
Knowledge Reuse for Open Constraint-Based Inference

Le Chang
Department of Computer Science

University of British Columbia
2366 Main Mall, Vancouver, BC, Canada

lechang@cs.ubc.ca

Alan K. Mackworth
Department of Computer Science

University of British Columbia
2366 Main Mall, Vancouver, BC, Canada

mack@cs.ubc.ca

ABSTRACT
Open constraint programming, including open constraint sat-
isfaction (Open COP) and open constraint optimization (Open
COP), is an extended constraint programming framework
designed to model and solve practical problems with open-
world settings. We extend open constraint programming to
the Open Constraint-Based Inference (Open CBI) framework
based on the unified semiring-based CBI framework. The
Open CBI framework subsumes both Open CSP and Open
COP and also provides extensibility to cover more applica-
tion domains. Furthermore, the Open CBI framework re-
laxes the assumption of domain value being incrementally
discovered and revealed in non-decreasing order of cost, as
required in open constraint programming. We have shown
that junction tree representations and junction tree algorithms
can be applied to handle Open CBI problems. We show in
this paper that the junction tree representation is a suitable
graphical model to reuse the intermediate computational re-
sults to subproblems. We also proposed consistency main-
tenance algorithms for junction tree to Open CBI problems
with domain value addition and removal. We analyze and
show that both answering the satisfiability or the optimal
weight of the problem and finding total assignment of vari-
ables can be achieved in time that is linear in the size of
the junction tree, which is fractionally smaller than the time
needed to enforce the junction tree consistency from scratch.
We also discuss directions of future research in applying
graphical models to problems with open-world settings.

General Terms
Algorithms, Theory

Keywords
Open Constraint Satisfaction, Open Constraint Optimization,
Junction Tree, Inference Algorithms, Constraint-Based In-

Copyright ACM ...$5.00

ference, Knowledge Reuse

1. INTRODUCTION
Constraint programming [25] is a general and powerful para-
digm for modeling and solving combinatorial problems from
various research fields from theoretical to applied. These
combinatorial problems cover a wide range of disciplines
in artificial intelligence, computer science, and operations
research. The success of the constraint programming frame-
work, with advances in constraint satisfaction, soft constraints,
and constraint logic, has already been proven in numerous
theoretical and practical problems such as combinatorial op-
timization, machine vision, planning, scheduling, fault diag-
nosis, configuration, and system simulation.

However, there still remain many real world problems that
are difficult to represent and solve in the basic constraint
programming frameworks because of the closed-world as-
sumption, i.e. all variables, domains, and constraints arere-
quired to be completely known and fixed from the beginning
of problem modelling and solving. This assumption does
not always hold in real application scenarios: a user posts
new constraints to or removes existing constraints from the
problem in the middle of problem solving; new options that
are modelled as domain values of a variable in constraint
programming become available or unavailable because of
some external events; it is neither feasible nor efficient to
retrieve all of a huge number of possible options from differ-
ent remote sites, e.g. flight information residing in different
database servers of different airline companies.

The limitation of the closed-world assumption for constraint
programming frameworks has drawn more and more atten-
tions from research communities. Open constraint program-
ming [12], including open constraint satisfaction (Open CSP)
and open constraint optimization (Open COP), is an extended
framework to model and solve practical applications with
open-world settings. Many of these applications are inspired
by the increasing use of the Internet, for example, locat-
ing additional suppliers for supply chain management, look-
ing for additional bidders for online bidding applications,
or planning trips according to online information search en-
gines.

Most approaches to open constraint programming are based

on backtrack search. Unsolvable failures in Open CSP and
over-threshold weights in Open COP are used to trigger the
acquisition of new values from variables with open domains.
Two sound and complete search algorithms,o-searchandfo-
searchwere proposed in [12] for Open CSPs. By assuming
that domain values of a variable in Open COP are always
revealed in a decreasing order of preference, two backtrack
search based algorithms for possibilistic and weighted Open
COP were proposed as well in [12]. They are proven to be
sound and complete and produce an optimal solution with
the minimal number of queries. Recently, dynamical pro-
gramming based approaches, such as DPOP [23] and ODPOP
[24], have been applied to solve open constraint program-
ming problems with good success.

As a fundamental approach in classic constraint program-
ming, backtrack search has been already shown in many
application domains that has advantages for solving large
scale problems with limited space resources. Inference ap-
proaches, including arc consistency [19] and other local con-
sistency algorithms, also play an important role in classic
constraint programming. They are used individually or in-
tegrated with search algorithms to accelerate the search and
improve the flexibility of answering multiple queries by reusing
the computational results. We have shown that constraint
satisfaction and probabilistic inference can be seen as spe-
cial cases of the constraint-based inference (CBI) framework
[4]. Junction tree algorithms in probabilistic inference [27,
18, 13], constraint satisfaction [11, 28], and informationthe-
ory [1] can all be generalized with the CBI framework as an
exact inference algorithm. Junction tree algorithms can be
seen as memorized dynamic programming [8], where solu-
tions for subproblems are memorized for later use. A junc-
tion tree is a structure that efficiently divides the original
problem into subproblems. These properties of junction tree
algorithms make it suitable in open constraint programming,
especially when the solver cannot receive new domain val-
ues from variables in its preferred order or variables cannot
reveal their top choices because of limited resource or pri-
vacy concerns. We show in this paper that the junction tree
is an ideal graphical model to re-organize open constraint
programming problems that facilitates the knowledge reuse
in solving these problems.

2. BACKGROUND
2.1 Constraint-Based Inference
Constraint-Based Inference (CBI) is an umbrella term for
various superficially different problems. It concerns the au-
tomatic discovery of new constraints from a set of given
constraints over individual entities. New constraints reveal
undiscovered properties about a set of entities. A constraint
here is seen as a function that maps possible value assign-
ments to a specific value domain. Many practical problems
from different fields can be seen as constraint-based infer-
ence problems. These problems cover a wide range of top-
ics in computer science research, including probabilisticin-
ferences, decision-making under uncertainty, constraintsat-
isfaction problems (CSP), propositional satisfiability prob-

lems (SAT), decoding problems, and possibility inferences.

A CBI problem is defined in terms of a set of variables with
values in finite domains and a set of constraints on these vari-
ables. We use commutative semirings to unify the represen-
tation of constraint-based inference problems from various
disciplines into a single formal framework [4], based on the
synthesis of the existing generalized representation frame-
works [3, 26, 16] and algorithmic frameworks [10, 14, 1]
from different fields. Formally:

DEFINITION 1. (Constraint-Based Inference Problem) A
constraint-based inference (CBI) problemP is a tuple(X,D,
S,F) where:

• X = {X1, · · · ,Xn} is a set of variables

• D = {D1, · · · ,Dn} is a collection of finite domains,
one for each variable

• S = 〈A,⊕,⊗〉 is a commutative semiring

• F = {f1, · · · , fr} is a set of constraints. Each con-
straint is a function that maps value assignments of a
subset of variables to values inA

Inference in a CBI problem corresponds to computing a new
constraint over a subset of variables given existing constraints.

The definition of the CBI framework is based on the com-
mutative semiring concept. A commutative semiringS =
〈A,⊕,⊗〉 consists a setA and two binary operations, ad-
dition ⊕ and multiplication⊗, which apply to the setA.
Both addition and multiplication operations have associative
and commutative properties and have identity elements in
A. Most important, the multiplication operation has the dis-
tributivity property over the addition operation in a commu-
tative semiring.

More specifically, we useScope(f) to denote the subset of
variables that is in the scope of the constraintf . We useDX

to denote the value domain of a variableX. In the following
sections, we use bold letters to denote sets of elements and
regular letters to denote individual elements. Given a vari-
ableX ∈ Scope(f), Scope(f)−X denotes the variable sub-
setScope(f)\{X}. Given a value assignmentx of variable
subsetX andY ⊆ X, x↓Y denotes the value assignment
projection ofx onto the variable subsetY. Then we define
the two basic constraint operators as follows.

DEFINITION 2. (The Combination of Two Constraints)
The combination of two constraintsf1 andf2 is a new con-
straintg = f1⊗f2, whereScope(g) = Scope(f1)∪Scope(f2)
and g(w) = f1(w↓Scope(f1)) ⊗ f2(w↓Scope(f2)) for every
value assignmentw of variables inScope(g).

DEFINITION 3. (The Marginalization of a Constraint) The
marginalization ofX from a constraintf , whereX ∈ Scope(f),
is a new constraintg =

⊕
X f , whereScope(g) = Scope(f)−X

andg(w) =
⊕

xi∈DX
f(xi,w) for every value assignment

w of variables inScope(g).

According to the definitions of the CBI problem and the ba-
sic constraint operators, we define the abstract inference and
allocation tasks for a CBI problem.

DEFINITION 4. (The Inference Task for a CBI Problem)
Given a subset of variablesZ = {Z1, · · · , Zt} ⊆ X, let
Y = X \ Z, the inference task for a CBI problemP =
(X,D,S,F) is defined as computing:

gCBI(Z) =
⊕

Y

⊗

f∈F

f (1)

Given a CBI problemP = (X,D,S,F), if ⊕ is idempotent,
we can define the allocation task for a CBI problem.

DEFINITION 5. (The Allocation Task for a CBI Problem)
Given a subset of variablesZ = {Z1, · · · , Zt} ⊆ X, let
Y = X \ Z, the allocation task for a CBI problemP =
(X,D,S,F) is to find a value assignment for the marginal-
ized variablesY, which leads to the result of the correspond-
ing inference taskgCBI(Z). Formally, we compute:

y = arg
⊕

Y

⊗

f∈F

f (2)

wherearg is a prefix of operator⊕. In other words,arg⊕
is an operator that returns arguments of the⊕ operator. For
example, when⊕ = max, arg⊕ = arg max that returns a
value assignment that leads to the maximal possible element
in S.

In general,⊗ is a combination operator in CBI problems
that combines a set of constraints into a constraint with a
larger scope;⊕Y = ⊕X\Z is a marginalization operator
that projects a constraint over the scopeX into its subset
Z, through enumerating all possible value assignments of
Y = X \ Z.

Many CBI problems from different disciplines can be em-
bedded into our semiring-based unifying framework [4]. These
problems include the decision task and allocation task of
CSP and SAT, Max SAT and Max CSP, Fuzzy CSP, Weighted
CSP, probability assessment, most probable explanation (MPE),
dynamic Bayesian networks (DBN), possibility inference with
varioust-norms, and maximum likelihood decoding. More
specifically, we use the commutative semiringsSCSP =
〈{FALSE, TRUE},∨,∧〉, SWCSP = 〈R+ ∪ {0},min,+〉,
SPoCSP = 〈[0, 1],min,max〉, andSPrCSP = 〈[0, 1],max,×〉
to represent classic CSP, Weighted CSP, Possibility CSP, and
Probabilistic CSP, respectively, in the CBI framework.

2.2 Junction Tree for CBI
In many cases, we can use graphical models to represent
CBI problems. A widely studied and used graphical rep-
resentation is primal graph. The primal graph representa-
tion of a CBI problem is an undirected graphG = (V, E),
whereV = {V1, · · · , Vn} is a set of vertices, each vertex
Vi corresponding to a variableXi of the CBI problem1; and
E = {(Vi, Vj)|Vi, Vj ∈ V} is a set of edges betweenVi and
Vj . There exists an edge(Vi, Vj) if and only if correspond-
ing variablesXi andXj appear in the scope of the same con-
straint. A moralized graph of the Bayesian Network (BN),
which is obtained by adding edges among vertices with the
common child vertex in the corresponding BN, is an exam-
ple of the primal graph representation of probabilistic infer-
ence problems. A constraint graph of a binary CSP is an-
other example of the primal graph representation.

EXAMPLE 1. Consider a constraint-based inference prob-
lem with 5 variablesV1, · · · , V5, Vi ∈ {0, 1}. There are
3 constraints defined over these variables:f1(V1, V2, V3),
f2(V2, V3, V4) and f3(V3, V5), which specify the set of tu-
ples permitted by these constraints, respectively. An infer-
ence task in this example is to discover tuples permitted by
the derived constraint overV2 andV3.

Given the CBI problem described in Example 1, the corre-
sponding primal graph is shown in Figure 1(a).

(b)

C
1
:{
V
1
,
V
2
,
V
3
}

C
2
:{
V
2
,
V
3
,
V
4
}
 C
3
:{
V
3
,
V
5
}

S
12
:{
V
2
,
V
3
}
 S
13
:{
V
3
}

V
1

V
5
V
4

V
3
V
2

(a)

Figure 1: Graphical Representations of an CBI Problem
described in Example 1. (a) Primal graph (b) Junction
tree

Sometimes the primal graph of a CBI problem is re-organized
as a secondary structure to achieve better computational ef-
ficiency. The junction tree is a widely used secondary struc-
ture in graphical models, especially in probabilistic reason-
ing. A junction tree is an undirected graphT = (C,S). C =
{C1, · · · , Cn} is a set of clusters, where each clusterCi cor-
responds to an aggregation of a subset of verticesVCi

⊆ V
in the primal graphG = (V, E). S = {Sij , · · · , Slm} is
a set of separators between clusters, whereSij is the sepa-
rator of clustersCi andCj , corresponding to the vertices of
1In this paper, we sometimes use the same letter to represent a vari-
able and its corresponding vertex if not specified.

VCi
∩VCj

. In addition, the following junction tree properties
have to be satisfied:

1. Singly connected property: T = (C,S) is a tree;

2. Running intersection property: ∀Ci, Cj ∈ C, VCi
∩

VCj
⊆ VCk

holds for any clusterCk on the path be-
tweenCi andCj ;

3. Constraint allocation property: For any constraintf of
the CBI problem,∃Ci ∈ C s.t.Scope(f) ⊆ Ci.

Given the CBI problem described in Example 1, the cor-
responding junction tree representation is shown in Figure
1(b).

Typically a junction tree is undirected. In some computa-
tional schemes, we pick one cluster as the root of the tree
and assign directions to all separators. A separatorSij =
(Ci, Cj) has a direction fromCi to Cj if Ci is in the path
from the root toCj . For each clusterCi, Parent(Ci) de-
notes the cluster that points toCi; Child(Ci) denotes the
set of clusters thatCi points to. Given an arbitrary variable
Xi and its corresponding vertexVi, Theorem 1 shows that
the subgraph ofT = (C,S) induced byXi (or Vi) is a tree.
This property is important to use junction tree in maintain-
ing knowledge of open constraint programming problems.
For any clusterCi ∈ C of a junction treeT = (C,S), the
subgraph includingCi and all clusters that is lower thanCi

and separators between them consist a tree as well. We call
it subtree rooted atCi.

THEOREM 1. Given a junction treeT = (C,S), con-
structed from a primal graphG = (V, E) and a vertexV .
Let TV = (CV ,SV), whereCV is a subset of clusters that
containV andSV is a subset of separators that connect any
two clusters inCV . ThenTV is also a tree. We callTV the
subtree induced by V .

PROOF. GivenT = (C,S) is a tree, any connected sub-
graph ofT is also a tree. We then prove thatTV is connected
by contradiction. Assume thatCi andCj are two clusters
that containV and not connected, then there must be a clus-
ter Ck in the path betweenCi andCj and does not contain
V , otherwiseCi and Cj are connected. The existence of
Ck in the path betweenCi andCj is a contradiction to the
running intersection property of junction tree.

Thewidth of a junction tree ismaxc∈C |Xc|−1. Thetreewidth
of the primal graphG for a CBI problem, denoted byw∗(G),
is the minimum width over all possible junction tree rep-
resentations. Treewidth is a key parameter in junction tree
based algorithms because both the time and space complex-
ities of junction tree algorithms are polynomial in the size
of the junction tree, with a constant factor exponential in the
treewidth. The junction tree is usually constructed from the

primal graph representation through triangulating the primal
graph. It is known that finding the optimal junction tree, in
other words, finding minimal treewidth, isNP-hard [2] in
general. Several heuristic triangulation algorithms are dis-
cussed in [4] to construct sub-optimal junction tree in linear
time. Details of heuristic triangulation algorithms and their
empirical evaluations can be found in [15].

3. OPEN CONSTRAINT PROGRAMMING
AS CONSTRAINT BASED INFERENCE

We extend the definition of both Open CSP and Open COP
[12] and generalize them into the Constraint-Based Infer-
ence (CBI) framework using the semiring concept as fol-
lows:

DEFINITION 6. (Open Constraint-Based Inference) An open
constraint-based inference (Open CBI) problem is a possi-
bly unbounded and ordered set{CBI(0), CBI(1), · · · } of
constraint-based inference problems, whereCBI(i) is de-
fined by a tuple(X,D(i),S,F(i)) where:

• X = {X1, · · · ,Xn} is a set ofn variables

• D(i) = {D1(i), · · · ,Dn(i)} is a set of discrete do-
mains forCBI(i)

• S = 〈A,⊕,⊗〉 is a commutative semiring

• F(i) = {f1(i), · · · , fr(i)} is a set of constraints. Each
constraintfk(i) is a function that mapscurrent do-
main value combination of variables in its scope to
values inA

We assume that for anyCBI(i) andCBI(i+1), there exists
a k ∈ {1, · · · , n}, such that eitherDk(i) ⊂ Dk(i + 1) or
Dk(i + 1) ⊂ Dk(i), and for all l ∈ {1, · · · , n} and l 6= k,
Dl(i) = Dl(i + 1). In other words, we assume each time
only one variable reveals to or retracts from the solver some
of its domain values. All the domains of the other variables
remain the same.

The solution to an Open CBI problem is such that for each
CBI(i) in the sequence, compute:

x(i) = arg
⊕

X

⊗

f∈F(i)

f (3)

The Open CBI framework is different from the open con-
straint programming framework in the following aspects: (1)
it integrates Open COP, Open CSP, and probability reason-
ing problems, such as MPE (most probable explanation) that
maximizes the joint probability distribution, into a unified
Open CBI framework; (2) domain values are not only in-
crementally discovered in Open CBI, variables can remove
already discovered domain values from the problem; (3) the
variable owners (not necessarily the same as the solver) de-
cide to report domain value changes; (4) variables do not al-
ways reveal domain values in non-decreasing order of cost,

the computation goal is now to report the satisfiable or op-
timal assignment according to the solver’s representationof
the world at the current time.

THEOREM 2. If domain values are incrementally discov-
ered, i.e. no value is removed from its domain once revealed
andS = 〈{FALSE, TRUE},∨,∧〉, then the solutionx(i)to
CBI(i) is also the solution toCBI(j), for all j > i.

PROOF. S = 〈{FALSE, TRUE},∨,∧〉, then eachCBI(i)
in the sequence is a standard CSP. A solution toCBI(i) is
then a satisfiable assignment to the correspondingCSP (i).
Because domain values are incrementally discovered, allowed
tuples for each constraint are incrementally discovered as
well. For arbitraryj > i, each constraint inCSP (j) con-
tains the allowed tuples appear in the corresponding con-
straint inCSP (i). The projection of the solution inCSP (i)
to each constraint is an allowed tuple inCSP (i), so it is also
allowed inCSP (j). It implies that a solutionx(i)toCBI(i)
is also a solution toCBI(j), for all j > i.

Theorem 2 indicates that if domain values are incrementally
discovered, then the Open CSP is a special case of the Open
CBI.

THEOREM 3. Open Constraint Optimization Problem (Open
COP) is a special case of Open CBI if supplied with appro-
priate semirings and composition of functions.

PROOF. Given Definition 2 in [12], a Open COP is a tu-
ple(X,C,D(i),R,W(i)), whereX andD(i) are variables
and their domain at a specific time, which is the same as in
the definition of Open CBI.

The difference between Open COP and Open CBI is then in
the description of crisp and soft constraints. In Open COP,
C is a set of constraints andR is a set of relations that cor-
respond to constraints. These two items can be unified as
a set of functionsFb. Each function inFb corresponds to
a constraint inC and maps tuples in the corresponding re-
lation to the minimal cost and other tuples to the maximal
cost. W(i) can be seen implicitly as a set of unary func-
tionsFu(i), where each function inFu(i) corresponds to a
variable inX (as its scope) and maps current domain val-
ues of this variable to weights described inW(i). If we
restrict the function setF(i) of a Open CBI problem to be
Fb ∪ Fu(i) and provide explicitly a semiringS associated
with this problem, the definition of Open COP is identical to
the definition of Open CBI.

COROLLARY 1. Open Possibility COP is a special case
of Open CBI, if semiringS = 〈[0, 1],min,max〉 and the
function setF(i) consists of two parts: (1) a subset of non-
unary functions that map consistent tuples to 0 and inconsis-
tent tuples to 1, and (2) a subset of unary functions that map
domain values of variables to corresponding costs.

COROLLARY 2. Open Weighted COP is a special case of
Open CBI, if semiringS = 〈[0,∞),min,+〉 and the func-
tion setF(i) consists of two parts: (1) a subset of non-unary
functions that map consistent tuples to 0 and inconsistent
tuples to∞, and (2) a subset of unary functions that map
domain values of variables to corresponding costs.

Theorem 2 and Theorem 3 claim that original open con-
straint programming [12] is a proper subset of the proposed
Open CBI framework. If the assumptions of open constraint
programming hold in the Open CBI settings, the existing ap-
proaches for open constraint programming work as well for
Open CBI problems.

4. JUNCTION TREE FOR OPEN CBI
The major challenge raised in the Open CBI framework is to
compute in a timely fashion the satisfiable or optimal solu-
tion under the change of domain values and constraint tuples.
How to efficiently organize, reuse and maintain the knowl-
edge is the key issue facing this challenge.

In the Open CBI framework, domain values of variables are
revealed to and removed from the problem solver. Mean-
while, constraint tuples that includes the changing values
are added to and removed from constraints with that vari-
able in their scopes. However, the variables and constraints
are assumed to be completely known beforehand and will
not change during the problem solving for a Open CBI prob-
lem. In other words, we assume that in the Open CBI frame-
work, the structure of the problem remain unchanged. It
provides possibilities that we can re-organize the structure
of the problem to cope with challenges raised in the open-
world settings.

Junction tree is known as a secondary structure graphical
model used to maintain intermediate computational results
for subproblems and to answer multiple queries in proba-
bilistic reasoning with the closed-world assumption. Given
that probabilistic reasoning can be seen as a special case of
constraint-based inference, we introduce here Junction Tree
(JT) as a graphical model to minimize the computational ef-
forts of solving individual CBI problems in the sequence of
a Open CBI problem.

4.1 Construction of Junction Tree
Given an Open CBI problemP defined as{CBI(0), CBI(1),
· · · } with CBI(i) = (X, D(i),S,F(i)), construction of a
junction tree forP consists of three steps: (1) construction
of a primal graph; (2) triangulation of the primal graph; and
(3) identifying a junction tree from the triangulated graph.

4.1.1 Construction of Primal Graph
It is straightforward to construct a primal graph given the
variable setX and the constraint setF. First we enumerate
all variables inX. For eachXi ∈ X, add a vertexVi to the
vertex setV. Second we enumerate all constraints inF. For
eachfk ∈ F and∀Xi,Xj ∈ Scope(fk), add a pair(Vi, Vj)

Input: A connected primal graphG = (V, E), an ordering
σ = (V1, · · · , Vn)

Output: Triangulated graphGt = (V, E ∪ Et)
1: for eachV ∈ V do
2: N(V) := Neighbor(V)
3: end for
4: Et := ∅,
5: for i = 1 to i = |V| do
6: for eachX,Y ∈ N(Vi) and(X,Y) /∈ E ∪ Et do
7: Et := Et ∪ (X,Y)
8: N(X) := N(X) ∪ Y andN(Y) := N(Y) ∪ X
9: end for

10: for eachU ∈ N(Vi) do
11: N(U) := N(U) \ Vi

12: end for
13: end for

Figure 2: Triangulating a primal graph, given an arbi-
trary vertex ordering

to the edge setE . Then a primal graphG = (V, E) of the
CBI problem is constructed.

4.1.2 Triangulation of Primal Graph
A graph is triangulated if every cycle of length at least four
contains a chord, that is, two non-consecutive vertices on
the cycle are adjacent. Triangulated graphs are also called
chordal graphs due to the existence of a chord in every cy-
cle. The triangulated graph of graphG = (V, E) is obtained
by adding edgesEt to G such thatGt = (V, E ∪ Et) is a
triangulated graph.

Given an arbitrary vertex orderingσ = (V1, · · · , Vn), a pri-
mal graphG = (V, E) can be triangulated using to the proce-
dure described in Figure 2 [22]. Practically, various heuris-
tics are used to find a vertex ordering that optimizes the tri-
angulation. Details of heuristic triangulation algorithms and
their empirical evaluations can be found in [15].

4.1.3 Identifying JT from Triangulated Graph
Given a triangulated graph, junction tree is constructed from
identifying clusters and separators from the triangulatedgraph.
It can be done with searching fully connected components,
or cliques. Each clique that is not contained by another
clique is corresponding to a clusterCi ∈ C. For any two
clustersCi, Cj ∈ C andCi ∩ Cj 6= ∅, there is a separator
Sk ∈ S andSk = Ci ∩Cj . Then a junction treeT = (C,S)
for the CBI problemP is constructed.

4.2 JT Consistency Enforcing
In general, junction tree algorithms assign constraints toclus-
ters (called local constraints). The local constraints arecom-
bined and marginalized as a message. The message is passed
between clusters. Once all clusters receive messages from
all the other clusters, either directly or through the filtering
of some other clusters, a partial solution that is guarantied to
a part of a solution can be computed atany cluster by com-

Input: A junction treeT = (C,S) of a CBI problem
(X,D,S,F)

Output: A consistent junction tree
1: Attach to each clusterCi a potentialφCi

= 1

2: for eachf ∈ F do
3: Find a clusterCi such thatScope(f) ⊆ Ci

4: φCi
:= φCi

⊗ f
5: end for
6: ChooseCr as the root of the tree
7: Inward-Passing(T , Cr)
8: Outward-Passing(T , Cr)

Figure 3: Generalized junction tree consistency enforc-
ing

bining its local constraint and all the incoming messages to
it. In other words, the solution can be extended using non-
backtrack search from any cluster, if the junction tree is con-
sistent.

Following a specified message-passing scheme, the junction
tree reaches consistency. For any two connected clustersCi

andCj , the messages passing fromCi to Cj , m(Ci, Cj), is
to compute and store as follows:

m(Ci, Cj) :=
⊕

Ci\Sij

(φCi
⊗

⊗

Cl∈Ni−j

m(Cl, Ci))

whereNi−j is the set of neighbor cluster of clusterCi other
thanCj andφCi

is the combination of local constraints as-
signed to clusterCi.

Given a junction tree representationT = (C,S) of a Open
CBI problemP, the message-passing to reach consistency
is usually organized in two phases: inward phase and out-
ward phase. Inward and outward here is related to which
cluster is chosen as the root of the tree. The choice of root
is arbitrary and does not violate the correctness of junction
tree algorithm. The JT enforcing algorithm is described in
Figure 3 with the procedures for inward and outward phase
message-passing shown in Figures 4 and 5, respectively.

The soundness and completeness of junction tree algorithms
for probabilistic reasoning are proven in [27]. The correct-
ness of generalized junction tree for CBI problems is dis-
cussed in [4]. Reader may notice already that the message
computing in the outward phase (Line 5) in Figure 5 has
room for improvement. The idea here is to cache the com-
putation result in the cluster if the combination operator⊗
supports some special properties. We discussed it in [4] and
gave variant JT algorithms when⊗ is idempotent, i.e. logic
AND in CSP and SAT and⊗ is invertible, i.e. plus and mi-
nus, times and divides.

It is known that both time and space complexities of the junc-
tion tree consistency enforcing are inO(|C| ·dw+1), whered
is the maximal domain size andw is the width of a junction,
with treewidth as the lower bound. A junction tree algorithm

Input: A junction treeT = (C,S) and a root clusterCr

1: for eachCi ∈ Child(Cr) do
2: Inward-Passing(T , Ci)
3: Cc := Child(Ci)
4: m(Ci, Cr) :=

⊕
Ci\Sir

(φCi
⊗

⊗
Cl∈Cc

m(Cl, Ci))

5: end for

Figure 4: Procedure Inward-Passing(T , Cr) for inward
phase message-passing

is generally seen as a linear algorithm with a constant factor
that is exponential in the treewidth. The success of junction
tree algorithms depends on the structure of the given prob-
lem. For the Open CBI problems discussed in this paper, the
near-optimal junction tree can be constructed off-line, which
favors the junction tree algorithm if the structure of the prob-
lem is loosely coupled.

4.3 Maintain Consistency with Domain Changes
There are three reasons that make the junction tree represen-
tation a suitable graphical model for the Open CBI problems:

1. The variable that changes its domain values induces a
subtree possibly smaller than the original junction tree.
The satisfiability or the optimal weight can be decided
in constant time (for value removal) or time that is lin-
ear in the size of the induced subtree (for value addi-
tion).

2. For each message that needs to update, only a fraction
of tuples with changed values needs to be either ap-
pended or removed. This is good for speeding up the
message updating.

3. Maintaining the consistency requires theoretically a in-
ward phase of message-passing for the subtree induced
by the changing variable and a completed outward phase
of message-passing for the whole junction tree. How-
ever, the outward phase of message-passing can be ter-
minated at a branch once an invariant message is de-
tected.

4.3.1 Consistency Maintenance with Value Removal
Given a consistent junction treeT = (C,S) for CBI(i) and
a variableV , which domain isDV(i+1) with DV(i+1) ⊂
DV(i), all clusters of the junction tree are divided into two
parts: (1) clusters that containV , which is a subtreeTV of T
induced byV ; and (2) clusters that do not containV , which
is a set of subtrees ofT rooted at leaf clusters of the subtree
TV induced byV .

The consistency ofTV , the subtree induced byV , is not af-
fected by removing some domain values fromV . The differ-
ence betweenCBI(i + 1) andCBI(i) is that the constraint
tuples or variable assignments that contain removed values
are no longer available to be a part of the solution. Other
tuples, however, are still consistent and could participate in

Input: A junction treeT = (C,S) and a root clusterCr

1: for eachCi ∈ Child(Cr) do
2: Cp := Parent(Cr)
3: Cc := Child(Cr)
4: m(Cr, Ci) :=
5:

⊕
Cr\Sir

(φCr
⊗ m(Cp, Cr)

⊗
Cj∈Cc,j 6=i m(Cj , Cr))

6: Outward-Passing(T , Ci)
7: end for

Figure 5: Procedure Outward-Passing(T , Cr) for out-
ward phase message-passing

the solution. So we only need to remove tuples that contains
removed values from local constraints and messages in both
directions inTV . Also we notice that the incoming messages
from the second part contain no information ofV at all and
will not change fromCBI(i) to CBI(i + 1). The satisfi-
ability or the optimal weight can be solely answered by the
consistentTV for CBI(i + 1). This is can be done in a sin-
gle cluster ofTV . To find the total assignment, however, we
need go through the whole junction tree using non-backtrack
search after making it consistent.

Clusters in the second part are organized in several subtrees
rooted at leaf clusters ofTV . For each of these subtrees, in-
ward messages from child clusters to parent clusters remain
the same fromCBI(i) to CBI(i + 1). So the inward phase
message-passing for this subtree is not required. However,
the root of the subtree, the only cluster that containsV in
this subtree, is revised because ofV ’s value removal. The
outward message-passing is required to make it consistent.
We observe that all local constraints and messages in this
subtree, except the root cluster, contain noV in their scopes.
It means the recursion can be terminated at the branch if we
find any unchanged outward message.

The procedure that maintains the consistency of a junction
tree while domain values are removed from a variable is
shown in Figure 6. The sub-procedureOutward-Passing
is revised based on Figure 5 with an additional unchanged
message detection. It shows that determining satisfiability
or the optimal weight requires constant time. We can use
cluster size and number of child clusters as heuristics to pick
up a root clusterCr. Enforcing the consistency requires the
time that is linear in the fractional size of the tree.

4.3.2 Consistency Maintenance with Value Addition
Given a consistent junction treeT = (C,S) for CBI(i) and
a variableV , which domain isDV(i + 1) with DV(i) ⊂
DV(i + 1), all clusters of the junction tree are divided into
two parts: (1) clusters that containV , which is a subtreeTV
of T induced byV ; and (2) clusters that do not containV ,
which is a set of subtrees ofT rooted at leaf clusters of the
subtreeTV induced byV .

The consistency ofTV , the subtree induced byV , is affected
by adding some domain values toV . Both inward and out-

Input: A junction treeT = (C,S) of a CBI(i) and Vari-
ableV with domain value removed

Output: A consistent junction tree forCBI(i + 1)
1: Let TV = (CV ,SV) be the subtree induced byV
2: Pick a clusterCr ∈ CV as the root of bothTV andT
3: Remove tuples containV from φCr

4: for eachCi ∈ Child(Cr) do
5: Remove tuples containV from m(Ci, Cr)
6: end for
7: %Answer the satisfiability or the optimal weight
8: Cc := Child(Cr)
9: Report

⊕
Cr

(φCr
⊗

⊗
Ci∈Cc

m(Ci, Cr))
10: % Consistency enforcing
11: for eachCi ∈ CV do
12: Remove tuples containV from φCr

13: end for
14: for eachSij ∈ SV do
15: Remove tuples containV from m(Ci, Cj)
16: Remove tuples containV from m(Cj , Ci)
17: end for
18: for eachCi ∈ CV andCi is a leaf cluster ofTV do
19: Let TCi

be the subtree ofT rooted atCi

20: Outward-Passing(TCi
, Ci)

21: end for

Figure 6: JT consistency maintenance while some do-
main values are removed from a variable

ward message-passing phases are required to make it con-
sistent. However, for local constraints and messages inTV ,
tuples without new values remain the same fromCBI(i) to
CBI(i + 1) . Only tuples contain new values are appended
to local constraints and messages inCBI(i+1). That makes
both inward and outward message-passing computation less
complicated than the original procedures introduced in Fig-
ures 4 and 5. Once the inward phase is done forTV , the
satisfiability or the optimal weight can be solely answered
by the local constraint and all incoming messages of the root
clusterCr for CBI(i + 1). It is the same as the case of
value removal. Heuristics can be used here to find a good
root cluster. Also, to find the total assignment, we need go
through the whole junction tree using non-backtrack search
after making it consistent.

To maintain consistency for clusters in the second part, or-
ganized in several subtrees rooted at leaf clusters ofTV , the
same operation is required as we did in the case of value re-
moval. No inward phase is required for these subtrees. Only
outward phase is needed and the recursion can be terminated
at a branch if an unchanged message is detected.

The procedure that maintains the consistency of a junction
tree while domain values are added to a variable is shown
in Figure 7. Both the sub-procedures,Inward-Passingand
Outward-Passing, are revised based on Figure 4 and Figure
5, respectively, with additional unchanged message detec-
tion. Both of them compute and append only new tuples

Input: A junction treeT = (C,S) of a CBI(i) and Vari-
ableV with domain value added

Output: A consistent junction tree forCBI(i + 1)
1: Let TV = (CV ,SV) be the subtree induced byV
2: Pick a clusterCr ∈ CV as the root of bothTV andT
3: for eachCi ∈ CV do
4: UpdateφCi

with tuples contain new values
5: end for
6: Inward-Passing(TV , Cr)
7: %Answer the satisfiability or the optimal weight
8: Cc := Child(Cr)
9: Report

⊕
Cr

(φCr
⊗

⊗
Ci∈Cc

m(Ci, Cr))
10: % Consistency enforcing
11: Outward-Passing(TV , Cr)
12: for eachCi ∈ CV andCi is a leaf cluster ofTV do
13: Let TCi

be the subtree ofT rooted atCi

14: Outward-Passing(TCi
, Ci)

15: end for

Figure 7: JT consistency maintenance while some do-
main values are added to a variable

with added values. It shows that answering the satisfiability
or the optimal weight requires the time that is linear in the
size of the subtree induced byV . Enforcing the consistency
requires the time that is linear in the fractional size of the
tree.

5. CONCLUSION AND FUTURE WORK
Open constraint programming [12], including open constraint
satisfaction (Open CSP) and open constraint optimization
(Open COP), is an extended constraint programming frame-
work to model and solve practical applications with open-
world settings. It assumes that domain values are incremen-
tally discovered and the values are discovered in a strict non-
decreasing order of cost if optimization is in the consider-
ation. The open constraint programming has been proven
to be a suitable framework to model many real world ap-
plication, especially those inspired by the increasing useof
the Internet. The assumptions associated with the open con-
straint programming, however, impose limitations on mod-
elling some problems that fit the constraint programming
paradigm and have open-world settings. For example, some
revealed domain values may become unavailable due to the
changing circumstances of the agent who is the owner of the
variable. The assumption of incrementally discovered do-
main values does not always hold in this case. The owner of
a variable may not want to reveal its top preference values
to the solver because of privacy concerns or cannot reveal
them because they are not available at the time of considera-
tion. In some applications, the request for new value sending
from the solver cannot always be fulfilled. That violates the
assumption of discovering values in a non-decreasing order
of cost. Also it might be the owner of variables who reports
value changes to the solver. In the Open CSP and Open COP,
however, it is the solver who initials the request for new val-
ues and the request is always fulfilled immediately. These

limitations inspired us proposing an Open Constraint-Based
Inference (Open CBI) framework as an extension to Open
Constraint Programming.

As the first contribution of this paper, the proposed Open
CBI framework is based on the unified semiring-based CBI
framework [4]. By using various semirings, the Open CBI
framework is shown to be a superset of Open COP. Also the
CBI framework can be used to model open constraint pro-
gramming problems with both domain value discovery and
removal and non-monotonic revealing of domain values with
regard to the cost or preference. An Open CBI problem is
modelled as a sequence of CBI problems. A CBI problem
changes to the next one in the sequence when a variable re-
ports the domain change to the solver. The extensibility of
the Open CBI framework is ensured by using the semiring
concept to generalize various problems in different research
fields.

The junction tree representation is a widely studied graph-
ical model to maintain knowledge and facilitate computa-
tion in the probabilistic reasoning. We have shown that the
junction tree representation and junction tree algorithmscan
be generalized within the CBI framework. As the second
contribution of this paper, we extend the junction tree rep-
resentation to handle Open CBI problems. We show in this
paper that the junction tree representation is a suitable graph-
ical model to reuse the computed intermediate constraints to
subproblems. According to the definition of Open CBI, the
structure of the problem is unchanged, thus we can construct
off-line the near optimal junction tree. By using the provided
message-passing procedures to make the junction tree con-
sistent, satisfiability or the optimal weight can be answered
within a local cluster and its incoming messages. Finding
out the total assignment requires going through the whole
junction tree, but it can be done using non-backtrack search
on the fly.

We also proposed a junction tree consistency maintenance
algorithm for Open CBI problems with domain value changes.
This is the third contribution of this paper. We analyze and
discuss that both determining satisfiability or the optimal
weight and finding total assignment of variables have time
complexity that is linear in the size of the junction tree in
time possibly less than the time required to enforce the con-
sistency from scratch. We are doing experiments to evaluate
the effectiveness of these algorithms based on the GCBIJ
toolkit [4] and plan to report it in subsequent work.

The junction tree algorithms, in general, are linear in the
size of junction tree. Both the time and space complexities
contain a constant factor that is exponential in the maximum
cluster size of the tree. Treewidth is the lower bound of the
width of all possible junction tree representations of a given
Open CBI problem. The proposed junction tree representa-
tion and algorithms are suitable for an Open CBI problem
with a tractable treewidth. For a Open CBI problem with
a large treewidth, other graphical models such as junction

graph with smaller cluster size can be options to replace the
junction tree representation. Initial work on this direction
has been done in [4]. We can also import arc consistency
[19] and its non-binary version, generalized arc consistency
[20, 21], as candidate inference algorithms in future work.
These algorithms have been applied to CBI problems with
closed-world settings and received some preliminary success
[5, 6]. Stronger local consistencies, such as directional arc
consistency [7], full directional arc consistency [17] andex-
istential arc consistency [9], as well as Soft Arc Consistency
[7] offer the potential to be integrated into the Open CBI
framework. Finally, we will also investigate the possibili-
ties of combining together backtrack search and inference
approaches.

6. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments on
this paper. This research was supported by the Natural Sci-
ences and Engineering Research Council of Canada. Alan
K. Mackworth holds a Canada Research Chair.

7. REFERENCES
[1] Srinivas M. Aji and Robert J. McEliece. The

generalized distributive law.IEEE Transactions on
Information Theory, 46:325–343, 2000.

[2] Stefan Arnborg, D. G. Corneil, and A. Proskurowski.
Complexity of finding embeddings in ak-tree.SIAM
J. Algebraic and Discrete Methods, 8:277–284, 1987.

[3] Stefano Bistarelli, Ugo Montanari, and Francesca
Rossi. Semiring-based constraint satisfaction and
optimization.J. ACM, 44(2):201–236, 1997.

[4] Le Chang. Generalized constraint-based inference.
Master’s thesis, University of British Columbia, 2005.
www.cs.ubc.ca/grads/resources/thesis/May05/LeChang.pdf.

[5] Le Chang and Alan K. Mackworth. A generalization
of generalized arc consistency: From constraint
satisfaction to constraint-based inference. InIJCAI05
Workshop on Modelling and Solving Problems with
Constraints, pages 68–75, Edinburgh, July 2005.

[6] Le Chang and Alan K. Mackworth. Constraint-based
inference using local consistency in junction graphs.
In ECAI2006 Workshop on Inference Methods Based
on Graphical Structures of Knowledge, pages 1–6,
Riva del Garda, Italy, August 2006.

[7] Martin Cooper and Thomas Schiex. Arc consistency
for soft constraints.Artificial Intelligence,
154(1-2):199–227, 2004.

[8] Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest.Introduction to Algorithms. MIT
Press/McGraw-Hill, 1990.

[9] Simon de Givry, Matthias Zytnicki, Federico Heras,
and Javier Larrosa. Existential arc consistency:
Getting closer to full arc consistency in weighted csps.

In Proceedings of IJCAI-05, Edinburgh, Scotland,
2005.

[10] Rina Dechter. Bucket elimination: A unifying
framework for probabilistic inference. In12th Conf.
on Uncertainty in Artificial Intelligence, pages
211–219, 1996.

[11] Rina Dechter and Judea Pearl. Tree clustering for
constraint networks.Artif. Intell., 38(3):353–366,
1989.

[12] Boi Faltings and Santiago Macho-Gonzalez. Open
constraint programming.Artif. Intell.,
161(1-2):181–208, 2005.

[13] F. V. Jensen, S. L. Lauritzen, and K. G. Olesen.
Bayesian updating in causal probabilistic networks by
local computations.Computational Statistics
Quarterly, 4:269–282, 1990.

[14] Kalev Kask, Rina Dechter, Javier Larrosa, and Avi
Dechter. Unifying cluster-tree decompositions for
reasoning in graphical models.Artificial Intelligence,
166:165–193, August 2005.

[15] Uffe Kjærulff. Aspects of Efficiency Improvement in
Bayesian Networks. PhD thesis, Aalborg University,
1993.

[16] J. Kohlas and P.P. Shenoy. Computation in valuation
algebras. InHandbook of Defeasible Reasoning and
Uncertainty Management Systems, Volume 5:
Algorithms for Uncertainty and Defeasible Reasoning,
pages 5–40. Kluwer, Dordrecht, 2000.

[17] Javier Larrosa and Thomas Schiex. In the quest of the
best form of local consistency for weighted CSP. In
Proc. of IJCAI-03, pages 239–244, Acapulco, Mexico,
2003.

[18] S. L. Lauritzen and D. J. Spiegelhalter. Local
computations with probabilities on graphical
structures and their application to expert systems.
Journal of the Royal Statistical Society, Series B,
50:157–224, 1988.

[19] Alan K. Mackworth. Consistency in networks of
relations.Artificial Intelligence, 8:99–118, 1977.

[20] Alan K. Mackworth. On reading sketch maps. In
IJCAI77, pages 598–606, 1977.

[21] Roger Mohr and G. Masini. Good old discrete
relaxation. InEuropean Conference on Artificial
Intelligence, pages 651–656, 1988.

[22] Richard E. Neapolitan.Probabilistic Reasoning in
Expert Systems: Theory and Algorithms. John Wiley
and Sons, New York, NY, 1990.

[23] Adrian Petcu and Boi Faltings. A scalable method for
multiagent constraint optimization. InIJCAI, pages
266–271, 2005.

[24] Adrian Petcu and Boi Faltings. ODPOP: An algorithm
for open/distributed constraint optimization. In
Proceedings of the National Conference on Artificial
Intelligence, AAAI-06, pages 703–708, Boston, USA,
July 2006.

[25] Francesca Rossi, Peter van Beek, and Toby Walsh.
Handbook of Constraint Programming. Foundations
of Artificial Intelligence. Elsevier Science Publishers,
Amsterdam, The Netherlands, 2006.

[26] Thomas Schiex, H́elène Fargier, and Gerard Verfaillie.
Valued constraint satisfaction problems: Hard and
easy problems. InIJCAI95, pages 631–637, Montreal,
1995.

[27] P. P. Shenoy and G. Shafer. Axioms for probability
and belief-function propagation. InUAI90, pages
169–198. 1990.

[28] Y. Zhang and Alan Mackworth. Parallel and
distributed finite constraint satisfaction:
Complexity,algorithms and experiments. In V. Kumar
L. Kanal, H. Kitano and C. Suttner, editors,Parallel
Processing for Artificial Intelligence, volume 1, pages
305–334. Elsevier, Amsterdam, 1994.

