
1 I8

Hierarchical arc consistency: exploiting structured domains
in constraint satisfaction problems

ALAN K. MACKWORTH, J A N A. MULDER,’ AND WILLIAM s. HAVENS
Laboratory for Computational Vision, Department of Computer Science, University of British Columbia,

Vancouver, B.C. , Canada V6T 1 W5
Received July 19, 1985

Revision accepted December 19, 1985

Constraint satisfaction problems can be solved by network consistency algorithms that eliminate local inconsistencies before
constructing global solutions. We describe a new algorithm that is useful when the variable domains can be structured
hierarchically into recursive subsets with common properties and common relationships to subsets of the domain values for
related variables. The algorithm, HAC, uses a technique known as hierarchical arc consistency. Its performance is analyzed
theoretically and the conditions under which it is an improvement are outlined. The use of HAC in a program for understanding
sketch maps, Mapsee3, is briefly discussed and experimental results consistent with the theory are reported.

Key words: constraint satisfaction problems, network consistency algorithms, arc consistency, map understanding,
computational vision.

Les problkmes de satisfaction de contrainte peuvent 2tre rksolus par des algorithmes de consistance de rkseau qui kliminent
les inconsistances locales avant de construire des solutions globales. Nous dtcrivons un nouvel algorithme qui s’avtre utile
lorsque les domaines variables peuvent &re structurks hitrarchiquement en sous-ensembles rkcursifs posstdant des propriktts
communes et des relations communes avec les sous-ensembles des valeurs de domaine pour les variables reliies. L’algorithme,
HAC, utilise une technique connue sous le nom de consistance d’arc hikrarchique. Son fonctionnement est analyst d’un point
de vue thtorique et les ameliorations qu’il peut apporter sont mises en tvidence. L’utilisation de HAC dans un programme de
comprthension d’esquisses de cartes, Mapsee3, est brikvement discutke et des risultats expkrimentaux consistants avec la
thiorie sont mentionnts.

Mots clis: probltmes de satisfaction de contrainte, algorithme de consistance de riseau, consistance d’arc, comprkhension
de carte, vision automatique.
Cornput. Intcll. 1, 118-126 (1985)

1. Introduction
In this paper we show how to exploit aspects of the intrinsic

structure of variable domains when using a network consistency
algorithm to solve a constraint satisfaction problem. A pre-
requisite brief review of the basic concepts is presented first. For
a fuller explanation the reader should consult the original
material (Waltz 1972; Montanari 1974; Mackworth 1977a;
Freuder 1978; Haralick and Elliott 1980; Freuder 1982; Mack-
worth and Freuder 1985).

1 . I . Constraint satisfaction and network consistency
A constraint satisfaction problem (CSP) is defined as follows:

Given a set of n variables each with an associated domain and a
set of constraining relations each involving a subset of the
variables, find all possible n-tuples such that each n-tuple is an
instantiation of the n variables satisfying the relations. In this
paper we shall only consider CSP’s in which the relations are
unary and binary. This restriction is not necessary for consis-
tency techniques to be applied (Mackworth 19776; Freuder
1978).

Since graph colouring is an NP-complete CSP, it is most
unlikely that a polynomial time algorithm exists for solving
general CSP’s. Accordingly, the class of network consistency
algorithms was invented. These algorithms do not necessarily
solve a CSP completely but they eliminate, once and for all,
local inconsistencies that cannot participate in any global
solutions. These inconsistencies would otherwise have been
repeatedly discovered by any backtracking solution. One role
for network consistency algorithms is as a preprocessor for
subsequent backtrack search, or they can be interspersed with
case analysis or simple domain splitting to recover the complete

‘Current address: Department of Mathematics, Statistics and Com-
puterscience, Dalhousie University, Halifax, N . S . , Canada B3H 4H8.

[Traduit par la revue]

set of solutions to the CSP. A k-consistency algorithm removes
all inconsistencies involving all subsets of size k of the n
variables. For example, the node, arc, and path consistency
algorithms detect and eliminate inconsistencies involving k =
1 , 2 , and 3 variables, respectively. Freuder’s (1978) generaliza-
tion of those algorithms for k = 1,. . . ,n can be used to produce
the complete set of solutions to the CSP.

I . 2 . Node and arc consistency
The algorithms below are reprinted from a previous paper

(Mackworth 1977a) that should be consulted for a full explana-
tion. The domain of variable xi is Di, Pi is the unary predicate
on x i , and P , is the binary constraint predicate on the variables
xi and xi corresponding to an edge between vertices ui and uj in
the constraint graph G. The edge between i and j is replaced by
the directed arc from i to j and the arc from j to i as they are
treated separately by the algorithms. Let the number of variables
be n, the number of binary constraints be e (the number of edges
in the constraint graph), and the edge degree of ui be di. The
time unit used for our complexity measures is the application of
a unary or binary predicate. To simplify the description of the
complexity results, in this section we assume that each D; is the
same initial size a .

The node consistency algorithm NC- 1 simply ensures that all
values in Di satisfy Pi by removing those that do not.

procedure NC (i) :

begin

end

D~ +- D~ n { X I pi (X I)

for i - 1 until n do NC(i)

NC-I: the node consistency algorithm

An arc consistency algorithm is a symbolic relaxation

MACKWORTH ET AL. I I9

algorithm that establishes the strong arc consistency condition
on each arc of G. The arc (i, 11 from ui to uj is strongly arc
consistent iff:

(1) ui is node consistent and
(2) for each value in Di there is at least one value in Dj that

The algorithm AC-3 (Mackworth 1977a) is an efficient arc
is compatible with it (such that P, is satisfied).

consistency algorithm:

procedure REVISE ((i.13):
begin

DELETE + false
for each x E Di do

begin
if there is no y E Dj such that P , l x , y) then

delete x from Di
DELETE + true

end;
return DELETE

end

1 begin
2
3
4
5 begin
6
7 ifREVlSE((k,m))then Q + - Q U { (i , k) l (i , k) E arcs (C) ,

i f k . i # m}
8 end
9 end

for i + 1 until n do NC(i)
Q +- { (iJ) I (i j) E arcs (G) , i f j }
while Q not empty do

select and delete any arc (k , m) from Q

AC-3: an arc consisrency algorithm

REVISE ((i j)) makes arc (ij) strongly arc consistent. AC-3
applies REVlSE to each arc of G in turn. It only reconsiders arc
(i j) if it has potentially become inconsistent again because of a
deletion from Dj.

Mackworth and Freuder (1985) showed that the time com-
plexity of AC-3 is at best R(a2e) and at worst O(a3e). This
somewhat surprising worst case behavior for a serial relaxation
algorithm, linear in the number of constraints, confirms the
empirical results of using AC-3 in several experimental systems
(Waltz 1972; Mackworth 19776; Havens and Mackworth
1983). The time complexity does depend heavily on the domain
size a. As more realistic problems are tackled the domain size
increases substantially. Accordingly we were motivated to look
for ways of coping with larger domain sizes.

2. Intensional domains and predicates
The arc consistency algorithm described above, AC-3,

assumes that the domains are supplied extensionally as unstruc-
tured sets, listing the finite number of members. Consistency
techniques can, however, be applied to CSP’s in which the
domains do not satisfy that assumption. For example, the
domains could be supplied intensionally as descriptions. For
any infinite domain this is clearly a necessity. A good example
of this is space planning (Mackworth 1 9 7 7 ~) .

In a two-dimensional facility or VLSI layout problem the
domains (possible placements of the objects) might be given
intensionally as subsets of R2 by describing their boundaries.
The constraints, similarly, would be described as intensional
predicates. The only necessary adequacy requirement on
domain and constraint representations is that they allow one to
carry out the domain restriction operation of REVISE. The
version of REVISE used by AC-3 assumes an extensional,

unstructured set representation of Di. A more abstract definition
of REVISE that does not make that assumption is as follows:

1 procedure REVISE-A((i,J)):
2 begin

4
5
6 return DELETE
7 end

3 A + { X I (X €4) A [(~ Y) (Y EAj) A Pdj (~ , Y) I } ;
DELETE + (A C A,);
if DELETE then A; + A;

We are now using Ai to represent the dynamic value of the
currently permissible domain of variable ui, which monotonic-
ally decreases in size. The set of domains, { A i } , will have to be
initialized by the following statement to be inserted into AC-3
between steps 1 and 2:
1.5 for i + 1 until n do Ai + D,

and similarly NC(i) becomes

procedure NC(i):
A; + A; n { x I Pi (x) }

Line 3 of REVISE-A is the domain restriction operation. If
the proper subset test of line 4 sets DELETE to true then the
restricted domain A replaces the old value of Ai and REVISE-A
returns true to indicate that a domain restriction has occurred.
If AC-3 uses REVISE-A instead of REVISE then it is suitable
for this more general class of CSP’s, provided, of course, that
the domain and predicate representations used by NC and
REVISE-A allow the domain restrictions. Incidentally, in the
language of relational data base theory (Maier 1983) the domain
restriction of REVISE-A is a semi-join. However, in general,
relational data base theory makes the extensional assumprion,
both for the domains and the relations.

The abstract algorithm REVISE-A, developed to allow for
intensional domains and predicates, will be used as the basis for
the efficient treatment of structured extensional domains.

3. Hierarchical domains
An important technique for handling large domains is to

exploit their internal structure. Indeed, for many real world
problems the domain elements often cluster into sets with
common properties and relations. Those sets, in turn, group to
form higher level sets. This clustering or categorization into
“natural kinds” can be represented as a specialization/general-
ization (is-a) hierarchy (Havens and Mackworth 1983). The
main theme of this paper is the exploitation of the structure
provided when the domains can be naturally represented as
specialization hierarchies. Each domain can be interpreted as a
domain graph with each vertex corresponding to a set of
elements and each arc the subset relation between sets. Domain
graphs are, of course, quite distinct from the constraint graphs
introduced earlier.

In general, a domain graph is not a strict tree since a set may
be a direct subset of more than one superset; the general
characterization of the resultant “tangled” hierarchy is as a
directed acyclic graph representing the lattice induced by the
partial ordering of the subset relation. For the purposes of this
paper we shall assume that the domain hierarchies are singly
rooted strict trees. Each subset has only one direct superset and
the subsets of a set are mutually exclusive and exhaustive.
Without further loss of generality, we shall assume that the trees
are binary: the root represents the entire domain, each non-

120 COMPGT. INTELL. VOL. I . 198s

singleton set has two subsets, and the leaves are the singleton
sets, one for each domain element.

The aim is to make REVISE, the inner loop of AC-3,
considerably more efficient by reducing the number of predicate
evaluations it must perform. The currently active elements of a
domain can be represented by a set of tree vertices that dominate
those members. REVISE can then retain, eliminate, or further
examine entire subsets of the domain with one or two predicate
evaluations.

To achieve this aim, two new families of predicates will be
introduced. These new predicates apply not to pairs of indivi-
dual domain elements for two related variables but to pairs of
subsets of the domains of the two variables. These new
predicates are easily computed from the predicates supplied
with the CSP relating individual domain elements. The expecta-
tion is that the domains are structured so that the elements of a
subset frequently share consistency properties that permit them
to be retained or eliminated as a unit.

For the sake of relative simplicity in the notation, we shall
assume that each domain Di can be structured as a balanced
binary tree of depth m, thus all the domains have the same
number of elements: a = 2". We shall use Di to represent the
original domain for variable xi and Ai to represent the active
subset of D; for xi at any point in the symbolic relaxation
process. Ai may be implemented as a set of the active
subdomains of D;. The subdomains of Di are { D p } which can
be arranged as a tree as shown in Fig. I , where an arc indicates
that the subdomain at the bottom of the arc is a direct subset of
the subdomain at the top. The notation for D p indicates that it is
on the kth level of the domain tree for Di and it is the sth
subdomain at that level.

DY is partitioned into two mutually exclusive subsets of
equal size, Dik-- ') (2s-1) and Dik-1)2s . In other words, the follow-
ing conditions obtain on the subdomains.

For k = 0,1,2 ,.... m and s = 1,2,3 2m-k,
Dlk=Djk-l)(2S-l) IJ DLk-1)25

I 4 D,(k-1)(2,-1) (-, D(k-1)2S =

and
I D P I = 2k

In the algorithm we shall develop, A;, the set of still active
elements of the original Di , is the union of a number of mutually
exclusive sets D Y . At all times, Ai G Di.

Suppose

Al = U A,'
4

and
A . = U A.r

' r J

We call each Aiq an abstract label of Al. Each abstract label is
identical to a subset of Di, D p for some k and s. In the
algorithm. A; is represented by the set {A?}.

We must now efficiently implement the domain restriction
step of REVISE-A (line 3 of REVISE-A, repeated here for
convenience):

3 A +- { X I (X E hi) A [(g y)(y E Aj) A Pij (x,Y)]}

Informally, what we wish to do is test each abstract label Aiq

of Ai, using a generalized version of REVISE. If there is a A;
such that every domain element in A? is compatible with some
element in A;, then Aiq survives unchanged in A;. If not, then

check to see if there is a A; such that some element in Ai4 is
compatible with some element in A;. If not, then Aiq is simply
removed from Ai. If there is such a A:, then Aiq is replaced in
Ai by its two child subdomains. When all AiQ subsets of Ai have
been processed this way (including the new ones generated in
the course of processing) then the arc (i,j) is arc consistent.

We generalize the definition of arc consistency as follows. An
abstract label pair (A?, Aj') is strongly hierarchically arc con-
sistent iff the set of leaf labels below Ai4 is strongly arc con-
sistent with the set of leaf labels below A;. The arc (i , ~] is
strongly hierarchically arc consistent iff each abstract label of
Ai is strongly hierarchically arc consistent with some abstract
label of Aj.

4. Hierarchical predicates
In order to implement a generalized REVISE we need two

new sets of predicates derived from Pv(x ,y) . These are
predicates on the abstract labels D p needed to cany out the
operations described above. We define Ai!(DF, 0:') to be true
iff for all elements belonging to DP there is an element of D,!'
compatible with it. A;' tests subsets at level k of D; against
subsets at level 1 of Dj . Analogously, we define St (D?,D,!')
to be true iff for some element belonging to D p , there is an
element of Dj" compatible with it.

Af(Dy,Z$') iff (V x E D P) (3 y E q ") P j j (x , y)

We can compute A; inductively on k and 1 as follows.
Suppose

Di = {a, I s = 1, 2, ..., 2")

Dj = {b, I t = 1, 2, ..., 2'")
and

then let D$ = {a,} and DY = {b,}.
At the 0th levels of domains D; and D j , each subset is a

singleton set. Since ''all'' and "some" are equivalent for a domain
size of one, we know that A?, $', and Pij are identically equal.

[i] A F (D ~ , ~ ~ ') = P , (cI,,~,)

[q A ~ (D ? , 0;) = A O J - I (D O S (' I ~ (~ - 1) (2 ~ - 1))

for

rl v AY$-'(DY, D)/- l)2!)
1 = 1,2, ..., m

[3] Af(D?, D/3 = A$k-l)i(Di(k-1)(2s-l) ' D!' J)

A A(h-l)/(D!'-l)25 D!?
' I

for k = 1,2 ,..., m and 1 = 1,2 ,..., m

Suppose, as a simple example, that

D I = {a , , 0 2 , ~ 3 , 04) 0 2 = {bi, b2, b3, b4I

then

DY' = { a , } DY2 = {az } DY3 = {a3} DY = {a4}

and

MACKWORM ET AL. 121

FIG. 1 . Nomenclature for the domain tree containing subdomains of D,.

We are given the predicate Pl2.a,,b,) as a relation matrix.

b , b2 63 b4
1 1 1 o i
1 1 0 0

a4 0 0 1 0
P , ? : :il 0 0 1 0 1

We have A E = P I 2 .
Then we compute A?: by ORing together pairs of columns of

A E using [2] . The first column of A?: is obtained by bitwise
ORing the first and second columns of A?$ the second column
of A?: is obtained by ORing the third and fourth columns of
AE.

L o 1 - l

and then we compute A?;’ from A?:

A%: [;]
Using [3], A ; $ results from pairwise ANDing the rows of AE.

Similarly, A!; results from pairwise ANDing the rows of A?;.

1 0
A % [0 1]

Parenthetically, for those readers somewhat bemused by the
thicket of formal notation, let us remind you what this means.

I22 COMPUT. INTELL. VOL. I . 1985

For example, the entry in the first row of the second column of
A ! ; is a 0, which indicates it is not true that for all elements of
0:' = {a l ,a z } there is an element of 0:' such that P, is
satisfied.

A f : is computed by ANDing together the rows of A::.

At t = [;]
Finally, we obtain A:!, A::, and A:$ by ANDing the rows of
At!, A!: , and A!:, respectively.

A::: [0 0 0 01

A:! : [0 01

A:: : [l]

We also define a set of predicates Sy, where Sb' (Dp,Q'') is
true iff for some member of abstract label DF there is a member
of abstract label 0:' compatible with it.

S;!(D?,~'? iff (3 x E 0,+)(3 y E q ' ? ~ , (x , y)

We can also compute S$ inductively on k and 1 from the base
predicate P, as follows:

sy(D,os,qo? = f J , (U S , b ,)

where

[4] DQ" = {as} and Dp' = {b,}
[5] so,"^^,^!') = ~ ~ - ~) (~ ~ , ~ ~ ~ - ~ ~ 2 ~ - ~)) v So('-I) V

(D?, 0s'- ') 2 I)

for 1 = 1, ..., rn
and

[6] ,$!(0p,D,!') r S~~-') '(q('- ')("- '),~') v S$-l)/

(D(k - I)", D?)

In other words the hierarchy of S, predicates is computed by
collapsing P,: ORing together pairs of rows or pairs of
columns. For our example:

r l 1 1 01
1 1 0 0

0 0 1 0
q o 0 1 0 1

r l i

1 1 1 0
s q 0 0 1 0 1

s:,": [I 1 1 01

S?j:[I 11

s:;: [11

We distinguish the .arc (ij) from the arc (j , i) . Observe that
p. . = (f . .)T

J' rl

and so
A,? =

and

= (q)'
It is always the case that S$ = (Si!)T; this fact can be exploited
computationally. However, A$ is, in general, not equal to
(At')'. In our example:

r l 1 o 01
1 1 0 0

0 0 0 0
A E = L 1 0 1 1 1

whereas

1 0 [0 1]

5. Hierarchical arc consistency
We are now in a position to define a generalized hierarchical

arc consistency algorithm to be known as HAC. HAC uses the
general relaxation structure of AC-3 but uses REVISE-HAC
as an instantiation of REVISE-A. In particular, step 3 of
REVISE-A is

3

where
A + { X 1 (X E A,) A [(3 .V)(Y E A,) P l l (X , Y))

Ai = UAiq and Aj= U A;
4 r

as described earlier.
Step 3 can be implemented using the hierarchical predicates A

and S defined above. Ai is represented by a list of its abstract
labels Aiq; Aj is similarly represented.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

procedure REVISE-HAC ((iJ)):
begin
DELETE + false
Q t + A t

while Q, not empty do
A, - b

begin
select and delete an element @ from Q ,
Q 2 + A,

' FOUND - false
while Q2 not empty and not FOUND do

begin
select and delete an element 0: from Q2
if A , (Dp,Dj3 then

begin
AI + AI U {Dy}
FOUND +true
end

end

MACKWORTH ET AL. 123

6 . Complexity results
The algorithm AC-3 requires time linear in the number of

constraints. As we remarked earlier it is at best R(a2e) and at
worst O(a3e). The unit of time used is the evaluation of a binary
predicate on a pair of domain elements. We should not expect
HAC to improve on the worst case performance of AC-3.
Indeed, since it relies on a hierarchical organization of the
domain, intuition suggests that one could perversely structure
the domains in the worst possible way to ensure worst case
behaviour worse than AC-3.

We first consider the time required to compute the hierarchical
predicates A t and Sf defined by the recursive eqs. [I]-[6].
Computation of these predicates is a preprocessing step required
by HAC, if they are not already provided for an a plication. For
each arc (iJ) we must compute Af and S, where k, l =
0,1,2, ..., m. Consider that A,$'is represented by a relation
matrix, with 2m-k X 2"-' entries. The total number of entries
for A, is then

kP

20
21
22
23
24
25
26
21
28
29
30
31
32
33
34
35
36
31
38
39

if not FOUND then
begin
DELETE + true
if k > 0 then

begin

while Q2 not empty and not FOUND do
02 + Aj

begin
select and delete an element Df from Q 2
if Sf(Dv, 0;') then

begin

FOUND + true
end

Q , + Ql U { D f k - I) (2 S d l) D(k- l)ZS
7 1 I

end
end

end
end

return DELETE
end

REVISE-HAC: domain restriction for hierarchical arc consistency

procedure NC (i) :
begin

end
A; + D; n { x I P ; (X) }

1
2
3
4
5
6
I
8
9

10

begin
for i + 1 until n do NC (i)
Q +- Ki.j) I (i d E arcs (G), i f j }
while Q not empty do

begin
select and delete any arc (k , m) from Q
if REVlS E-HAC ((k , m))

end
then Q + Q U { i , k) I (i . k) E arcs (G) , i f k,i f m }

end

HAC: the hierarchical arc consistency algorithm

REVISE-HAC implements the generalized arc consistency
algorithm introduced in Sect. 3. In particular, after the applica-
tion of REVISE-HAC to arc (ij). that arc will be strongly
hierarchically arc consistent in the sense defined earlier. The
loop defined in lines 6-37 tests each abstract label in A; to see
if it is hierarchically consistent. It does that by testing the label

from .lj against the abstract labels in Aj. The loop in lines
11-19 looks for a label 0: in Aj such that A, is true. If every
label below DF is compatible with some label below Df then
Aj.is true. In that case; @ survives unchanged in A;. If not and & is not a leaf (k > 0) then lines 20-36 look for a label in Aj
such that some label below f l is compatible with some label
below I$' in which case S, is true. If such a label is found then
the label @ is replaced by its two successors in Q , . They must
be tested similarly on A, and Sij before this invocation of
REVISE-HAC returns.

It should be shown that REVISE-HAC is correct and always
terminates. A; starts as the empty set and adds members only at
line 16 when A , (D)[,D:? is true and so when REVISE-HAC
returns, all members of Ai are strongly arc consistent with some
abstract label in A,; hence the algorithm is correct. Since the
domain trees are noncyclic and the queues Q , and Q2 decrease
monotonically in size (except at line 28 where a finite total
number of elements can be added to Q2), the procedure must
terminate. The serial relaxation algorithm that has the form of
the modified AC-3 but uses REVISE-HAC is known as HAC.

2 2m-k2m-l =
k=O 1-0 p-0 q=o

Each entry requires two predicate evaluations to compute
except the 22m entries in Am which require one. Similarly for
$1; so for arc (i,]] the number of evaluations is

2(2(2m+1 - 1)2 - 22m) = 22m+4 - 22m+l - 2m+4 + 4
- 14 X 2'"

Since a = 2"' this is 14a'. Let e be the number of edges in the
constraint graph. There are 2e arcs and so the preprocessing
computation requires 8(ea'), but this can be done once and for
all for an application domain before any particular CSP is
tackled.

The space required to store the A, and S, predicates is
-12ea' bits, a constant factor larger than the euz bits required
for the P , predicates. The preprocessing time and the storage
space required can be reduced by exploiting facts such as Sji =
(S,j)T and the rule that if an entry in A, is 1 the corresponding
entry in S, must also be 1.

The best case for the time complexity of HAC clearly occurs
when the network is already strongly hierarchically arc con-
sistent. In that case it merely has to check that condition which
requires exactly 2.5 predicate evaluations of A7m between the
root node of each domain tree and the root node of its neigh-
bouring domain tree. So HAC is R(e).

Our analysis of the HAC worst case behaviour parallels the
analysis in Mackworth and Freuder (1985), so it will not be
spelled out in detail. Let d j be the edge degree of vertex i in the
constraint graph and let n be the number of vertices (variables).
The worst case would occur when there is no solution, but that
fact is discovered in the slowest possible way. For each variable
xi, REVISE-HAC can minimally replace one of the abstract
labels by its two successors (or deleting it if it is a leaf in the
domain tree). When that occurs, (di - 1) arcs are, at worst,
added to HAC's arc queue Q . The domain size is the number of
leaves in the domain tree, a = 2"; therefore that replacement or
deletion can occur 2a - 1 times since there are that many
abstract labels in the domain tree.

The number of arcs that are, in total, then removed from Q is
the number of arcs originally on Q plus the number added to Q

124 COMPLIT. INTELL. VOL. I . 1985

as a result of REVISE-HAC modifying a domain:
n

I = I
2e + 1 (2a - l)(d, - I) = 2e + (2a - 1)(2e - n)

For each arc (i ,~ ') the number of predicate evaluations is at
worst the product of the current sizes of the two abstract label
sets. Notice that there are a leaf vertices in the domain tree and
a - 1 interior vertices, for a total of (2a - 1). Since no abstract
label can be active at the same time as any of its descendants or
ancestors, the number of abstract labels active cannot exceed a.
Notice that of the a labels, (a - 1) each require up to a predicate
evaluations of A,j and the single label that is deleted or replaced
by its two successors requires up to 4a: A, and S, on the label
itself and A, on its two successors. Since we assume a $1
we count that as a2 evaluations. Accordingly, the number of
predicate evaluations is, at most,

a2[2e + (2a - I)(& - n)]
We may, without loss of generality, assume that e 2 n - 1

(Mackworth and Freuder 1985), and so the time complexity of
HAC is O(a3e). Since the complexity of HAC is asymptotically
4a3e compared with AC-3's 2a3e, the intuition that the worst
case for HAC is worse than the worst case for AC-3 is confirmed
and quantified: it may be twice as slow. Another way to
approach this is to realize that we have essentially doubled the
domain size from a to (2a - I) by adding the interior nodes so
the number of possible deletions from the domain has doubled.
However, since only a labels can be active at once the number
of predicate evaluations is still only u2 (not (2a)* = 4a2) to test
consistency at any iteration and so it is only twice as slow, not
eight times!

Although, pessimistically, the worst case analysis of HAC
suggests it can be twice as slow as AC-3, remember that our
optimistic best case analyses show it to be faster by a factor of
a2. Rather than try to characterize average case performance,
we shall analyze worst case performance of HAC on problems
for which i t was designed.

A more reasonable analysis of HAC would consider those
applications in which the domains are appropriately structured.
A way to characterize this is to require that there is only one
abstract label active in each node's domain at anytime, that is,
lA;l 5 1 . Intuitively, one can think then of the variable's
domain being progressively refined and reduced by the evidence
of its related neighbouring variables. The specialization hier-
archy is then being used as a true discrimination tree. If this is
the case then a similar worst case analysis proceeds as follows.
If REVISE-HAC returns true on (i j) it has minimally replaced
an abstract label by its successor. That can occur m = log2 a
times for that variable domain. Each time it occurs it adds (d ; - I)
arcs to Q . The total number of arcs removed from Q is

For each arc removed an application of REVISE-HAC is
needed, so the number of calls to REVISE-HAC is at most 2e +
(2 e - n) log a. We distinguish now between the successful
calls to REVISE-HAC, on which a domain revision occurs and
REVISE-HAC returns true, and the unsuccessful callson which
no change occurs and REVISE-HAC returns false. On the
successful calls, REVISE-HAC tests A, on the single label in
A, and the label in A,. That fails. Sij succeeds. The label in Ai
is replaced by its two successors: on one of them Aij succeeds
and on the other A, fails and S, fails. In all, five predicate

TABLE 1. PI, for Geo-system surrounds
Shore

Ptj Lakeshore Coastline

Island I 0
Mainland 1 0
Lake 0 1
Ocean 0 1

TABLE 2. A , and S,, for Geo-system
surrounded by Shore

Lakeshore Coastline Aly

Island 1 0
Mainland 1 0
Lake 0 1
Ocean 0 1

A !O Lakeshore Coastline

Landmass 1 0
Waterbody 0 1

Sij0 Lakeshore Coastline

Landmass 1 0
Waterbody 0 I

A: ' Shore

Landmass I
Waterbody 1

4; ' Shore

Landmass I
Waterbody I

~~ ~~

A,? Lakeshore Coastline

Geo-s ystem 0 0

$0 Lakeshore Coastline

Geo-sy stem 1 1

A,:' Shore

Geo-system 0

s,' ' Shore

Geo-system 1

evaluations are required. On the unsuccessful calls, only one
evaluation of A, is required. The number of successful calls to
REVISE-HAC is simply the number of possible deletions in a
domain (log a) times the number of domains (n). The number
of unsuccessful calls to REVISE-HAC is the number of calls,

MACKWORTH ET AL

J

level 2

Level 1

Level 0

125

Mainland Lake Ocean Lakeshore Coastline Island

(a) (b)
FIG. 2. (a) Geo-system specialization hierarchy and (b) Shore specialization hierarchy.

2e + (2e - n) log (I, minus the number of successful calls,
n log a. So the number of predicate evaluations is

5(n log a) + 1[2e + (2e - n) log a - n log a]
= 2e + (2e + 3n) log a

And so, the worst case complexity of HAC under the specified
condition is O(1oga (e + jn)), a remarkable improve-
ment over AC-3’s O(a3e).

7. Applications
HAC has been implemented and used in Mapsee3 (Mulder

1985), a schema-based system for interpreting hand-drawn
sketch maps. A brief note here on how it is used should be use-
ful. Schema instances represent scene objects and correspond to
what we have called variables here. As a schema instance
acquires more evidence as to its nature by acquiring a new
component, for example, it can specialize its own interpreta-
tion; this action corresponds to moving down the domain tree.
Moreover, instances that i t is already related to may then be
further specialized and so on. A geographical system (Geo-
system) has the specialization hierarchy shown in Fig. 2a while
a shoreline (Shore) has the specialization hierarchy of Fig. 2b.

Suppose a Geo-system completely surrounds a closed Shore
in the map then we have the relation Pj j shown in Table 1.

In other words either the Geo-system is an Island or a Main-
land and the Shore a Lakeshore or the Geo-system is a Lake
or an Ocean and the Shore a Coastline. From this relation we
can compute the hierarchical predicates Af and Sf! using
[11-[6]. They are shown in Table 2 (note that

Experimentally, for the sketch map application, Mulder
(1985) found that HAC is more efficient than AC-3. On each of
10 maps HAC required fewer predicate evaluations than AC-3
in Mapsee3 by factors ranging up to about two, although here
the domains are still very small: a varies from 2 to 8. Mulder

60 = Aii).

also reported experimental evidence that the number of itera-
tions does depend linearly on the number of constraints.

HAC is most useful when the domains can be naturally de-
scribed hierarchically; that is, when the interior nodes of the
domain tree are natural kinds. There must be nontrivial relation-
ships between the total set of elements represented at an internal
node of one domain tree and the total set of elements at an
internal node of the neighbouring domain tree. Moreover, we
expect the advantages of HAC to be more fully realized for very
large domains.

The original edge labelling paradigm in which arc consistency
was invented (Waltz 1972) is an example of such an application.
Waltz essentially used the sets of possible comers as the variable
domains with the edge type being the predicates. Interchanging
the role of the comers and the edges so the variable domains are
the edge types and the set of comers are the predicates, one can
structure the very large number of edge types (1532) hier-
archically (Mackworth 1977~) and use HAC.

To sketch how this would be done, consider the simple
Huffman-Clowes world with only four edge types: convex,
concave, and the two occluding edges. A natural grouping of
convex and concave into the “connect” abstract label and the
two occluding edges into the “occlude” abstract label yields a
three-level edge domain hierarchy with the single abstract label
“edge” at the root of the tree. The familiar catalogues of allow-
able comers for the junction shape categories correspond to the
base predicates. Using the algorithms given earlier, the predi-
cates families S and A can easily be constructed.

For example, a catalogue of allowable comer labellings at the
connect/occlude abstract label level represents the S predicate
between those levels of the domain trees. Since comers may
involve two or three edges the version of HAC presented here
for binary relations must be generalized to allow for n-ary rela-
tions. This can be done in the same way as AC-3 was generalized
to n-ary relations in Mackworth (1977b).

I26 COMPCT. IIrTELL VOL I , 1985

8. Conclusions
A hierarchical arc consistency algorithm for constraint satis-

faction problems, HAC, has been described that exploits the
internal structuring of domain values into a hierarchy of sub-
domains. Complexity results show that the algorithm has
demonstrably improved best and worst case performance if the
domains obey certain constraints. In that case HAC is at best
n(e) and at worst O((e + Jn) log a) compared with n(a2e)
and O(a3e) for the previously best-known algorithm. Experi-
mental results from the use of the algorithm in a computational
vision system, Mapsee3, are consistent with our analysis.

9. Acknowledgements
This research was supported by the Natural Sciences and

Engineering Research Council of Canada operating grants
A9281 and A5502 and the ,Canadian Institute for Advanced
Research. Alan Mackworth is a Fellow of the Canadian Institute
for Advanced Research. We are grateful to May Vink for a
heroic job of formatting the paper and to the referees for their
careful critiques and useful suggestions.

FREUDER, E. C. 1978. Synthesizing constraint expressions. Comrnuni-
cations of the ACM, 21, pp. 958-966.

1982. A sufficient condition for back track-free search. Journal
of the ACM. 19, pp. 24-32.

HARALICK, R. M. , and ELLIOTT, G. L. 1980. Increasing tree search
efficiency for constraint satisfaction problems. Artificial lntelli-
gence, 14, pp. 263-313.

HAVENS, W. S., and MACKWORTH, A. K. 1983. Representing
knowledge of the visual world. IEEE Computer, 16(lo), pp. 90-96.

MACKWORTH, A. K. 1 9 7 7 ~ . Consistency in networks of relations.
Artificial Intelligence, 8, pp. 99-1 18.

1977b. On reading sketch maps. Proceedings of the Fifth
International Joint Conference on Artificial Intelligence, MIT,
Cambridge, MA, pp. 598-606.

1 9 7 7 ~ . How to see a simple world. Machine Intelligence. Vol.
8. Edited by E. W. Elcock and D. Michie. Wiley, New York, N Y ,

MAEKWORTH, A. K., and FREUDER, E. C. 1985. The complexity of
some polynomial network consistency algorithms for constraint
satisfaction problems. Artificial Intelligence, 25, pp. 65-74.

MAIER, D. 1983. The theory of relational databases. Computer Science
Press, Rockville, MD.

MONTANAN, U. 1974. Networks of constraints: fundamental proper-
ties and applications in picture processing. Information Science, 7,

MULDER, J. A. 1985. Using discrimination graphs to represent visual
knowledge. Ph.D. thesis (TR 85-14), Department of Computer
Science, University of British Columbia, Vancouver, B.C.

WALTZ, D. E. 1972. Generating semantic descriptions of scenes with
shadows. Technical Report MAC AI-TR-271, MIT, Cambridge,
MA.

pp. 510-537.

pp. 95-132.

