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Constraint satisfaction problems can be solved by network consistency algorithms that eliminate local inconsistencies before 
constructing global solutions. We describe a new algorithm that is useful when the variable domains can be structured 
hierarchically into recursive subsets with common properties and common relationships to subsets of the domain values for 
related variables. The algorithm, HAC, uses a technique known as hierarchical arc consistency. Its performance is analyzed 
theoretically and the conditions under which it is an improvement are outlined. The use of HAC in a program for understanding 
sketch maps, Mapsee3, is briefly discussed and experimental results consistent with the theory are reported. 
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Les problkmes de satisfaction de contrainte peuvent 2tre rksolus par des algorithmes de consistance de rkseau qui kliminent 
les inconsistances locales avant de construire des solutions globales. Nous dtcrivons un nouvel algorithme qui s’avtre utile 
lorsque les domaines variables peuvent &re structurks hitrarchiquement en sous-ensembles rkcursifs posstdant des propriktts 
communes et des relations communes avec les sous-ensembles des valeurs de domaine pour les variables reliies. L’algorithme, 
HAC, utilise une technique connue sous le nom de consistance d’arc hikrarchique. Son fonctionnement est analyst d’un point 
de vue thtorique et les ameliorations qu’il peut apporter sont mises en tvidence. L’utilisation de HAC dans un programme de 
comprthension d’esquisses de cartes, Mapsee3, est brikvement discutke et des risultats expkrimentaux consistants avec la 
thiorie sont mentionnts. 

Mots clis: probltmes de satisfaction de contrainte, algorithme de consistance de riseau, consistance d’arc, comprkhension 
de carte, vision automatique. 
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1. Introduction 
In this paper we show how to exploit aspects of the intrinsic 

structure of variable domains when using a network consistency 
algorithm to solve a constraint satisfaction problem. A pre- 
requisite brief review of the basic concepts is presented first. For 
a fuller explanation the reader should consult the original 
material (Waltz 1972; Montanari 1974; Mackworth 1977a; 
Freuder 1978; Haralick and Elliott 1980; Freuder 1982; Mack- 
worth and Freuder 1985). 

1 .  I .  Constraint satisfaction and  network consistency 
A constraint satisfaction problem (CSP) is defined as follows: 

Given a set of n variables each with an associated domain and a 
set of constraining relations each involving a subset of the 
variables, find all possible n-tuples such that each n-tuple is an 
instantiation of the n variables satisfying the relations. In this 
paper we shall only consider CSP’s in which the relations are 
unary and binary. This restriction is not necessary for consis- 
tency techniques to be applied (Mackworth 19776; Freuder 
1978). 

Since graph colouring is an NP-complete CSP, it is most 
unlikely that a polynomial time algorithm exists for solving 
general CSP’s. Accordingly, the class of network consistency 
algorithms was invented. These algorithms do not necessarily 
solve a CSP completely but they eliminate, once and for all, 
local inconsistencies that cannot participate in any global 
solutions. These inconsistencies would otherwise have been 
repeatedly discovered by any backtracking solution. One role 
for network consistency algorithms is as a preprocessor for 
subsequent backtrack search, or they can be interspersed with 
case analysis or simple domain splitting to recover the complete 
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set of solutions to the CSP. A k-consistency algorithm removes 
all inconsistencies involving all subsets of size k of the n 
variables. For example, the node, arc, and path consistency 
algorithms detect and eliminate inconsistencies involving k = 
1 , 2 ,  and 3 variables, respectively. Freuder’s (1978) generaliza- 
tion of those algorithms for k = 1,. . . ,n  can be used to produce 
the complete set of solutions to the CSP. 

I . 2 .  Node and arc consistency 
The algorithms below are reprinted from a previous paper 

(Mackworth 1977a) that should be consulted for a full explana- 
tion. The domain of variable xi is Di, Pi is the unary predicate 
on x i ,  and P ,  is the binary constraint predicate on the variables 
xi and xi corresponding to an edge between vertices ui and uj in 
the constraint graph G. The edge between i and j is replaced by 
the directed arc from i to j and the arc from j to i as they are 
treated separately by the algorithms. Let the number of variables 
be n, the number of binary constraints be e (the number of edges 
in the constraint graph), and the edge degree of ui be di. The 
time unit used for our complexity measures is the application of 
a unary or binary predicate. To simplify the description of the 
complexity results, in this section we assume that each D; is the 
same initial size a .  

The node consistency algorithm NC- 1 simply ensures that all 
values in Di satisfy Pi by removing those that do not. 

procedure NC ( i ) :  

begin 

end 

D~ +- D~ n { X  I pi ( X I )  

for i - 1 until n do NC(i) 

NC-I: the node consistency algorithm 

An arc consistency algorithm is a symbolic relaxation 
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algorithm that establishes the strong arc consistency condition 
on each arc of G. The arc (i, 11 from ui to uj is strongly arc 
consistent iff: 

(1) ui is node consistent and 
(2) for each value in Di there is at least one value in Dj that 

The algorithm AC-3 (Mackworth 1977a) is an efficient arc 
is compatible with it (such that P, is satisfied). 

consistency algorithm: 

procedure REVISE ((i.13): 
begin 

DELETE + false 
for each x E Di do 

begin 
if there is no y E Dj such that P , l x , y )  then 

delete x from Di 
DELETE + true 

end; 
return DELETE 

end 

1 begin 
2 
3 
4 
5 begin 
6 
7 ifREVlSE((k,m))then Q + - Q U { ( i , k ) l ( i , k ) E  arcs (C) ,  

i f k .  i # m} 
8 end 
9 end 

for i + 1 until n do NC(i) 
Q +- { ( iJ )  I ( i j )  E arcs ( G ) ,  i f j }  
while Q not empty do 

select and delete any arc ( k , m )  from Q 

AC-3: an arc consisrency algorithm 

REVISE ( ( i j ) )  makes arc (ij) strongly arc consistent. AC-3 
applies REVlSE to each arc of G in turn. It only reconsiders arc 
( i j )  if it has potentially become inconsistent again because of a 
deletion from Dj. 

Mackworth and Freuder (1985) showed that the time com- 
plexity of AC-3 is at best R(a2e) and at worst O(a3e). This 
somewhat surprising worst case behavior for a serial relaxation 
algorithm, linear in the number of constraints, confirms the 
empirical results of using AC-3 in several experimental systems 
(Waltz 1972; Mackworth 19776; Havens and Mackworth 
1983). The time complexity does depend heavily on the domain 
size a. As more realistic problems are tackled the domain size 
increases substantially. Accordingly we were motivated to look 
for ways of coping with larger domain sizes. 

2. Intensional domains and predicates 
The arc consistency algorithm described above, AC-3, 

assumes that the domains are supplied extensionally as unstruc- 
tured sets, listing the finite number of members. Consistency 
techniques can, however, be applied to CSP’s in which the 
domains do not satisfy that assumption. For example, the 
domains could be supplied intensionally as descriptions. For 
any infinite domain this is clearly a necessity. A good example 
of this is space planning (Mackworth 1 9 7 7 ~ ) .  

In a two-dimensional facility or VLSI layout problem the 
domains (possible placements of the objects) might be given 
intensionally as subsets of R2 by describing their boundaries. 
The constraints, similarly, would be described as intensional 
predicates. The only necessary adequacy requirement on 
domain and constraint representations is that they allow one to 
carry out the domain restriction operation of REVISE. The 
version of REVISE used by AC-3 assumes an extensional, 

unstructured set representation of Di.  A more abstract definition 
of REVISE that does not make that assumption is as follows: 

1 procedure REVISE-A((i,J)): 
2 begin 

4 
5 
6 return DELETE 
7 end 

3 A + { X  I (X €4) A [ ( ~ Y ) ( Y  EAj) A Pdj ( ~ , Y ) I } ;  
DELETE + (A C A,); 
if DELETE then A; + A; 

We are now using Ai to represent the dynamic value of the 
currently permissible domain of variable ui, which monotonic- 
ally decreases in size. The set of domains, { A i } ,  will have to be 
initialized by the following statement to be inserted into AC-3 
between steps 1 and 2: 
1.5 for i + 1 until n do Ai + D, 

and similarly NC( i) becomes 

procedure NC( i): 
A; + A; n { x  I Pi (x ) }  

Line 3 of REVISE-A is the domain restriction operation. If 
the proper subset test of line 4 sets DELETE to true then the 
restricted domain A replaces the old value of Ai and REVISE-A 
returns true to indicate that a domain restriction has occurred. 
If AC-3 uses REVISE-A instead of REVISE then it is suitable 
for this more general class of CSP’s, provided, of course, that 
the domain and predicate representations used by NC and 
REVISE-A allow the domain restrictions. Incidentally, in the 
language of relational data base theory (Maier 1983) the domain 
restriction of REVISE-A is a semi-join. However, in general, 
relational data base theory makes the extensional assumprion, 
both for the domains and the relations. 

The abstract algorithm REVISE-A, developed to allow for 
intensional domains and predicates, will be used as the basis for 
the efficient treatment of structured extensional domains. 

3. Hierarchical domains 
An important technique for handling large domains is to 

exploit their internal structure. Indeed, for many real world 
problems the domain elements often cluster into sets with 
common properties and relations. Those sets, in turn, group to 
form higher level sets. This clustering or categorization into 
“natural kinds” can be represented as a specialization/general- 
ization (is-a) hierarchy (Havens and Mackworth 1983). The 
main theme of this paper is the exploitation of the structure 
provided when the domains can be naturally represented as 
specialization hierarchies. Each domain can be interpreted as a 
domain graph with each vertex corresponding to a set of 
elements and each arc the subset relation between sets. Domain 
graphs are, of course, quite distinct from the constraint graphs 
introduced earlier. 

In general, a domain graph is not a strict tree since a set may 
be a direct subset of more than one superset; the general 
characterization of the resultant “tangled” hierarchy is as a 
directed acyclic graph representing the lattice induced by the 
partial ordering of the subset relation. For the purposes of this 
paper we shall assume that the domain hierarchies are singly 
rooted strict trees. Each subset has only one direct superset and 
the subsets of a set are mutually exclusive and exhaustive. 
Without further loss of generality, we shall assume that the trees 
are binary: the root represents the entire domain, each non- 
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singleton set has two subsets, and the leaves are the singleton 
sets, one for each domain element. 

The aim is to make REVISE, the inner loop of AC-3, 
considerably more efficient by reducing the number of predicate 
evaluations it must perform. The currently active elements of a 
domain can be represented by a set of tree vertices that dominate 
those members. REVISE can then retain, eliminate, or further 
examine entire subsets of the domain with one or two predicate 
evaluations. 

To achieve this aim, two new families of predicates will be 
introduced. These new predicates apply not to pairs of indivi- 
dual domain elements for two related variables but to pairs of 
subsets of the domains of the two variables. These new 
predicates are easily computed from the predicates supplied 
with the CSP relating individual domain elements. The expecta- 
tion is that the domains are structured so that the elements of a 
subset frequently share consistency properties that permit them 
to be retained or eliminated as a unit. 

For the sake of relative simplicity in the notation, we shall 
assume that each domain Di can be structured as a balanced 
binary tree of depth m,  thus all the domains have the same 
number of elements: a = 2". We shall use Di to represent the 
original domain for variable xi and Ai to represent the active 
subset of D; for xi at any point in the symbolic relaxation 
process. Ai may be implemented as a set of the active 
subdomains of D;. The subdomains of Di are { D p }  which can 
be arranged as a tree as shown in Fig. I ,  where an arc indicates 
that the subdomain at the bottom of the arc is a direct subset of 
the subdomain at the top. The notation for D p  indicates that it is 
on the kth level of the domain tree for Di and it is the sth 
subdomain at that level. 

DY is partitioned into two mutually exclusive subsets of 
equal size, Dik-- ' ) (2s-1)  and Dik-1)2s .  In other words, the follow- 
ing conditions obtain on the subdomains. 

For k = 0,1,2 ,.... m and s = 1,2,3 ..... 2m-k, 
Dlk=Djk-l)(2S-l) IJ DLk-1)25 

I 4 D,(k-1)(2,-1) (-, D(k-1)2S = 

and 
I D P  I = 2k 

In the algorithm we shall develop, A;, the set of still active 
elements of the original Di ,  is the union of a number of mutually 
exclusive sets D Y .  At all times, Ai G Di.  

Suppose 

Al = U A,' 
4 

and 
A .  = U A.r 

' r  J 

We call each Aiq an abstract label of Al. Each abstract label is 
identical to a subset of Di, D p  for some k and s. In the 
algorithm. A; is represented by the set {A?}. 

We must now efficiently implement the domain restriction 
step of REVISE-A (line 3 of REVISE-A, repeated here for 
convenience): 

3 A +- { X  I ( X  E hi) A [ (g  y)(y E Aj) A Pij (x,Y)]} 

Informally, what we wish to do is test each abstract label Aiq 

of Ai,  using a generalized version of REVISE. If there is a A; 
such that every domain element in A? is compatible with some 
element in A;, then Aiq survives unchanged in A;. If not, then 

check to see if there is a A; such that some element in Ai4 is 
compatible with some element in A;. If not, then Aiq is simply 
removed from Ai.  If there is such a A:, then Aiq is replaced in 
Ai by its two child subdomains. When all AiQ subsets of Ai have 
been processed this way (including the new ones generated in 
the course of processing) then the arc (i,j) is arc consistent. 

We generalize the definition of arc consistency as follows. An 
abstract label pair (A?, Aj') is strongly hierarchically arc con- 
sistent iff the set of leaf labels below Ai4 is strongly arc con- 
sistent with the set of leaf labels below A;. The arc ( i , ~ ]  is 
strongly hierarchically arc consistent iff each abstract label of 
Ai is strongly hierarchically arc consistent with some abstract 
label of Aj. 

4. Hierarchical predicates 
In order to implement a generalized REVISE we need two 

new sets of predicates derived from Pv(x ,y) .  These are 
predicates on the abstract labels D p  needed to cany out the 
operations described above. We define Ai!(DF, 0:') to be true 
iff for all elements belonging to DP there is an element of D,!' 
compatible with it. A;' tests subsets at level k of D; against 
subsets at level 1 of Dj .  Analogously, we define St (D?,D,!') 
to be true iff for some element belonging to D p ,  there is an 
element of Dj" compatible with it. 

Af(Dy,Z$') iff (V x E D P ) ( 3  y E q " ) P j j ( x , y )  

We can compute A; inductively on k and 1 as follows. 
Suppose 

Di = {a, I s = 1, 2, ..., 2") 

Dj = {b,  I t = 1, 2, ..., 2'") 
and 

then let D$ = {a,} and DY = {b,}. 
At the 0th levels of domains D; and D j ,  each subset is a 

singleton set. Since ''all'' and "some" are equivalent for a domain 
size of one, we know that A?, $', and Pij are identically equal. 

[ i ]  A F ( D ~ , ~ ~ ' )  = P ,  (cI,,~,) 

[q A ~ ( D ? ,  0;) = A O J - I ( D O S  ( ' I  ~ ( ~ - 1 ) ( 2 ~ - 1 ) )  

for 

rl v AY$-'(DY, D)/- l )2!)  
1 = 1,2, ..., m 

[3] Af(D?,  D/3 = A$k-l)i(Di(k-1)(2s-l) ' D!' J )  

A A(h-l)/(D!'-l)25 D!? 
' I  

for k = 1,2 ,..., m and 1 = 1,2 ,..., m 

Suppose, as a simple example, that 

D I  = {a , ,  0 2 ,  ~ 3 ,  04) 0 2  = {bi, b2, b3, b4I 

then 

DY' = { a , }  DY2 = {az }  DY3 = {a3} DY = {a4} 

and 
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FIG. 1 .  Nomenclature for the domain tree containing subdomains of D,. 

We are given the predicate Pl2.a,,b,) as a relation matrix. 

b ,  b2 63 b4 
1 1 1 o i 
1 1 0 0  

a4 0 0 1 0  
P , ?  : :il 0 0 1 0 1 

We have A E  = P I 2 .  
Then we compute A?: by ORing together pairs of columns of 

A E  using [ 2 ] .  The first column of A?: is obtained by bitwise 
ORing the first and second columns of A?$ the second column 
of A?: is obtained by ORing the third and fourth columns of 
AE. 

L o  1 - l  

and then we compute A?;’ from A?: 

A%: [ ; ] 
Using [3], A ; $  results from pairwise ANDing the rows of AE.  

Similarly, A!;  results from pairwise ANDing the rows of A?;. 

1 0  
A % [  0 1 ] 

Parenthetically, for those readers somewhat bemused by the 
thicket of formal notation, let us remind you what this means. 
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For example, the entry in the first row of the second column of 
A ! ;  is a 0, which indicates it is not true that for all elements of 
0:' = {a l ,a z }  there is an element of 0:' such that P, is 
satisfied. 

A f :  is computed by ANDing together the rows of A::. 

At t  = [  ; ] 
Finally, we obtain A:!, A::, and A:$ by ANDing the rows of 
At!, A!: ,  and A!:, respectively. 

A::: [0 0 0 01 

A:! : [0 01 

A:: : [ l ]  

We also define a set of predicates Sy, where Sb' (Dp,Q'') is 
true iff for some member of abstract label DF there is a member 
of abstract label 0:' compatible with it. 

S;!(D?,~'? iff (3 x E 0,+)(3 y E q ' ? ~ , ( x , y )  

We can also compute S$ inductively on k and 1 from the base 
predicate P, as follows: 

sy(D,os,qo? = f J , ( U S , b , )  

where 

[4] DQ" = {as}  and Dp' = {b,} 
[ 5 ]   so,"^^,^!') = ~ ~ - ~ ) ( ~ ~ , ~ ~ ~ - ~ ~ 2 ~ - ~ ) )  v So('-I) V 

(D?, 0s'- ' ) 2 I  ) 

for 1 = 1, ..., rn 
and 

[6] ,$!(0p,D,!') r S~~-') '(q('- ')("- '),~') v S$-l)/ 

(D(k - I)", D?) 

In other words the hierarchy of S, predicates is computed by 
collapsing P,: ORing together pairs of rows or pairs of 
columns. For our example: 

r l  1 1  01 
1 1 0 0  

0 0 1 0  
q o  0 1 0 1  

r l i  

1 1 1 0  
s q  0 0 1 0 1 

s:,": [ I  1 1 01 

S?j:[I 11 

s:;: [ 11 

We distinguish the .arc (ij) from the arc ( j , i ) .  Observe that 
p. .  = ( f . . )T 

J' rl 

and so 
A,? = 

and 

= (q)' 
It is always the case that S$ = (Si!)T; this fact can be exploited 
computationally. However, A$ is, in general, not equal to 
(At')'. In our example: 

r l  1 o 01 
1 1 0 0  

0 0 0 0  
A E = L 1  0 1 1 1  

whereas 

1 0  [ 0 1 ] 

5. Hierarchical arc consistency 
We are now in a position to define a generalized hierarchical 

arc consistency algorithm to be known as HAC. HAC uses the 
general relaxation structure of AC-3 but uses REVISE-HAC 
as an instantiation of REVISE-A. In particular, step 3 of 
REVISE-A is 

3 

where 
A + { X  1 ( X  E A,) A [ (3  .V)(Y E A,) P l l ( X , Y ) )  

Ai = UAiq and Aj= U A; 
4 r 

as described earlier. 
Step 3 can be implemented using the hierarchical predicates A 

and S defined above. Ai is represented by a list of its abstract 
labels Aiq; Aj is similarly represented. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

procedure REVISE-HAC ((iJ)): 
begin 
DELETE + false 
Q t  + A t  

while Q, not empty do 
A, - b  

begin 
select and delete an element @ from Q ,  
Q 2  + A, 

' FOUND - false 
while Q2 not empty and not FOUND do 

begin 
select and delete an element 0: from Q2 
if A ,  (Dp,Dj3 then 

begin 
AI + AI U {Dy} 
FOUND +true 
end 

end 
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6 .  Complexity results 
The algorithm AC-3 requires time linear in the number of 

constraints. As we remarked earlier it is at best R(a2e) and at 
worst O(a3e). The unit of time used is the evaluation of a binary 
predicate on a pair of domain elements. We should not expect 
HAC to improve on the worst case performance of AC-3. 
Indeed, since it relies on a hierarchical organization of the 
domain, intuition suggests that one could perversely structure 
the domains in the worst possible way to ensure worst case 
behaviour worse than AC-3. 

We first consider the time required to compute the hierarchical 
predicates A t  and Sf defined by the recursive eqs. [I]-[6]. 
Computation of these predicates is a preprocessing step required 
by HAC, if they are not already provided for an a plication. For 
each arc (iJ) we must compute Af and S, where k, l  = 
0,1,2, ..., m. Consider that A,$'is represented by a relation 
matrix, with 2m-k X 2"-' entries. The total number of entries 
for A, is then 

kP 

20 
21 
22 
23 
24 
25 
26 
21 
28 
29 
30 
31 
32 
33 
34 
35 
36 
31 
38 
39 

if not FOUND then 
begin 
DELETE + true 
if k > 0 then 

begin 

while Q2 not empty and not FOUND do 
02 + Aj 

begin 
select and delete an element Df from Q 2  
if Sf(Dv, 0;') then 

begin 

FOUND + true 
end 

Q ,  + Ql  U { D f k - I ) ( 2 S d l )  D(k- l )ZS  
7 1  I 

end 
end 

end 
end 

return DELETE 
end 

REVISE-HAC: domain restriction for hierarchical arc consistency 

procedure NC ( i ) :  
begin 

end 
A; + D; n { x  I P ; ( X ) }  

1 
2 
3 
4 
5 
6 
I 
8 
9 

10 

begin 
for i + 1 until n do NC ( i )  
Q +- Ki.j) I ( i d  E arcs (G), i f j }  
while Q not empty do 

begin 
select and delete any arc ( k , m )  from Q 
if REVlS E-HAC (( k ,  m ) )  

end 
then Q + Q U { i , k )  I ( i . k )  E arcs ( G ) , i  f k,i f m }  

end 

HAC: the hierarchical arc consistency algorithm 

REVISE-HAC implements the generalized arc consistency 
algorithm introduced in Sect. 3. In particular, after the applica- 
tion of REVISE-HAC to arc (ij). that arc will be strongly 
hierarchically arc consistent in the sense defined earlier. The 
loop defined in lines 6-37 tests each abstract label in A; to see 
if it is hierarchically consistent. It does that by testing the label 

from .lj against the abstract labels in Aj. The loop in lines 
11-19 looks for a label 0: in Aj such that A, is true. If every 
label below DF is compatible with some label below Df then 
Aj.is true. In that case; @ survives unchanged in A;. If not and & is not a leaf ( k  > 0) then lines 20-36 look for a label in Aj 
such that some label below f l  is compatible with some label 
below I$' in which case S, is true. If such a label is found then 
the label @ is replaced by its two successors in Q ,  . They must 
be tested similarly on A, and Sij before this invocation of 
REVISE-HAC returns. 

It should be shown that REVISE-HAC is correct and always 
terminates. A; starts as the empty set and adds members only at 
line 16 when A ,  (D)[,D:? is true and so when REVISE-HAC 
returns, all members of Ai are strongly arc consistent with some 
abstract label in A,; hence the algorithm is correct. Since the 
domain trees are noncyclic and the queues Q ,  and Q2 decrease 
monotonically in size (except at line 28 where a finite total 
number of elements can be added to Q2), the procedure must 
terminate. The serial relaxation algorithm that has the form of 
the modified AC-3 but uses REVISE-HAC is known as HAC. 

2 2m-k2m-l = 
k=O 1-0 p-0 q=o 

Each entry requires two predicate evaluations to compute 
except the 22m entries in Am which require one. Similarly for 
$1; so for arc (i,]] the number of evaluations is 

2(2(2m+1 - 1)2  - 22m) = 22m+4 - 22m+l - 2m+4 + 4 
- 14 X 2'" 

Since a = 2"' this is 14a'. Let e be the number of edges in the 
constraint graph. There are 2e arcs and so the preprocessing 
computation requires 8( ea'), but this can be done once and for 
all for an application domain before any particular CSP is 
tackled. 

The space required to store the A, and S, predicates is 
-12ea' bits, a constant factor larger than the euz bits required 
for the P ,  predicates. The preprocessing time and the storage 
space required can be reduced by exploiting facts such as Sji = 
(S,j)T and the rule that if an entry in A, is 1 the corresponding 
entry in S, must also be 1. 

The best case for the time complexity of HAC clearly occurs 
when the network is already strongly hierarchically arc con- 
sistent. In that case it merely has to check that condition which 
requires exactly 2.5 predicate evaluations of A7m between the 
root node of each domain tree and the root node of its neigh- 
bouring domain tree. So HAC is R(e). 

Our analysis of the HAC worst case behaviour parallels the 
analysis in Mackworth and Freuder (1985), so it will not be 
spelled out in detail. Let d j  be the edge degree of vertex i in the 
constraint graph and let n be the number of vertices (variables). 
The worst case would occur when there is no solution, but that 
fact is discovered in the slowest possible way. For each variable 
xi, REVISE-HAC can minimally replace one of the abstract 
labels by its two successors (or deleting it if it is a leaf in the 
domain tree). When that occurs, (di  - 1) arcs are, at worst, 
added to HAC's arc queue Q .  The domain size is the number of 
leaves in the domain tree, a = 2"; therefore that replacement or 
deletion can occur 2a - 1 times since there are that many 
abstract labels in the domain tree. 

The number of arcs that are, in total, then removed from Q is 
the number of arcs originally on Q plus the number added to Q 
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as a result of REVISE-HAC modifying a domain: 
n 

I =  I 
2e + 1 (2a - l)(d, - I )  = 2e + (2a - 1)(2e - n) 

For each arc ( i ,~ ' )  the number of predicate evaluations is at 
worst the product of the current sizes of the two abstract label 
sets. Notice that there are a leaf vertices in the domain tree and 
a - 1 interior vertices, for a total of (2a - 1). Since no abstract 
label can be active at the same time as any of its descendants or 
ancestors, the number of abstract labels active cannot exceed a. 
Notice that of the a labels, (a - 1) each require up to a predicate 
evaluations of A,j and the single label that is deleted or replaced 
by its two successors requires up to 4a: A, and S, on the label 
itself and A, on its two successors. Since we assume a $1 
we count that as a2 evaluations. Accordingly, the number of 
predicate evaluations is, at most, 

a2[2e + (2a - I)(& - n)] 
We may, without loss of generality, assume that e 2 n - 1 

(Mackworth and Freuder 1985), and so the time complexity of 
HAC is O(a3e).  Since the complexity of HAC is asymptotically 
4a3e compared with AC-3's 2a3e, the intuition that the worst 
case for HAC is worse than the worst case for AC-3 is confirmed 
and quantified: it may be twice as slow. Another way to 
approach this is to realize that we have essentially doubled the 
domain size from a to (2a - I )  by adding the interior nodes so 
the number of possible deletions from the domain has doubled. 
However, since only a labels can be active at once the number 
of predicate evaluations is still only u2 (not (2a)* = 4a2) to test 
consistency at any iteration and so it is only twice as slow, not 
eight times! 

Although, pessimistically, the worst case analysis of HAC 
suggests it can be twice as slow as AC-3, remember that our 
optimistic best case analyses show it to be faster by a factor of 
a2. Rather than try to characterize average case performance, 
we shall analyze worst case performance of HAC on problems 
for which i t  was designed. 

A more reasonable analysis of HAC would consider those 
applications in which the domains are appropriately structured. 
A way to characterize this is to require that there is only one 
abstract label active in each node's domain at anytime, that is, 
lA;l 5 1 .  Intuitively, one can think then of the variable's 
domain being progressively refined and reduced by the evidence 
of its related neighbouring variables. The specialization hier- 
archy is then being used as a true discrimination tree. If this is 
the case then a similar worst case analysis proceeds as follows. 
If REVISE-HAC returns true on ( i j )  it has minimally replaced 
an abstract label by its successor. That can occur m = log2 a 
times for that variable domain. Each time it occurs it adds (d ;  - I )  
arcs to Q .  The total number of arcs removed from Q is 

For each arc removed an application of REVISE-HAC is 
needed, so the number of calls to REVISE-HAC is at most 2e + 
( 2 e  - n) log a. We distinguish now between the successful 
calls to REVISE-HAC, on which a domain revision occurs and 
REVISE-HAC returns true, and the unsuccessful callson which 
no change occurs and REVISE-HAC returns false. On the 
successful calls, REVISE-HAC tests A, on the single label in 
A, and the label in A,. That fails. Sij succeeds. The label in Ai 
is replaced by its two successors: on one of them Aij succeeds 
and on the other A, fails and S, fails. In all, five predicate 

TABLE 1. PI, for Geo-system surrounds 
Shore 

Ptj Lakeshore Coastline 

Island I 0 
Mainland 1 0 
Lake 0 1 
Ocean 0 1 

TABLE 2. A ,  and S,, for Geo-system 
surrounded by Shore 

Lakeshore Coastline Aly  

Island 1 0 
Mainland 1 0 
Lake 0 1 
Ocean 0 1 

A !O Lakeshore Coastline 

Landmass 1 0 
Waterbody 0 1 

Sij0 Lakeshore Coastline 

Landmass 1 0 
Waterbody 0 I 

A: ' Shore 

Landmass I 
Waterbody 1 

4; ' Shore 

Landmass I 
Waterbody I 

~~ ~~ 

A,? Lakeshore Coastline 

Geo-s ystem 0 0 

$0 Lakeshore Coastline 

Geo-sy stem 1 1 

A,:' Shore 

Geo-system 0 

s,' ' Shore 

Geo-system 1 

evaluations are required. On the unsuccessful calls, only one 
evaluation of A, is required. The number of successful calls to 
REVISE-HAC is simply the number of possible deletions in a 
domain (log a)  times the number of domains (n). The number 
of unsuccessful calls to REVISE-HAC is the number of calls, 
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( a )  ( b )  
FIG. 2. (a) Geo-system specialization hierarchy and ( b )  Shore specialization hierarchy. 

2e + (2e - n) log (I, minus the number of successful calls, 
n log a. So the number of predicate evaluations is 

5(n log a)  + 1[2e + (2e - n) log a - n log a] 
= 2e  + (2e + 3n) log a 

And so, the worst case complexity of HAC under the specified 
condition is O(1oga (e + jn)), a remarkable improve- 
ment over AC-3’s O(a3e). 

7. Applications 
HAC has been implemented and used in Mapsee3 (Mulder 

1985), a schema-based system for interpreting hand-drawn 
sketch maps. A brief note here on how it is used should be use- 
ful. Schema instances represent scene objects and correspond to 
what we have called variables here. As a schema instance 
acquires more evidence as to its nature by acquiring a new 
component, for example, it can specialize its own interpreta- 
tion; this action corresponds to moving down the domain tree. 
Moreover, instances that i t  is already related to may then be 
further specialized and so on. A geographical system (Geo- 
system) has the specialization hierarchy shown in Fig. 2a while 
a shoreline (Shore) has the specialization hierarchy of Fig. 2b. 

Suppose a Geo-system completely surrounds a closed Shore 
in the map then we have the relation Pj j  shown in Table 1. 

In other words either the Geo-system is an Island or a Main- 
land and the Shore a Lakeshore or the Geo-system is a Lake 
or an Ocean and the Shore a Coastline. From this relation we 
can compute the hierarchical predicates Af and Sf! using 
[ 11-[6]. They are shown in Table 2 (note that 

Experimentally, for the sketch map application, Mulder 
(1985) found that HAC is more efficient than AC-3. On each of 
10 maps HAC required fewer predicate evaluations than AC-3 
in Mapsee3 by factors ranging up to about two, although here 
the domains are still very small: a varies from 2 to 8. Mulder 

60 = Aii ). 

also reported experimental evidence that the number of itera- 
tions does depend linearly on the number of constraints. 

HAC is most useful when the domains can be naturally de- 
scribed hierarchically; that is, when the interior nodes of the 
domain tree are natural kinds. There must be nontrivial relation- 
ships between the total set of elements represented at an internal 
node of one domain tree and the total set of elements at an 
internal node of the neighbouring domain tree. Moreover, we 
expect the advantages of HAC to be more fully realized for very 
large domains. 

The original edge labelling paradigm in which arc consistency 
was invented (Waltz 1972) is an example of such an application. 
Waltz essentially used the sets of possible comers as the variable 
domains with the edge type being the predicates. Interchanging 
the role of the comers and the edges so the variable domains are 
the edge types and the set of comers are the predicates, one can 
structure the very large number of edge types (1532) hier- 
archically (Mackworth 1977~)  and use HAC. 

To sketch how this would be done, consider the simple 
Huffman-Clowes world with only four edge types: convex, 
concave, and the two occluding edges. A natural grouping of 
convex and concave into the “connect” abstract label and the 
two occluding edges into the “occlude” abstract label yields a 
three-level edge domain hierarchy with the single abstract label 
“edge” at the root of the tree. The familiar catalogues of allow- 
able comers for the junction shape categories correspond to the 
base predicates. Using the algorithms given earlier, the predi- 
cates families S and A can easily be constructed. 

For example, a catalogue of allowable comer labellings at the 
connect/occlude abstract label level represents the S predicate 
between those levels of the domain trees. Since comers may 
involve two or three edges the version of HAC presented here 
for binary relations must be generalized to allow for n-ary rela- 
tions. This can be done in the same way as AC-3 was generalized 
to n-ary relations in Mackworth (1977b). 
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8. Conclusions 
A hierarchical arc consistency algorithm for constraint satis- 

faction problems, HAC, has been described that exploits the 
internal structuring of domain values into a hierarchy of sub- 
domains. Complexity results show that the algorithm has 
demonstrably improved best and worst case performance if the 
domains obey certain constraints. In that case HAC is at best 
n(e) and at worst O((e + Jn) log a) compared with n(a2e) 
and O(a3e) for the previously best-known algorithm. Experi- 
mental results from the use of the algorithm in a computational 
vision system, Mapsee3, are consistent with our analysis. 
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