then
13: end for 11: Remove all tuples inf)cj with the value that is re-
14: ReturnFALSE moved fromX
12: end if
Figure 2. ProcedurdREVISEX, f) for eliminating a domain value from a 13: en_d for
variableX according to the local constraiyft 14:  endif
15: (bci = ¢old
16: end for
Definition 2 (Directional Cluster Consistency (DCC)) Given 17: ReturnP’ := P

a total ordering of the clusters and a cluster; of an ini-
tialized junction graph. LetS;; be a separator that connects
another clusterC; to C; and L(C;) be a subset of clusters
that consist of lower order neighbor clusters @f;. Define
9i = 00, @ Q¢ evicy)(Bc,—s,, Pc;)- We sayC; is directional
consistent iVX € Scope(g:), Vx € Dx, 3w, a value assignment
of variables Scope(gi) _, S.t. gi(x,w) # ag. An initialized
junction graph of a CBI problem is Directional Cluster Consistent Input: A CBI problemP = (X, D, S, F) and its initialized junc-
given a total ordering of the clusters if all clusters of the graph are tion graph representatiafi = (C, S)

Figure 3. Directional cluster consistencipCC) enforcing algorithm.

directional consistent. Output: A Single Cluster Consistent CBI problerP’ =
(X,D’,S,F)
Definition 3 (Neighborhood Cluster Consistency (NCC))Given 1: foreachC; € C do
a cluster C; of an initialized junction graph, LetN(C;) be 20 oa == ¢c,
a subset of clusters that are neighbor clusters @f. Define 3: foreachC; € N(C;) do
9i = 9c: @ Qc,ene,)Dc,—s,, ¢c;). We sayC; is neigh- 4 bo; = dc; ® (De, _s,, ¢c;)
borhood consistent ¥X € Scope(g;), Yz € Dx, 3w, a value 5. end for o
assignment of variableScope(g:) ., s.t. gi(z,w) # ag. An 6: if REVISEX, ¢c,) then
initialized junction graph of a CBI problem is Neighborhood Cluster 7: foreachC} € C do
Consistent if all clusters are neighborhood consistent. 8: if X € Scope(¢c, ) then
9: Remove all tuples inpc; with the value that is re-
We revise the single cluster consistency enforcing algorithm in moved fromX
Figure 1 to directional cluster consistency and neighborhood clustetg: end if
consistency enforcing algorithms by updating the local poteatial 11: end for

according to the definition, as shown in Figure 3 and 4, respectivelya2:  end if

13: ¢c; = Poid

; ; : 14: end for

3.2 Approximate Local Consistencies 15 Returnp’ — P
Given a CBI problenP = (X, D, S, F), if the commutative semir-
ingS = (A, ®,®) is both eliminative and monotonic, we propose
an approximation scheme to enforce local consistency for its initial-
ized junction graph representation with a user-controlled threshold.
More specifically, we use an element A to approximate the mul-
tiplicative absorbing element, that is equal to the additive identity
element0 for an eliminative commutative semiring, and usg to
replace# in the previous local consistency definitions. The mono-[6]. Correspondingly, the proceduREVISEin Figure 2 is modified
tonic properties for both multiplicative and additive operators in ato handle approximate local consistency enforcing tasks, as shown in
monotonic semiring ensure that this approximation always returns &igure 5. All the local consistency enforcing algorithms discussed in
lower bound estimate of the inference task for a given CBI problenthe previous section then can be modified respectively.

Figure 4. Neighborhood cluster consistendy@C) enforcing algorithm.



Input: A variableX € X, a constrain{f, an element € A The junction tree representation is a special case of junction graphs
Output: TRUEIf a value is removed from the domain &f; FALSE  that satisfies the tree property. The junction tree algorithm [23] is a

if else widely studied inference algorithm in probability inference that uti-

1: flag := TRUE lizes the properties of the junction tree structure. It is also general-
2: foreachz € Dx do ized to handle constraint-based inference problems [5], based on the
3:  for eachvalue assignment of Scope(f)_ do seminal work on constraint programming [8, 26] and the latest gen-
4: if e<gf(z,w)then eral algorithmic framework [10]. Given the identical message rep-
5: flag := FALSE resentation and updating scheme in the inward phase of the junc-
6: Break loop tion tree algorithm and our directional cluster consistency enforc-
7: end if ing algorithm (with a cluster order given by the width-first traverse
8: endfor starting from the root cluster), it is straightforward to show that di-
9: if flag then rectional cluster consistency can be achieved along with the inward
10: Remover from D x message passing in the junction tree algorithm, if the junction graph
11 ReturnTRUE of a given CBI problem satisfies the junction tree properties. In this
12:  endif case, the potential reset steps (Lines 3 and 15 in Figure 3) are not
13: end for necessary if the constraint combination operators idempotent.
14: ReturnFALSE If it is not, the complement operatoy of ® should be introduced

to cancel the duplicated costs or potentials passing from the chil-
Figure 5. Procedure-REVISEX, f, €) for eliminating a domain value d.ren Of_the Ch”q cluster.s [5]. We refer regders to [12] for further
from a variableX according to the approximate thresheldf a local discussion of this technique from the semiring perspective. Analo-
constraintf. gous approaches to cancelling the double-counted information in lo-
cal consistency methods can also be found in [13, 7]. A CBI problem
. ) ) processed by such RCC-enforcingprocedure then can be solved
4 Complexities and Discussion by a search starting from the root cluster, which is a process equiva-
. . lent to outward message propagation in the junction tree algorithm.
The_worst case space complexme_s of aI_I three local consistency ®Fhis observation ensures that we can perform the message passing
forc!ng a!gorlthms are the same. Ilngar in the pumber of clqsters Irl)fjunction tree algorithms and at the same time simplify the original
the junction graph and exponential in the maximal cluster size. Th’_‘FrobIem representation according to the DCC enforcement. Perform-

wors:] caze time cotr_n|c|)l_eX|t|es_ arel Illne?r n th? S'Z\?VOf the Juncilr:) ng the message propagation and the simplification together reduces
graph and exponentialin maximal Cluster size 100. Yve compare el ., yq ime and space complexities of the junction tree algorithm.
upper bound_s _f(_)r _tlme _and space of Ioc_;al consistency enforcing al; he nature of the message passing scheme in the junction tree algo-
gorithms for initialized junction graphs in Table 1. All of them use rithm ensures that the directional cluster consistency enforcing can

the same space, though achieving Single Cluster Consistency USkg performed in parallel for clusters in different branches of the tree

the least time, followed by Directional Cluster Consistency, and theqNe plan to investigate different parallel and hybrid DCC-enforcing
Neighborhood Cluster Consistency.

techniques following the results of [26] in future work.
Loopy message propagation [19] is another widely studied ap-
Table 1. Time and space upper bound comparison among various local proximate inference approach based on the junction graph represen-
consistency enforcing algorithms for a junction graph= (C,S) of agiven  tation in probability inferences. Itis also generalized to apply to other
CBI problem, wherel = maxp,ep [Di| andk = maxc; ec |Cil- CBI problems [5] using the semiring concepts. Neighborhood cluster

See Dce NCC consistency can be achieved along with each message updating step
Time | |CJdFTT (S| +ICDdFTT (2]S| + [CNdF T in the generalized loopy message propagation. This can be achieved
Space| [C|dkt!  |C|dFt! |C|dk+1 without additional computational cost except for invalid value detec-

tion at each cluster. Similar to the junction tree algorithm, the poten-
As shown in Table 1, the upper bounds of both time and spacéial reset steps (Lines 2 and 13 in Figure 4) are not necessary if the

for achieving local consistencies using cluster consistency enforcconstraint combination operator is idempotent. If2 is not idem-

ing algorithms proposed in this paper are bounded by the maximurRotent, we can can_cel t_he duplicated co_sts or pqtentials coming from
cluster size as well as the structure of the junction graph for a givel® Same cluster via different paths by introducing the complement

CBI problem. Intuitively a simple junction graph implies large clus- ©P€ratoro of @. The time and space complexities of loopy message

ter sizes, so there is a tradeoff between the size of the graph and tR&oPagation are reduced after invalid values are removed from the

largest cluster when constructing a junction graph. Various heuristiCB! Problem following NCC enforcement. The message updating

search approaches that can be used to construct junction graphs St&P as well as NCC enforcement of the generalized loopy message

discussed in [5]. p_rc_)pagatlon can _be perforn_1ed in all clusters_ in _paralle_l, saving sig-
The space complexity of SCC can be improved using the GAC apnlflcant computational cost if parallel computing is feasible.

proaches for global constraints such as in [2] and [24] for constrain

networks. 'I_'he basic idea is not to initiglize with a c_ombination ofg Experimental Results

the constraints that are allocated to a single cluster into a large con-

straint, but to keep a set of constraints inside each cluster. When wé/e discuss in this section experimental results of applying the local

need to compute a combination of constraints during SCC enforcingzonsistency enforcing algorithms proposed in this paper to the junc-

we only need to compute new tuples that are not marked as deletetion graph representation of Weighted CSP and Probability Assess-

The same approach can also be applied to DCC and NCC enforcingient that can be modelled as CBI problems. These preprocessing or

though the upper bounds for space will not change. filtering algorithms simplify the original problem so that inference



algorithms can then be applied with less computational complexity.
A workstation with a Pentium 4 3.0GHz CPU and 1 GB memory run- ) == ‘ ‘ ==
ning SUSE Linux 9.1 was used to run the experiments in this section.  ** L

e
o

5.1 Weighted CSP

Weighted CSP is a direct extension of MaxCSP where each value
assignment in a constraint corresponds to a non-negative integer ol
weight instead of O for legal and 1 for forbidden in MaxCSP. Two I

+

Number of Operations (%)
Average Error

constraint tuple weights are combined with arithmetic plus and the > ».: N "

goal of the inference is to find a value assignment of all variables .

that minimizes the combination of all constraints in the problem. .. S S ) i T
Weighted CSPs can be easily embedded into the semiring-based CB ¢ ¢

framework using the semirin@wcsp = (N, min,+). Because @) (b)

the multiplicative absorbing elemeaty of the semiringSwcsep is

equal to the additive identity elemedthat is equal tet-co, Swesp

is eliminative. Also we can show th8tycsp is monotonic, so both Figure 6. (a) Number of operations: the number of binary operations
the exact and approximate local consistency enforcing schemes irequired for probability assessment after using the loeaite consistency
this paper apply to Weighted CSPs. enforcing algorithms (shown as a fraction of the number reguivithout

. . . . reprocessing) as a function oénd (b) Average error: the resultant average
We study a random binary Weighted CSP with 100 variables an(grror of the marginal probability for the Insurance netwaskagunction of

200 constraints. The domain of each variable consists of 5 values.
We choose randomly a weight from 0 to 10 for each value assign-
ment of every constraint. We construct junction graphs through reeombination of the CPDs using the arithmetic product. The prob-
stricting the maximum cluster size from 2 to 4. Then we apply SCC ability assessment problem computes the posterior marginal prob-
DCC and NCC enforcing algorithms to preprocess this Weightedability of a subset of variables, given values for some variables as
CSP with various that approximate the multiplicative absorbing el- known evidence. The probability assessment problem can be repre-
ementag = oo. The efficiency of the preprocessing algorithms is sented as a CBI problem using the commutative semBisigos =
characterized as the average variable domain size. We show the ef®* U {0}, +, x). It is easy to show thaig, = 0 = 0 in Spros
perimental results in Table 2. For the purpose of comparison, we noand Spror iS monotonic that both the exact and approximate lo-
malize the local constraint at each cluster before performing invaliccal consistency enforcing schemes in this paper apply to probability
value detection. Given these experimental results, we conclude: (Bssessment problems.
For all of these approximate local cluster consistency enforcing algo- The Bayesian network used here is the Insurance network from
rithms, the closet is to the exact multiplicative absorbing element the Bayesian Network Repository [9]. The network has 27 variables
ag = oo, the fewer domain values are eliminated during the prepro-and 27 non-binary constraints (CPDs). In our experiments, we ran-
cessing. (2) The preprocessing time for each local cluster consistenclomly choose one variable as observed. The approximate local clus-
enforcing algorithm is affected by the structure of the junction graphter consistency enforcing algorithms are used to preprocess the prob-
but it does not change monotonically with the maximal cluster sizelem based on a junction graph representation with the maximal clus-
(3) In sequential computing schemes, SCC uses the least preprocesar size of 5. The junction tree algorithm in Lauritzen-Spiegelhalter
ing time, followed by DCC and then NCC. The time used by DCC architecture [15] is used to infer the marginal probability of every
or NCC can be reduced if parallel computing is introduced. (4) DCCunobserved variable. We compare the number of binary operations
has the strongest preprocessing ability due to its “global” propertyrequired for probability assessment after using the preprocessing al-
In other words, message passing from lower order clusters contairgorithms (shown as a fraction of the number required without pre-
information from clusters that are lower than them. NCC with oneprocessing) and the resultant error of the marginal probability for the
step message updating is slightly better than SCC in that a clusténsurance network as a function efn Figure 6. At each value of
in NCC collects information from all its immediate neighbors. If we ¢, we collect data for 5 runs. It is clear thatontrols the tradeoff
perform several steps (3 in our experiments) of message updatingf the precision and the speed of the inference. DCC and NCC have
more values are removed. stronger ability to speed up the inference but introduce more errors
than SCC, so they are more sensitive to the selection of the approxi-

5.2 Probability Assessment mation threshold.

Probability infergnce prop!ems can belseen. as co.nstraint-based i@)— Conclusion

ference by treating conditional probability distributions (CPDs) as

soft constraints over variables. A Bayesian network (BN) [20] is aAs the first contribution of this paper we propose a family of novel
graphical representation for probability inference under conditiongyeneralized local consistency concepts for the junction graph repre-
of uncertainty. BN is defined as a directed acyclic graph (DAG)sentation of CBI problems. These concepts apply to a broader cov-

where verticeX = {X;,---, X,,} denoten random variables and erage of inference problems from various fields based only on the
directed edges denote causal influences between varidbles: general condition that depends on the properties of semirings that
{D:,---,Dy,} is a collection of finite domains for the variables. A are used to abstract these problems. Second, we present ses@iral lo
set of conditional probability distributior®® = {f1,---, f»}, where  consistency enforcing algorithms, including single, directional and
fi = P(X;|Parents(X;)) is attached to each variable (vertex). neighborhood cluster consistency enforcing algorithms and their cor-

The probability distribution over all the variables is given by the responding approximation variants. Third, theoretical complexities



Table 2. Average variable domain sizes for a Weighted CSP that is pcegsed

by three approximate local cluster consistencyaendoalgorithms with

different junction graph representations and differeqrapimate element. Here SCC stands for Single Cluster Consistency; DCC stand3irectional
Cluster Consistency; NCC-n stands for Neighborhood-@hu/Sbnsistency with steps of message updatirigis the size of the maximal cluster in a junction

graphJ = (C, 8). The original average domain size is 5 and we

normalize thé doeestraint at each cluster for comparison.

| I k=2 I k=3 I k=4
IC] 200 107 69
S| 1500 772 520
Max Degree 26 24 26
[ Algorithm [ SCC| DCC | NCC-1 [ NCC-3 ]| SCC| DCC | NCC-1 [ NCC-3 ] SCC| DCC | NCC-1 [ NCC-3 |
e=1 4841 240 317 [ 138 [[470] 269 [ 290 [ 144 [[ 441 294 [ 302 [ 150
e=10 5.00 | 288 | 421 | 158 | 497 | 336 | 397 | 165 || 494 351 [ 405 | 187
e=15 5.00 | 335 | 485 | 187 [ 500 405 | 479 | 202 | 498 422 [ 476 | 2.28
=25 5.00 [ 3.97 [ 500 | 236 [ 500 444 496 | 261 [ 500[ 465 | 497 | 288
€ =50 5.00 | 432 | 500 | 309 [ 500 488 | 500 | 339 [|500] 491 [ 500 | 375
e=75 5.00 | 455 | 500 | 353 [ 5.00| 494 500 [ 393 [ 500 497 [ 500 | 422
e =100 5.00 | 466 | 500 | 388 [ 5.00| 497 [ 500 | 422 [ 500 498 [ 500 | 4.46
e=125 5.00 | 477 [ 500 | 4.08 [ 500 498 [ 500 | 436 [ 500[ 499 | 5.00 | 459
e =150 5.00 | 482 | 500 | 424 [[500| 499 | 500 | 453 [ 500 500 [ 500 | 4.66
e = 200 5.00 | 490 [ 500 [ 446 [ 5.00| 500 [ 500 [ 465 || 500 500 [ 500 | 475
e = 500 5.00 | 494 [ 500 | 489 [ 500[ 500 [ 500 | 499 [[500] 500 | 5.00 | 4.92
[ Avg. Time (s) ][ 0.16 [ 16.25] 42.88 | 180.65] 2.62 | 12.72| 30.86 | 137.48] 3.55] 16.25] 43.85 [ 234.80 |

of these preprocessing or consistency enforcing algorithms are digk1]
cussed and experimental results of applying them to both MaxCSP
and probability assessment problems are given. Finally, we discuss
the relationship between these local cluster consistency concepts aﬁq]
message passing schemes such as junction tree algorithms and loopy
message propagation. We intend to study efficient approaches to
combining local cluster consistency enforcing with message pro

agation for general CBI problems in future work. [14]
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