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ABSTRACT ference, Knowledge Reuse

Open constraint programming, including open constraiat sa
isfaction (Open COP) and open constraint optimization (Ope 1. INTRODUCTION
COP), is an extended constraint programming framework Constraint programming [25] is a general and powerful para-
designed to model and solve practical problems with open- digm for modeling and solving combinatorial problems from
world settings. We extend open constraint programming to various research fields from theoretical to applied. These
the Open Constraint-Based Inference (Open CBI) framework combinatorial problems cover a wide range of disciplines
based on the unified semiring-based CBI framework. The in artificial intelligence, computer science, and operatio
Open CBI framework subsumes both Open CSP and Openresearch. The success of the constraint programming frame-
COP and also provides extensibility to cover more applica- work, with advances in constraint satisfaction, soft caists,
tion domains. Furthermore, the Open CBI framework re- and constraint logic, has already been proven in numerous
laxes the assumption of domain value being incrementally theoretical and practical problems such as combinatopial o
discovered and revealed in non-decreasing order of cost, agimization, machine vision, planning, scheduling, fautg}
required in open constraint programming. We have shown nosis, configuration, and system simulation.
that junction tree representations and junction tree élgos
can be applied to handle Open CBI problems. We show in However, there still remain many real world problems that
this paper that the junction tree representation is a deitab are difficult to represent and solve in the basic constraint
graphical model to reuse the intermediate computational re programming frameworks because of the closed-world as-
sults to subproblems. We also proposed consistency main-sumption, i.e. all variables, domains, and constraintsere
tenance algorithms for junction tree to Open CBI problems quired to be completely known and fixed from the beginning
with domain value addition and removal. We analyze and of problem modelling and solving. This assumption does
show that both answering the satisfiability or the optimal not always hold in real application scenarios: a user posts
weight of the problem and finding total assignment of vari- New constraints to or removes existing constraints from the
ables can be achieved in time that is linear in the size of problem in the middle of problem solving; new options that
the junction tree, which is fractionally smaller than theei are modelled as domain values of a variable in constraint
needed to enforce the junction tree consistency from deratc programming become available or unavailable because of
We also discuss directions of future research in applying some external events; it is neither feasible nor efficient to
graphical models to problems with open-world settings. retrieve all of a huge number of possible options from differ
ent remote sites, e.g. flight information residing in diéfier

General Terms database servers of different airline companies.

Algorithms, Theory The limitation of the closed-world assumption for consttai

programming frameworks has drawn more and more atten-

Keywords tions from research communities. Open constraint program-

Open Constraint Satisfaction, Open Constraint Optimirati  ming [12], including open constraint satisfaction (OperP¢S

Junction Tree, Inference Algorithms, Constraint-Based In and open constraint optimization (Open COP), is an extended
framework to model and solve practical applications with
open-world settings. Many of these applications are ieshir
by the increasing use of the Internet, for example, locat-
ing additional suppliers for supply chain management,{ook
ing for additional bidders for online bidding applications
or planning trips according to online information search en
gines.

Copyright ACM ..$5.00 Most approaches to open constraint programming are based



on backtrack search. Unsolvable failures in Open CSP andlems (SAT), decoding problems, and possibility inferences
over-threshold weights in Open COP are used to trigger the

acquisition of new values from variables with open domains. A CBI problem is defined in terms of a set of variables with
Two sound and complete search algorithoisearchandfo- values in finite domains and a set of constraints on these vari
searchwere proposed in [12] for Open CSPs. By assuming ables. We use commutative semirings to unify the represen-
that domain values of a variable in Open COP are always tation of constraint-based inference problems from variou
revealed in a decreasing order of preference, two backtrackdisciplines into a single formal framework [4], based on the
search based algorithms for possibilistic and weightedOpe synthesis of the existing generalized representationdram
COP were proposed as well in [12]. They are proven to be works [3, 26, 16] and algorithmic frameworks [10, 14, 1]
sound and complete and produce an optimal solution with from different fields. Formally:

the minimal number of queries. Recently, dynamical pro-

gramming based approaches, such as DPOP [23] and ODPOP

[24], have been applied to solve open constraint program-
ming problems with good success.

DEFINITION 1. (Constraint-Based Inference Problem) A
constraint-based inference (CBI) probld®is a tuple(X, D,
S, F) where:
As a fundamental approach in classic constraint program-
ming, backtrack search has been already shown in many
application domains that has advantages for solving large
scale problems with limited space resources. Inference ap-
proaches, including arc consistency [19] and other locad co
sistency algorithms, also play an important role in classic
constraint programming. They are used individually or in-
tegrated with search algorithms to accelerate the seath an
improve the flexibility of answering multiple queries by sing
the computational results. We have shown that constraint
satisfaction and probabilistic inference can be seen as spe
cial cases of the constraint-based inference (CBI) framiewo
[4]. Junction tree algorithms in probabilistic inferen@¥ |

18, 13], constraint satisfaction [11, 28], and informatibe- Inference in a CBI problem corresponds to computing a new
ory [1] can all be generalized with the CBI framework as an constraint over a subset of variables given existing cairgs.
exact inference algorithm. Junction tree algorithms can be
seen as memorized dynamic programming [8], where solu- The definition of the CBI framework is based on the com-
tions for subproblems are memorized for later use. A junc- mutative semiring concept. A commutative semirfig=
tion tree is a structure that efficiently divides the origina (A, @, ®) consists a seA and two binary operations, ad-
problem into subproblems. These properties of junctiom tre dition & and multiplication®, which apply to the seA.
algorithms make it suitable in open constraint programming Both addition and multiplication operations have assoaat
especially when the solver cannot receive new domain val- and commutative properties and have identity elements in
ues from variables in its preferred order or variables canno A. Most important, the multiplication operation has the dis-
reveal their top choices because of limited resource or pri- tributivity property over the addition operation in a commu
vacy concerns. We show in this paper that the junction tree tative semiring.
is an ideal graphical model to re-organize open constraint
programming problems that facilitates the knowledge reuse More specifically, we usé&cope(f) to denote the subset of
in solving these problems. variables that is in the scope of the constrgintVe useD x

to denote the value domain of a variable In the following
2. BACKGROUND sections, we use bold letters to denote sets of elements and
2.1 Constraint-Based Inference

regular letters to denote individual elements. Given a-vari
Constraint-Based Inference (CBI) is an umbrella term for ableX € Scope(f), Scope(f)—x denotes the variable sub-
various superficially different problems. It concerns the a  setScope(f) \ {X}. Given a value assignmestof variable
tomatic discovery of new constraints from a set of given

subsetX andY C X, x|y denotes the value assignment
constraints over individual entities. New constraintseayv

projection ofx onto the variable subs&f. Then we define
undiscovered properties about a set of entities. A comstrai the two basic constraint operators as follows.
here is seen as a function that maps possible value assign-
ments to a specific value domain. Many practical problems o ]
from different fields can be seen as constraint-based infer- DEFINITION 2. (The Combination of Two Constraints)

ence problems. These problems cover a wide range of top-1he combination of two constrainfs and f; is a new con-

e X ={Xy,---,X,}Iisasetof variables

e D ={Dy, --,D,}is acollection of finite domains,
one for each variable

e S=(A,®,®)is acommutative semiring
e F = {f1,---, [} is a set of constraints. Each con-

straint is a function that maps value assignments of a
subset of variables to values i

ics in computer science research, including probabilistic
ferences, decision-making under uncertainty, consteaitit
isfaction problems (CSP), propositional satisfiabilitylpr

straintg = f1® f2, whereScope(g) = Scope( f1)UScope( f2)

andg(w) _: fl (WlScope(fl)) ® ._fZ(WlScopE(fz)) for every
value assignment of variables inScope(g).



DerINITION 3. (The Marginalization of a Constraint) The
marginalization ofX from a constraintf, whereX € Scope(f),
is a new constraing = @  f, whereScope(g) = Scope(f)_x
andg(w) = @,,cp, f(zi, w) for every value assignment
w of variables inScope(g).

According to the definitions of the CBI problem and the ba-
sic constraint operators, we define the abstract inferemte a
allocation tasks for a CBI problem.

DEFINITION 4. (The Inference Task for a CBI Problem)
Given a subset of variableg = {7;,--- ,Z;} C X, let
Y = X\ Z, the inference task for a CBI probleid =
(X,D,S, F) is defined as computing:

gop1(Z) =P Q) f

Y feF

1)

Given a CBI problenP = (X, D, S, F), if @ is idempotent,
we can define the allocation task for a CBI problem.

DEFINITION 5. (The Allocation Task for a CBI Problem)
Given a subset of variableg = {Z;,--- ,Z;} C X, let
Y = X\ Z, the allocation task for a CBI problel® =
(X,D,S,F) is to find a value assignment for the marginal-
ized variablesy’, which leads to the result of the correspond-
ing inference taskc(Z). Formally, we compute:

y=agP f

Y feF

(@)

wherearg is a prefix of operators. In other wordsarg &
is an operator that returns arguments of tiseoperator. For
example, whem = max, arg & = arg max that returns a

value assignment that leads to the maximal possible element

inS.

In general,® is a combination operator in CBI problems

that combines a set of constraints into a constraint with a

larger scopeidy = @x\z IS @ marginalization operator
that projects a constraint over the scadfeinto its subset

2.2 Junction Tree for CBI

In many cases, we can use graphical models to represent
CBI problems. A widely studied and used graphical rep-
resentation is primal graph. The primal graph representa-
tion of a CBI problem is an undirected gragh= (V, &),
whereV = {V,---,V,} is a set of vertices, each vertex
V; corresponding to a variabl¥; of the CBI problem; and

& ={(V;,V;)|Vi,V; € V} is a set of edges betweéh and

V;. There exists an eddd’;, V;) if and only if correspond-

ing variablesX; and.X; appear in the scope of the same con-
straint. A moralized graph of the Bayesian Network (BN),
which is obtained by adding edges among vertices with the
common child vertex in the corresponding BN, is an exam-
ple of the primal graph representation of probabilistieimnf
ence problems. A constraint graph of a binary CSP is an-
other example of the primal graph representation.

ExamMPLE 1. Consider a constraint-based inference prob-
lem with 5 variablesV;,--- V5, V; € {0,1}. There are
3 constraints defined over these variable§:(V7, V5, V3),
fa(Va, V5, Vy) and f3(Vs, Vi), which specify the set of tu-
ples permitted by these constraints, respectively. An-infe
ence task in this example is to discover tuples permitted by
the derived constraint ovar; and V3.

Given the CBI problem described in Example 1, the corre-
sponding primal graph is shown in Figure 1(a).
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Figure 1: Graphical Representations of an CBI Problem
described in Example 1. (a) Primal graph (b) Junction

Z, through enumerating all possible value assignments of tree

Y =X\Z.

Many CBI problems from different disciplines can be em- Sometimes the primal graph of a CBlI problemis re-organized
bedded into our semiring-based unifying framework [4]. §he @S & secondary structure to achieve better computational ef
problems include the decision task and allocation task of ficiency. The junction tree is a widely used secondary struc-
CSP and SAT, Max SAT and Max CSP, Fuzzy CSP, Weighted ture in graphical models, especially in probabilistic @as
CSP, probability assessment, most probable explanati®feg Ng- A junction tree is an undirected grafh= (C,S). C =
dynamic Bayesian networks (DBN), possibility inferencéwi  {C1.- -+ ; Cn} is a set of clusters, where each clustercor-
varioust-norms, and maximum likelihood decoding. More reésponds to an aggregation of a subset of verfiéesC V
specifically, we use the commutative semiririssp = : s Sim } 1S
({FALSE TRUE}, V, A), Swesp = (R* U {0}, min, +), a set of separators between clusters,. witgres the sepa-
Spocsp = ([0, 1], min, max), andSprcsp = ([0, 1], max, x) rator of clusters’; andC}, corresponding to the vertices of
to represent classic CSP, Weighted CSP, Possibility C8P, an 1y this paper, we sometimes use the same letter to represent a vari-
Probabilistic CSP, respectively, in the CBI framework. able and its corresponding vertex if not specified.




Ve, NVe,. In addition, the following junction tree properties
have to be satisfied:

1. Singly connected property = (C,S) is a tree;

2. Running intersection propertyvC;,C; € C, Vg, N
Ve, € Vg, holds for any cluster’;, on the path be-
tweenC; andCj;

3. Constraint allocation propertyFor any constrainf of
the CBI problem3C; € C s.t. Scope(f) C C;.

Given the CBI problem described in Example 1, the cor-

primal graph representation through triangulating thengti
graph. It is known that finding the optimal junction tree, in
other words, finding minimal treewidth, j&P-hard [2] in
general. Several heuristic triangulation algorithms ase d
cussed in [4] to construct sub-optimal junction tree indine
time. Details of heuristic triangulation algorithms aneith
empirical evaluations can be found in [15].

3. OPEN CONSTRAINT PROGRAMMING

AS CONSTRAINT BASED INFERENCE
We extend the definition of both Open CSP and Open COP
[12] and generalize them into the Constraint-Based Infer-
ence (CBI) framework using the semiring concept as fol-

responding junction tree representation is shown in Figure loWs:

1(b).

Typically a junction tree is undirected. In some computa-

DEFINITION 6. (Open Constraint-Based Inference) An open
constraint-based inference (Open CBI) problem is a possi-

tional schemes, we pick one cluster as the root of the tré€ply unbounded and ordered s’ BI(0), CBI(1),- -} of

and assign directions to all separators. A separdfpr=
(Ci, C;) has a direction fronT; to C; if C; is in the path
from the root toC;. For each cluste€;, Parent(C;) de-
notes the cluster that points @;; Child(C;) denotes the
set of clusters thaf’; points to. Given an arbitrary variable
X, and its corresponding vertéX, Theorem 1 shows that
the subgraph of = (C, S) induced byX; (or ;) is a tree.
This property is important to use junction tree in maintain-
ing knowledge of open constraint programming problems.
For any clustelC; € C of a junction treeT = (C,S), the
subgraph including’; and all clusters that is lower thap;

and separators between them consist a tree as well. We call

it subtree rooted atC;.

THEOREM 1. Given a junction tree7 = (C,S), con-
structed from a primal graply = (V,€) and a vertexy'.
Let 7y, = (Cy,Sy), whereCy, is a subset of clusters that
containV andSy is a subset of separators that connect any
two clusters inCy,. Then7y, is also a tree. We cally, the
subtreeinduced by V.

PrROOE GivenT = (C,S) is a tree, any connected sub-
graph of7 is also a tree. We then prove thAt is connected
by contradiction. Assume th&t; andC; are two clusters
that containl” and not connected, then there must be a clus-
ter Cj; in the path between’; andC; and does not contain
V, otherwiseC; and C; are connected. The existence of
C in the path between’; andC; is a contradiction to the
running intersection property of junction tree.]

Thewidth of a junction tree isnax.cc|X.|—1. Thetreewidth
of the primal graplg; for a CBI problem, denoted by*(G),

constraint-based inference problems, whér8I(i) is de-
fined by a tupléX, D(i), S, F(i)) where:

e X ={Xy, - -,X,}Iisaset ofn variables

e D(i) = {D1(4),--- ,Dn(i)} is a set of discrete do-
mains forC BI (i)

e S=(A,®,®)Iis acommutative semiring

e F(i)={f1(3), -, f-(i)} isasetof constraints. Each
constraint f;.(¢) is a function that mapsurrent do-
main value combination of variables in its scope to
values inA

We assume that for ayBI (i) andC BI(i+1), there exists
ak e {1,---,n}, such that eitheDy (i) C Dx(i + 1) or
Dy (i + 1) C Dg(¢),and foralll € {1,--- ,n} andl # k,
D;(i) = Di(i + 1). In other words, we assume each time
only one variable reveals to or retracts from the solver some
of its domain values. All the domains of the other variables
remain the same.

The solution to an Open CBI problem is such that for each
CBI(i) in the sequence, compute:

x(i) = arg@ ® f

X feF()

©)

The Open CBI framework is different from the open con-
straint programming framework in the following aspects: (1

it integrates Open COP, Open CSP, and probability reason-
ing problems, such as MPE (most probable explanation) that
maximizes the joint probability distribution, into a unifie

is the minimum width over all possible junction tree rep- Open CBI framework; (2) domain values are not only in-
resentations. Treewidth is a key parameter in junction tree crementally discovered in Open CBI, variables can remove
based algorithms because both the time and space complexalready discovered domain values from the problem; (3) the
ities of junction tree algorithms are polynomial in the size variable owners (not necessarily the same as the solver) de-
of the junction tree, with a constant factor exponentiahiet  cide to report domain value changes; (4) variables do not al-
treewidth. The junction tree is usually constructed from th ways reveal domain values in non-decreasing order of cost,



the computation goal is now to report the satisfiable or op- COROLLARY 2. Open Weighted COP is a special case of
timal assignment according to the solver's representatfion  Open CBI, if semirind3 = ([0, o), min, +) and the func-
the world at the current time. tion setF(i) consists of two parts: (1) a subset of non-unary
functions that map consistent tuples to 0 and inconsistent
tuples tooco, and (2) a subset of unary functions that map

THEOREM 2. If domain values are incrementally discov- . ) .
domain values of variables to corresponding costs.

ered, i.e. no value is removed from its domain once revealed
andS = ({FALSE TRUE}, Vv, A}, then the solutior(i)to

CBI(i) is also the solution ta’BI(j), for all j > i. Theorem 2 and Theorem 3 claim that original open con-

straint programming [12] is a proper subset of the proposed
PROOF. S = ({FALSE TRUE}, v, A), then eaclC B1 (i) Open CBI framework. If the assumptions of open constraint
in the sequence is a standard CSP. A solutio@’f®/ (i) is programming hold in the Open CBI settings, the existing ap-
then a satisfiable assignment to the correspon@if@(i). proaches for open constraint programming work as well for
Because domain values are incrementally discovered,@llow Open CBI problems.
tuples for each constraint are incrementally discovered as

well. For arbitrary; > i, each constraint ii’SP(j) con- 4. JUNCTION TREE FOR OPEN CBI
tains the allowed tuples appear in the corresponding con-The major challenge raised in the Open CBI framework is to

straintinC'SP(i). The projection of the solution i6"'S P(i) compute in a timely fashion the satisfiable or optimal solu-

to each constraint is an allowed tuplelf$ P(i), soitisalso  jon under the change of domain values and constraint tuples
allowed inC'SP(j). Itimplies that a solutiox(i)to C'B1 (i) How to efficiently organize, reuse and maintain the knowl-

is also a solution t&'BI(j), forall j >i. O edge is the key issue facing this challenge.

Theorem 2 indicates that if domain values are incrementally In the Open CBI framework, domain values of variables are

discovered, then the Open CSP is a special case of the Opefievealed to and removed from the problem solver. Mean-
CBI. while, constraint tuples that includes the changing values

are added to and removed from constraints with that vari-

) o able in their scopes. However, the variables and constraint
THEOREM 3. Open Constraint Optimization Problem (OpeRyre assumed to be completely known beforehand and will

COP) is a special case of Open CBI if supplied with appro- ot change during the problem solving for a Open CBI prob-
priate semirings and composition of functions. lem. In other words, we assume that in the Open CBI frame-
work, the structure of the problem remain unchanged. It
PROOF. Given Definition 2 in [12], a Open COP is atu-  provides possibilities that we can re-organize the strectu
ple(X, C,D(i),R, W(i)), whereX andD(i) are variables  of the problem to cope with challenges raised in the open-
and their domain at a specific time, which is the same as in world settings.
the definition of Open CBI.
Junction tree is known as a secondary structure graphical
The difference between Open COP and Open CBl is then inmodel used to maintain intermediate computational results
the description of crisp and soft constraints. In Open COP, for subproblems and to answer multiple queries in proba-
C is a set of constraints aridl is a set of relations that cor-  bilistic reasoning with the closed-world assumption. @ive
respond to constraints. These two items can be unified asthat probabilistic reasoning can be seen as a special case of
a set of functiond®,. Each function inF, corresponds to  constraint-based inference, we introduce here Junctiea Tr
a constraint inC and maps tuples in the corresponding re- (JT) as a graphical model to minimize the computational ef-
lation to the minimal cost and other tuples to the maximal forts of solving individual CBI problems in the sequence of
cost. W(i) can be seen implicitly as a set of unary func- a Open CBI problem.
tionsFy (i), where each function i, () corresponds to a
variable inX (as its scope) and maps current domain val- 4.1 Construction of Junction Tree
ues of this variable to weights described Wi(s). If we Given an Open CBI probler defined a§C'BI(0), C BI(1),
restrict the function seF'(i) of a Open CBI problem to be .. 1 with ¢BI(i) = (X, D(i),S, F(i)), construction of a
Fy, U F, (i) and provide explicitly a semirin§ associated  jnction tree forP consists of three steps: (1) construction
with this problem, the definition of Open COP is identical to of 4 primal graph; (2) triangulation of the primal graph; and
the definition of Open CBI. [J (3) identifying a junction tree from the triangulated graph

COROLLARY 1. Open Possibility COP is a special case 4.1.1 Construction of Primal Graph
of Open CBI, if semirings = ([0, 1], min, max) and the It is straightforward to construct a primal graph given the
function seff'(¢) consists of two parts: (1) a subset of non- variable sefX and the constraint s@&. First we enumerate
unary functions that map consistent tuples to 0 and incensis all variables inX. For eachX; € X, add a verteX; to the
tent tuples to 1, and (2) a subset of unary functions that map vertex setV. Second we enumerate all constraint®inFor
domain values of variables to corresponding costs. eachf, € F andvX;, X, € Scope(fx), add a pai(V;, V;)



Input: A connected primal grapg = (V, &), an ordering Input: A junction tree7 = (C,S) of a CBI problem

O':(Vh"'a‘/n) (X,D,S,F)
Output: Triangulated graply; = (V, £ U &) Output: A consistent junction tree
1: foreachV € YV do 1: Attach to each clustef; a potentiakyo, = 1
2. N(V):= Neighbor(V) 2: foreach f € F do
3: end for 3:  Find a clustelC; such thatScope(f) C C;
4: & =1, 4 @o, i =do, Qf
5 fori=1toi=|V|do 5: end for
6: foreachX,Y e N(V;)and(X,Y) ¢ £EUE, do 6: ChooseC,. as the root of the tree
7: & =& U(X)Y) 7: Inward-Passing(7, C,.)
8: NX):=NX)uY andN(Y) :=NY)UX 8: Outward-Passing(Z, C;)
9: endfor
10: foreachU € N(V;) do Figure 3: Generalized junction tree consistency enforc-
11: NU)=NUO)\V; ing
12:  end for
13: end for
bining its local constraint and all the incoming messages to
Figure 2: Triangulating a primal graph, given an arbi- it. In other words, the solution can be extended using non-
trary vertex ordering backtrack search from any cluster, if the junction tree is-co
sistent.
to the edge sef. Then a primal graply = (V, &) of the Following a specified message-passing scheme, the junction
CBI problem is constructed. tree reaches consistency. For any two connected cluSters
andC}, the messages passing framto C;, m(C;, Cj), is
4.1.2 Triangulation of Primal Graph to compute and store as follows:

A graph is triangulated if every cycle of length at least four
contains a chord, that is, two non-consecutive vertices on m(Ci,Cy) == P (¢c, @ Q) m(C,Cy))
the cycle are adjacent. Triangulated graphs are also called Ci\Si; CieN;—;

chordal graphs due to the existence of a chord in every cy-
cle. The triangulated graph of gragh= (V, £) is obtained

by adding edgeg; to G such thatg; = (V,£ U &) is a
triangulated graph.

whereN;_; is the set of neighbor cluster of clustéy other
thanC; and¢c, is the combination of local constraints as-
signed to cluste€’;.

Given a junction tree representatign= (C,S) of a Open
CBI problem?P, the message-passing to reach consistency
is usually organized in two phases: inward phase and out-
ward phase. Inward and outward here is related to which
cluster is chosen as the root of the tree. The choice of root
is arbitrary and does not violate the correctness of junctio
tree algorithm. The JT enforcing algorithm is described in
Figure 3 with the procedures for inward and outward phase
message-passing shown in Figures 4 and 5, respectively.

Given an arbitrary vertex ordering= (V1,---,V,,), a pri-

mal graphg = (V, £) can be triangulated using to the proce-
dure described in Figure 2 [22]. Practically, various heuri
tics are used to find a vertex ordering that optimizes the tri-
angulation. Details of heuristic triangulation algorithiand
their empirical evaluations can be found in [15].

4.1.3 Identifying JT from Triangulated Graph
Given a triangulated graph, junction tree is constructerhfr
identifying clusters and separators from the triangulgr@@h.  The soundness and completeness of junction tree algorithms
It can be done with searching fully connected components, for probabilistic reasoning are proven in [27]. The correct
or cliques. Each clique that is not contained by another pess of generalized junction tree for CBI problems is dis-
clique is corresponding to a clustef; € C. Forany tWo  ¢yssed in [4]. Reader may notice already that the message
clustersC;, C; € C andC; N C; # 0, there is a separator  computing in the outward phase (Line 5) in Figure 5 has

Sk € §andSy = C; N C;. Then ajunction tre@ = (C, S) room for improvement. The idea here is to cache the com-
for the CBI problent? is constructed. putation result in the cluster if the combination operator

) ) supports some special properties. We discussed it in [4] and
4.2 JT Consistency Enforcing gave variant JT algorithms when is idempotent, i.e. logic
In general, junction tree algorithms assign constraintius- AND in CSP and SAT and is invertible, i.e. plus and mi-
ters (called local constraints). The local constraintscara- nus, times and divides.

bined and marginalized as a message. The message is passed

between clusters. Once all clusters receive messages fronitis known that both time and space complexities of the junc-
all the other clusters, either directly or through the fitigr tion tree consistency enforcing are|C|- d“*1), whered

of some other clusters, a partial solution that is guardrite  is the maximal domain size andis the width of a junction,

a part of a solution can be computedaaty cluster by com- with treewidth as the lower bound. A junction tree algorithm



Input: A junction tree7 = (C,S) and a root clustef’, Input: A junction tree7 = (C,S) and a root clustef’,.

1: for each C; € Child(C,) do 1: for each C; € Child(C,) do

2:  Inward-Passing(7, C;) 2. Cp:= Parent(C,)

3: C¢:=Child(C;) 31 C.:=Child(C,)

4 m(C;,C,) = @Ci\sir (pc; ® Qc,cc, m(Cl, Ci)) 4. m(C,,C;) :=

5: end for 5 Bc,s,, (90, @m(Cy, Cr) Q¢ ec,,jzi m(C), Cr))
6: Outward-Passing(, C;)
7: end for

Figure 4: Procedure Inward-Passing(’, C,.) for inward
phase message-passing
Figure 5: Procedure Outward-Passing(, C,) for out-

. . . _ ward phase message-passing
is generally seen as a linear algorithm with a constant facto

that is exponential in the treewidth. The success of junctio

tree algorithms depends on the structure of the given prob-the solution. So we only need to remove tuples that contains

lem. For the Open CBI problems discussed in this paper, theremoved values from local constraints and messages in both

near-optimal junction tree can be constructed off-lineicth  directions in7;,. Also we notice that the incoming messages

favors the junction tree algorithm if the structure of thelpr from the second part contain no informationiéfat all and

lem is loosely coupled. will not change fromC'BI(i) to CBI(i + 1). The satisfi-
ability or the optimal weight can be solely answered by the

4.3 Maintain Consistency with Domain Changes consistentT;, for CBI(i 4 1). This is can be done in a sin-

There are three reasons that make the junction tree represergle cluster of7,. To find the total assignment, however, we

tation a suitable graphical model for the Open CBI problems: need go through the whole junction tree using non-backtrack
search after making it consistent.

1. The variable that changes its domain values induces aClusters in the second part are organized in several ssbtree
subtree possibly smaller than the original junction tree. rooted at leaf clusters dF,. For each of these subtrees, in-
The satisfiability or the optimal weight can be decided ward messages from child clusters to parent clusters remain
in constant time (for value removal) or time that is lin-  the same fronC'B1(i) to CBI(i + 1). So the inward phase
ear in the size of the induced subtree (for value addi- message-passing for this subtree is not required. However,
tion). the root of the subtree, the only cluster that contding

2 For each message that needs to update. onl afractionthis subtree, is revised becauseld$ value removal. The
: . 9 P » Only outward message-passing is required to make it consistent.
of tuples with changed values needs to be either ap-

ended or removed. This is qood for speeding up the We observe that all local constraints and messages in this
P SR 9 P 9 up subtree, except the root cluster, containihm their scopes.
message updating.

It means the recursion can be terminated at the branch if we

3. Maintaining the consistency requires theoretically-ain find any unchanged outward message.

ward phase of message-passing for the subtree induced

by the changing variable and a completed outward phasd he procedure that maintains the consistency of a junction
of message-passing for the whole junction tree. How- tré€ while domain values are removed from a variable is

ever, the outward phase of message-passing can be tershown in Figure 6. The sub-procedutritward-Passing
minated at a branch once an invariant message is de-S revised based on Figure 5 with an additional unchanged
tected. message detection. It shows that determining satisfiabilit
or the optimal weight requires constant time. We can use
cluster size and number of child clusters as heuristicsdo pi
up a root clustet’,.. Enforcing the consistency requires the
time that is linear in the fractional size of the tree.

4.3.1 Consistency Maintenance with Value Removal

Given a consistent junction trée = (C, S) for CBI(i) and

a variablel’, which domain iDv (i + 1) with Dy (i+1) C

Dv (i), all clusters of the junction tree are divided into two

parts: (1) clusters that contal, which is a subtre@y, of 7 4.3.2 Consistency Maintenance with Value Addition

induced byV; and (2) clusters that do not contdif) which Given a consistent junction trée = (C, S) for CBI(i) and

is a set of subtrees @f rooted at leaf clusters of the subtree a variableV’, which domain isDv (i + 1) with Dv (i) C

7Ty induced byV'. Dv (i + 1), all clusters of the junction tree are divided into
two parts: (1) clusters that contaify which is a subtre&,

The consistency dfy, the subtree induced by, is not af- of 7 induced byV; and (2) clusters that do not contdify

fected by removing some domain values frbmThe differ- which is a set of subtrees Gf rooted at leaf clusters of the

ence betweet’BI(i + 1) andCBI(i) is that the constraint  subtree7y, induced byl.

tuples or variable assignments that contain removed values

are no longer available to be a part of the solution. Other The consistency dfy,, the subtree induced By, is affected

tuples, however, are still consistent and could partieipat by adding some domain values¥a Both inward and out-



Input:

A junction tree7 = (C,S) of aCBI(i) and Vari-
ableV with domain value removed

Output: A consistent junction tree faf'BI(i + 1)

Input: A junction tree7 =

(C,8) of aCBI(i) and Vari-
ableV with domain value added

Output: A consistent junction tree faf'BI(i + 1)

1: Let7y = (Cy, Sy) be the subtree induced by 1: Let7y = (Cy, Sy) be the subtree induced By
2: Pick a clustelC,. € Cy, as the root of botlTy,, and7T 2: Pick a clustelC,. € Cy, as the root of botlTy,, and7T
3: Remove tuples contaivi from ¢, 3: foreachC; € Cy, do
4: for each C; € Child(C,) do 4:  Updategpc, with tuples contain new values
5. Remove tuples contaili from m(C;, C,.) 5: end for
6: end for 6: Inward-Passing(Zy,, C..)
7: %Answer the satisfiability or the optimal weight 7: Y%Answer the satisfiability or the optimal weight
8: C. := Child(C,) 8: C. := Child(C,)
9: ReportP, (oc, ® Qc,ec, m(Ci, Cr)) 9: ReportP ., (¢c, ©® Qc,ec, m(Ci, Cr))
10: % Consistency enforcing 10: % Consistency enforcing
11: foreach C; € Cy, do 11: Outward-Passing(?y,, C..)
12:  Remove tuples contaili from ¢¢, 12: for each C; € Cy, andC; is a leaf cluster offy, do
13: end for 13: Let7¢, be the subtree df rooted at’;
14: for each S;; € Sy do 14:  Outward-Passing(¢;, C;)
15:  Remove tuples contaili from m(C;, C;) 15: end for

16:  Remove tuples contaivi from m(C, C;)

17: end for

18: for each C; € Cy, andC; is a leaf cluster of/y, do
19: Let7c, be the subtree df rooted at’;

20:  Outward-Passing(c¢,, C;)

21: end for

Figure 7: JT consistency maintenance while some do-
main values are added to a variable

with added values. It shows that answering the satisfigbilit
or the optimal weight requires the time that is linear in the
size of the subtree induced B¥. Enforcing the consistency
requires the time that is linear in the fractional size of the
tree.

Figure 6: JT consistency maintenance while some do-
main values are removed from a variable

ward message-passing phases are required to make it cono- CONCLUSION AND FUTURE WORK

sistent. However, for local constraints and messagés,jn ~ Open constraint programming [12], including open constrai
tuples without new values remain the same fr6tR1(i) to satisfaction (Open CSP) and open constraint optimization
CBI(i+ 1) . Only tuples contain new values are appended (Open COP), is an extended constraint programming frame-
to local constraints and message€iR(i+1). Thatmakes  Work to model and solve practical applications with open-
both inward and outward message-passing computation lesgvorld settings. It assumes that domain values are incremen-
complicated than the original procedures introduced in Fig tally discovered and the values are discovered in a striet no
ures 4 and 5. Once the inward phase is doneZigr the decreasing order of cost if optimization is in the consider-
satisfiability or the optimal weight can be solely answered ation. The open constraint programming has been proven
by the local constraint and all incoming messages of the rootto be a suitable framework to model many real world ap-
clusterC, for CBI(i + 1). Itis the same as the case of Pplication, especially those inspired by the increasingafse
value removal. Heuristics can be used here to find a goodthe Internet. The assumptions associated with the open con-
root cluster. Also, to find the total assignment, we need go Straint programming, however, impose limitations on mod-

through the whole junction tree using non-backtrack search elling some problems that fit the constraint programming
after making it consistent. paradigm and have open-world settings. For example, some

revealed domain values may become unavailable due to the
To maintain consistency for clusters in the second part, or- changing circumstances of the agent who is the owner of the
ganized in several subtrees rooted at leaf clustet&,pthe variable. The assumption of incrementally discovered do-
same operation is required as we did in the case of value re-main values does not always hold in this case. The owner of
moval. No inward phase is required for these subtrees. Onlya variable may not want to reveal its top preference values
outward phase is needed and the recursion can be terminatetp the solver because of privacy concerns or cannot reveal
at a branch if an unchanged message is detected. them because they are not available at the time of considera-

tion. In some applications, the request for new value sendin
The procedure that maintains the consistency of a junction from the solver cannot always be fulfilled. That violates the
tree while domain values are added to a variable is shownassumption of discovering values in a non-decreasing order
in Figure 7. Both the sub-procedurdsward-Passingand of cost. Also it might be the owner of variables who reports
Outward-Passing are revised based on Figure 4 and Figure value changes to the solver. In the Open CSP and Open COP,
5, respectively, with additional unchanged message detec-however, it is the solver who initials the request for new val
tion. Both of them compute and append only new tuples ues and the request is always fulfilled immediately. These



limitations inspired us proposing an Open Constraint-Base graph with smaller cluster size can be options to replace the
Inference (Open CBI) framework as an extension to Open junction tree representation. Initial work on this directi

Constraint Programming.

has been done in [4]. We can also import arc consistency

[19] and its non-binary version, generalized arc consisten
As the first contribution of this paper, the proposed Open [20, 21], as candidate inference algorithms in future work.
CBI framework is based on the unified semiring-based CBI These algorithms have been applied to CBI problems with
framework [4]. By using various semirings, the Open CBI closed-world settings and received some preliminary sscce
framework is shown to be a superset of Open COP. Also the [5, 6]. Stronger local consistencies, such as directioral a
CBI framework can be used to model open constraint pro- consistency [7], full directional arc consistency [17] and
gramming problems with both domain value discovery and istential arc consistency [9], as well as Soft Arc Consisyen
removal and non-monotonic revealing of domain values with [7] offer the potential to be integrated into the Open CBI
regard to the cost or preference. An Open CBI problem is framework. Finally, we will also investigate the possibili
modelled as a sequence of CBI problems. A CBI problem ties of combining together backtrack search and inference
changes to the next one in the sequence when a variable reapproaches.

ports the domain change to the solver. The extensibility of

the Open CBI framework is ensured by using the semiring 6. ACKNOWLEDGMENTS
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ical model to maintain knowledge and facilitate computa-

tion in the probabilistic reasoning. We have shown that the 7.

junction tree representation and junction tree algoritoars

be generalized within the CBI framework. As the second
contribution of this paper, we extend the junction tree rep-
resentation to handle Open CBI problems. We show in this
paper that the junction tree representation is a suitablgrgr

ical model to reuse the computed intermediate constraints t
subproblems. According to the definition of Open CBI, the
structure of the problem is unchanged, thus we can construct
off-line the near optimal junction tree. By using the pradd
message-passing procedures to make the junction tree con-
sistent, satisfiability or the optimal weight can be ansdere
within a local cluster and its incoming messages. Finding
out the total assignment requires going through the whole
junction tree, but it can be done using non-backtrack search
on the fly.

We also proposed a junction tree consistency maintenance
algorithm for Open CBI problems with domain value changes.
This is the third contribution of this paper. We analyze and
discuss that both determining satisfiability or the optimal
weight and finding total assignment of variables have time
complexity that is linear in the size of the junction tree in
time possibly less than the time required to enforce the con-
sistency from scratch. We are doing experiments to evaluate
the effectiveness of these algorithms based on the GCBIJ
toolkit [4] and plan to report it in subsequent work.

The junction tree algorithms, in general, are linear in the
size of junction tree. Both the time and space complexities
contain a constant factor that is exponential in the maximum
cluster size of the tree. Treewidth is the lower bound of the
width of all possible junction tree representations of a&giv
Open CBI problem. The proposed junction tree representa-
tion and algorithms are suitable for an Open CBI problem
with a tractable treewidth. For a Open CBI problem with
a large treewidth, other graphical models such as junction
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