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ABSTRACT

Computer-based Landsat image interpretation
has neglected the spatial organization of
the image in favour of the spectral and
temporal organization. Semantic and spatial
sensitivity can be introduced by exploiting
a pyramidal, hierarchical representation of
the image advocated by Kelly, Tanimoto and
Levine. The image pyramid is constructed
bottom-up with the original image as the
base. Each level is a reduced resolution
version of the level below, constructed by
averaging the signatures of adjacent pixels
at the lower level. By classifying pixels
at the higher levels one is efficiently
classifying semantically uniform regions in
the original image. If, however, a region's
signature lies in the spectral overlap of
two or more classes, its four subregions will
have to be considered for classification.
Several refinements of this technique,
including the use of semantically-based
region splitting and merging techniques at
each level of the pyramid, have been devel-
oped. These techniques are used to classify
forest cover types on Vancouver Island in a
Landsat image. The results of several
initial experiments indicate that, compared
to a baseline of a traditiomal supervised
maximum-likelihood classifier, the cost of
maintaining the pyramid is balanced by a
vast reduction in the number of pixel
classifications. The spatial homogeneity or
readability of the segmented image, as
measured by the number of regions, is
improved by a factor of three,while the
accuracy of the classification is unaffected
or slightly improved. When the region
splitting and merging techniques are applied
at each level of the image pyramid the
accuracy and the readability of the final
segmentation both increase markedly.

* Now at Instituto di Fisica Teorica,
Universita di Napoli, Naples, Italy.
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RESUME

Jusqu'a présent, pour l'interprétation par
ordinateur des images Landsat, on a négligé
1'organisation spatiale de 1'image au profit
de son organisation spectrale et temporelle.
On peut faire entrer dans 1'interprétation une
sensibilité sémantique et spatiale, en
exploitant une représentation pyramidale,
hiérarchique, de 1'image, telle que celle que
préconisent Kelly, Tanimoto et Levine. La
pyramide des images est construite du bas vers
le haut et 1'image originale en constitue le
base. Chaque &tage de la pyramide est une
version (vue avec un pouvolr de ré&solution
réduit) de 1'étape du dessous; cette version
est construite en faisant la moyenne des
signatures de plusieurs pixels contigus de
1'étage du dessous. Quand on classe les pixels
des é&tages supérieurs, on classe donc, avec
un bon rendement, des régions de 1'image
originale uniformes quant i la sémantique,
c'est-3-dire quant A la signification de
1'image. Cependant, si la signature d'une
région se trouve dans une zone spectrale
commune 3 deux classes ou plus, il faut
envisager le classement de ses quatre sous-—
régions. Plusieurs perfectionnements de cette
technique ont &té mis au point, entre autres
le recours i des techniques de fractionnement
et du fusionnement sémantique & chaque étage
de la pyramide. Ce sont les techniques que
nous avons utilisdes pour classer les différ-
ents types de couverture forestiére d'une image
Landsat de 1'ile Vancouver. Les résultats de
plusieurs expériences initiales montrent que
si 1'on prend comme base de ré&férence le cofit
d'un programme traditionnel de classification
fondé sur la probabilité maximale, avec
{ntervention humaine, le coiit d'E&tablissement
de la pyramide est compensé par la ré&duction
importante du nombre de classements de pixels
nécessaires. L'Homogénéité spatiale, c'est-a-
dire la facilitéd de lecture de 1'image fract-
ionnée, dont le nombre de régions donne une
mesure, est améliorée (dans la proportion de
trols a4 un), alors que la précision de la
classification reste inchangée ou est légeére-
ment améliorde. Quant on applique les
techniques de fractionnement et de fusionne-
ment des régions & chaque &tage de la pyramide
des images, la précision et la facilité de
lecture de 1'image fractionnée finale augmentent
1'une et l'autre trés nettement.
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1. BACKGROUND

1.1 Classification Techniques

All remotely sensed images are characterized
by the fact that the information about the
scene is conveyed to the sensors through the
spectral, spatial and temporal variations

of the electromagnetic field. Landsat image
processing systems rely most heavily on
multispectral and multitemporal techniques.
To a great extent they neglect spatial
variation. This is due to the high cost of
the few successful attempts to exploit the
spatial context of the scene, together with
the lack of a substantial theory on which

to base suitable techniques. Most systems
rely on the well-known multispectral

Pattern Recognition paradigm for digital
image interpretation. One way of stating
this approach is in decision-theoretic
terms: the objective of the classification
is to arrive at an assignment of every

pixel to one of a number of classes in the
way that best fulfills a certain decision
criterion. Supervised or unsupervised
techniques can be used,depending on the
availability of ground truth data for the
classes of interest. A wide variety of
mathematical sophistications can be added

to the classification model without changing
its essence.

The fundamental assumption of this paradigm
is that a pixel's interpretation depends
only on its spectral attributes,not, for
example, on its location in the picture or
on the interpretation of neighbouring
pixels. An essential requirement of such
approach is that the classes be spectrally
separable, and, moreover, that the class
statistics are stationary over the image.
Neither assumption holds for real images.
When the classifier is asked to pronounce

on a pixel whose signature falls within an
overlapping area of two given classes, it can
only do so by making unreliable guesses.

For example, in an experiment performed at
LARSL, the classification performance on a
set of Landsat data was compared with the
performance on a data set collected by an
airborne multispectral scanner system with
more wavelength bands over a wider region

of the spectrum. The interesting result was
that the overall performance for the data
set was nearly identical. Classification
performance of any technique based on the
classification model depends largely on the
degree of spectral separability of the
classes of interest. If the classes of
interest are spectrally similar then, using
this approach, one cannot discriminate among
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them, regardless of the amount of training
data used or the number of spectral bands
available.

1.2 The Use of Spatial Information

There have been several attempts to use
spatial information or, more generally, to
introduce context-sensitivity into the inter-
pretation of remotely sensed images. The
majority of them are formulated within the
classification paradigm. Usually some
spatial features, such as texture, are
computed for pixels or groups of pixels.
These features are used as additional inputs
to a point by point classifierl,2,

Several systems successfully exploit the fact
that spatially adjacent pixels are more
likely to belong to the same class than
distant pixels. Therefore the image is
partitioned into "homogeneous' groups of
pixels which are considered as single enti-
ties and,as such, classified by a traditional
classifier using spectral and spatial
characteristics3,4, Obviously techniques
like these considerably reduce the number

of needed classifications, but the total time
required to process the entire image is often
considerably augmented by the preprocessing
procedures. Robertson, for example, reports
an increased accuracy over the point by

point classification by 2.5%, while the
computing time increased by a factor of 10.

Others have used the same idea in devising
techniques to postprocess the image after it
has been first segmented by a point by point
classifier. Goldberg et al.” give a tech-
nique for relabelling each pixel using the
spatial information contained in the
surrounding three-by-three region. Kan® and
Davis and Peet’ give procedures which
eliminate small regions in the scene. Post-
processing techniques such as the above are
especially effective in improving the
readability of a classified image.

1.3 Scene Analysis and Image Understanding

Starr and Mackworth® used an approach that
differed from most other Landsat systems.
They identified different types of forest
cover in a Landsat image. Traditional
classification methods were used to obtain
an initial segmentation of the image into
atomic regions. Then they used Artificial
Intelligence region merging techniques to
merge regions with similar intensities.
region merging process goes hand-in-hand
with the interpretation process: regions
with unambiguous interpretation are allowed

The



to sequentially influence the interpretation
of ambiguous regions. Context sensitivity
is thus introduced from the beginning into
the interpretation process. Using this
technique, they showed a 9% improvement in
classification accuracy over the point by
point classifier, at a cost of increasing
the computing time by a factor of 3.5.

This program is an application of an alter-
native approach that has recently emerged
for machine interpretation of visual data
within the field of Artificial Intelligence.
The conventional approach to machine vision,
on which the decision theoretic classifi-
cation model for Pattern Recognition is
based, sees the interpretation phase of the
whole recognition process as sequentially
following the segmentation phase. On the
other hand, the Artificial Intelligence
approach (the cycle of perception paradigm
for scene analysisY) states that segmenta-
tion requires semantic information, inter-
pretation, to be performed sensibly.
Segmentation is interpretation and vice
versa. To be meaningful segmentation needs
to be driven by a real-world model, but such
a model cannot be invoked without having
first partially segmented the picture.
Following this paradigm the whole vision
process becomes a cycle, alternating
segmentation and interpretation.

1.4 Hierarchical Image Structures

In the simplest application of Pattern
Recognition to image understanding, each
pixel in the image is uniformly processed
in the course of interpretation. This
approach is inefficient, at best, because
not all the available detail is always
necessary to interpret the image. The
amount of detail that is needed strongly
depends on the purpose of the study.

This idea underlies some multistage tech-
niques which make sequential use of pictures
at different scales in thé analysis of
remotely sensed data. Nichols ggygl.lo,

for example, described a three-stage
sampling method using satellite and aircraft
imagery and ground sampling. Information
gathered at any stage is used to direct the
selection of samples at the successive lower
stage. They used this technique to estimate
the timber volume in a forest inventory
application. At each stage timber volume
estimates are made from sampling units
whose probabilities of selection in the
sample are biased by a factor proportional
to the corresponding predicted volumes, as
interpreted from the previous smaller scale

286

imagery. This technique is shown to be more
efficient, in terms of cost, than purely
random sampling because fewer ground samples
need to be taken.

This same idea has been clearly stated and
successfully exploited in some recent scene
analysis work.

Kelly11 described an approach motivated by

the idea of selective attention. He considers
an image of a human face and extracts a
smaller picture from it. The idea is that
this reduced, lower resolution picture
exhibits only the gross features of the face
without the surrounding noise of the fine
features. These features are therefore
detected and used as a plan to find all the
features in the original picture.

Several authors have extended Kelly's idea
on planning. Tanimoto and Pavidlisl?
described a pyramid structure capable of
handling image processing at different
levels. The structure consists in a
sequence of matrices where every matrix is a
digitization of the picture at lower reso-
lution than the previous matrix in the
sequence.

This pyramidal data structure was success—
fully exploited by Levinel3 to segment an
outdoor scene.

These programs, exploiting planning in the
image interpretation process, suggested to
that elaborations of this technique could
give us the spatial and meaning sensitivity
of the interpretation-guided region merging
techniques of our earlier Landsat work8
without the associated high cost in CPU time.

us

2. USING IMAGE HIERARCHIES IN REGION FINDING

A segmentation obtained exploiting the pyra-
midal approach is in the spirit of the cycle
of perception paradigm. The segmentation at
every level gives a context to, and drives,
the segmentation at the level below. This
observation, together with the previously
mentioned aspect of computational efficiency
supporting the planning idea, suggested that,
although current image and scene domains in
Artificial Intelligence are typically much
simpler than those for a Landsat image, we
could combine the best features of the
Pattern Recognition approach with these scene
analysis techniques to interpret a Landsat
scene.

To test these ideas, we used a Landsat image
of a forested area of Vancouver Island taken



on August 12, 1973, covering a ground area of
3.65 x 5.12 km. The same ground truth map
and the same modified maximum likelihood
classifier described by Starr and Mackworth
were used. The objective of the classifi-
cation was to identify regions of old growth
(class 1), second growth (class 2), recent
logging (class 3) and water (class 4).

The original image is stored as a 64 x 64
array. This is level 1 in the data struc-
ture. The spectral signature of a pixel at
level L + 1 in the pyramid is constructed by
successively averaging the signatures of a
square cell of four adjacent pixels at level
L. As the program works up the pyramid
pixels in the middle of regions are averaged
with pixels belonging to the same class,
while pixels on region boundaries are mixed
together with pixels belonging to different
classes. In statistical terms, areas
composed of pixels that have equal probabi-
lities of belonging to two or more classes
expand as a result of the averaging process,
while clusters of pixels that have a high
probability of belonging to a single class
shrink.

One could build the pyramid until eventually
getting to the highest level, which consists
of one pixel with a value for the feature
vector equal to the average for the whole
image. But as one goes up in the pyramid,
the gross features (central areas) of the
small regions start disappearing until the
noise of the boundaries eventually covers
the whole image. An optimal level at which
to stop building the pyramid can be evalu-
ated by having an estimate of the average
sizes of the classes of interest. In this
case, the small lakes in the scene (average
size 15 pixels) suggest using level 4

(24 = 16) as the top level. Incidentally,
notice that this is the only operation

that could not be automated. In fact,we
need a priori information (an interpreta-
tion!) to perform it.

A labelling procedure is started with the
application of the maximum likelihood
classifier to the compressed picture at the
top level of the pyramid. A pixel that
gives a 'high enough' probability of
belonging to one of the four classes of
interest is labelled as strong; otherwise it
is labelled as ambiguous.

The segmentation proceeds down the pyramid
from this level a level at a time until
level 1 1s reached. The strong pixels at
level L are the starting points of the
region growing process. They are simply
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expanded into groups of four pixels at level
L-1 retaining the same label, while ambiguous
pixels sent to level L-1 will be re-classified
by the maximum likelihood classifier. Since
there is a compression factor of four between
two successive levels of the pyramid, every
time a pixel is labelled as strong at level

L, the total number of pixels classified is
reduced by 4(L-1)-1 over the point by point
classifier.

The first set of experiments with the pyra-
midal structure is performed by going up to
some level and then successively segmenting
down to the highest resolution picture at
level 1.

The simple averaging operation going up the
pyramid proves to be appropriate for homo-
geneous areas. But when the spatial transi-
tion from one region to another is very
abrupt, that is, when neighbouring pixels
give a high probability of membership to
different classes, then the averaging
operation sometimes gives a resulting pixel
whose value would lie in an unambiguous, but
incorrect, area of the feature space. For
example,pixels resulting from the boundary
between water (class 4) and forest (class 1
or 2) were often classified as recent logging
(class 3) in some higher level of the pyramid.
To overcome this difficulty,the value of the
dispersion vector of each four pixel cluster
is tested against a threshold vector before
the averaging operator is applied as one goes
from one level up to the next higher level.
When abrupt changes along the boundaries are
detected by the test, holes are created that
are propagated upwards in the pyramid. On
the way down, the classification of these
areas is delayed by the labelling algorithm
until the level at which the hole was

created is again reached. Optimal global
values for the dispersion thresholds are
automatically computed by the classifier.

The classifier so far described gives some
improvement over the point by point classi-
fier both in classification accuracy and in
readability; that is, it gives a smaller
final number of regions. This improvement is
obtained without any increase in processing
time because the overhead used for building
and maintaining the pyramid is balanced by
the smaller number of calls to the maximum
likelihood classifier.

Further context-sensitivity is introduced in
the segmentation process by applying some
region merging and splitting techniques at
any level in the pyramid. In considering
these techniques, remember that a pixel at



level L actually represents a square region
of side length 2(L-1) of the original pic-
ture.

The immediate neighbourhood of each pixel in
the image is scanned. A pixel already
labelled as strong that does not have a
sufficient number of neighbours belonging

to its own class is considered to be

possibly misclassified and therefore is sent
to the next lower level to be classified
again. Effectively, the square region in

the original image corresponding to that
pixel has been split into its four quadrants.
On the other hand, a pixel whose probability
of membership for any class is not high
enough for it to be classified as strong, but
which has a large number of strong neighbours
all belonging to the same class, has its
classification influenced by theirs and is
therefore merged into that class.

At the lowest level (highest resolution) of
the pyramid, a similar region merging clean-
up procedure can be applied to clean up the
final segmented image, eliminating the "salt
and pepper" noise caused by the small and
isolated regions. 1In the case of the
pyramidal classifier this effect, which is
otherwise almost completely eliminated as a
side effect of the pyramidal structure, is
partly reintroduced by the application of
the test that delays the classification of
many pixels until the lowest level.

3. RESULTS

The pyramidal classifier was implemented in
ALGOL W on an IBM 370/168 running under the
Michigan Terminal System.

There are 36 regions in the group truth map.
The stability of the maximum likelihood
classifier was verified with different sets
of training data. The size of the set
varied from 5 to 20% of the total number of
pixels for each class. The correctness of
the point by point classification varies
from 73 to 75%; as expected, it slightly
improves with an increase in the size of the
training set. The experiments with the
pyramidal structure should be compared with
a point by point correctness of about 747
and 220 regions, achieved in 8 seconds of
CPU time.

At any level in the pyramid, a pixel is
labelled as strong if pmax > Ki(pl+p2+p3
+p4) /100 where pmax = max(pl,p2,p3,p4) is
the maximum value for the probability
density function for the four classes and

Ki is a threshold at level i. If a pixel is
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labelled as strong at a level,it is classi-
fied at that level;otherwise it is sent
down to the next lower level to be classified.

Many experiments were performed. They were
intended to test the performance of the
pyramid classifier in three crucial dimen-
sions, mainly: efficiency, as expressed by
the computing time; accuracy, as expressed
by the fraction of pixels correctly classi-
fied, and readability, as expressed by the
number of regions remaining in the final
output. For a complete presentation and
discussion of the following results see
Catanzaritilé,

Up to four levels were used. The first
experiments were performed using the straight
pyramidal structure; that is, without using
the homogeneity test going up, and without
doing any region merging. As expected, the
thresholds Ki play an important role in the
pyramidal classifier. The results showed
that the lower (less conservative) the values
for the thresholds, the worse the correctness
of the classification; on the other hand,
efficiency and readability improve (Table 1).

Notice that in the third of the cases shown
in Table 1 the pixels are classified only
once, at the fourth (top) level of the pyra-
mid. In other words,only 64 pixels (1.8% of
the total number of pixels) are classified
in this case. Table 1 shows also some
results obtained using three and two levels
of the pyramid. A drastic improvement in
readability is obtained while at the same
time also improving slightly efficiency and
accuracy. As already pointed out, 3 and 2
levels are more appropriate than 4 levels
for the particular scene under study. It
should be noted that the execution time is
relatively independent of the number of
levels used. The increased number of pixels
to be classified when using fewer levels is
balanced by the smaller overhead required
for building and maintaining the pyramid.

The next set of experiments was intended to
test the performance of the classifier,
including the test for homogeneity in the
creation of the pyramid. Table 2 shows some
results obtained using four levels.

Global values for the dispersion thresholds
are automatically computed by the classifier.
The test, although intentionally rough so as
to be inexpensive, is very effective in
stabilizing the small regions in the image.
Detail is not lost. The detail is 'saved'
while going up and is 'recaptured' on the
way down the pyramid. This time, even the



straight classification in the four main
classes at the fourth level outperforms

the point by point classifier (first case of
Table 2). As expected, the test improves
the classification accuracy but, as a side
effect, reintroduces some salt-and-pepper
noise in the final output. In this case,
the clean-up final procedure becomes parti-
cularly effective.

In the last set of experiments, the perfor-
mance of the local region merging and
splitting procedures was tested at all
levels in the pyramid (Table 3).

These results are not strongly dependent on
the number of levels used. This is
probably because some of the semantics used
by these procedures are already implied in
the use of the pyramidal structure. An
improvement up to 6% in classification
accuracy is obtained over the point by
point classification. The final number of
regions left is close to the number of
regions in the ground truth map. The over-
all computing time is rarely more than twice
the time taken by the point by point
classifier.

4., CONCLUSIONS

The efficiency and feasibility of a pyrami-
dal structure have been extensively tested
on a typical Landsat image. In evaluating
the results presented, a few main points have
to be taken into consideration.

Often the results show small improvements in
execution time or,in other words, in the
total number of pixels classified. The
scene under study was 64 x 64 pixels in
size, while a full size picture has at least
2048 x 2048 pixels. The differenceof a few
seconds of CPU time involved in the experi-
ments herein described may become several
hours when one or more full size pictures
have to be classified. It takes about 8
hours to classify an entire Landsat scene

on the IMAGE 10015,

An important part of the execution time of
the whole classification procedure in the
pyramid structure consists on the time
necessary to build the pyramid (from two to
three seconds in the 64 x 64 pixel image).
This time could be significantly reduced by
making use of special purpose parallel hard-
ware in the pyramid representation. Compu-
ter systems connecting parallel hardwired
arrays of processors to a serial computer
system have been developed over the past few
years. Some of these devices are already at
the experimental and marketing stagel6. A
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software system which makes use of large
numbers of regular iterative parallel-

serial operations, as is the case of pyra-
midal classifier, can take enormous advan-
tages of parallel-serial architecture and
open totally new perspectives to Landsat data
classification.

With regard to the main problemraised in this
work, the correctness/readability/efficiency
tradeoff, attempts to balance these different
factors can be seen as attempts to balance
different, often conflicting, points of view.

From the Artificial Intelligence point of
view, as long as there is enough memory to
contain all the information needed by the
program, and as long as the execution time
is kept to a reasonable level (less than 24
hours, say), efficiency is not the main
concern. Rather, the main concern is the
performance of the program in the given
domain. The Artificial Tntelligence resear-
cher seeks a procedure that can correctly
and adequately recognize a given scene and
be general enough to be used on other scenes.

From the Remote Sensing point of view, on the
other hand, computational efficiency is the
first requirement for a classification
program that will probably be used in a
production environment.

At other times, for example,when producing
forest inventory maps, readability becomes

a prime factor, for a classified map with a
salt-and-pepper appearanceseven if correctly
classified, is not too meaningful to the user.

The pyramidal classifier here described can
quickly classify a scene, giving a very clean
and readable output with a correctness
comparable to or markedly better than the
correctness of the point by point classifier.
But also any of the previously described
points of view can be stressed by simply
changing some parameters in the structure.
One might either have a fast rough glance at
the scene; one might efficiently classify
the image to meet production requirements
better than a point by point classifier does,
or one might use the pyramid as a fast seg-
mentation component of a more intelligent
image understanding system.
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TABLE 1: Results from varying the number of levels and the thresholds at each level

No. levels K4 K3 K2 K1 Correctness % N. regioms CPU-time
4 85 80 75 0 72 73 8.8
4 80 75 75 0 71 60 8.4
4 0 0 0 0 64 8 7.5
3 - 90 85 0 75 140 9.5
3 - 8 75 0 74 99 8.8
3 = 0 0 0 71 29 7.7
2 - - 0 0 76 70 7.5

TABLE 2: Results using the homogeneity test goilng up

K4 K3 K2 Kl Correctness 7% No. regions CPU-time
0 0 0 0 75 124 8.3

90 80 0 0 76 50 8.2

90 90 0 0 76.5 60 8.5

TABLE 3: Results using region splitting and merging at each level

Correctness % No. regions CPU~time
77 100 9.3
79 60 14.4
79.5 31 21
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