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Abstract

Most approachesto model-baseddiagnosisdescribea diagnosisfor a system as

a set of failing componentsthat explains the symptoms. In order to characterize

the typically very largenumber of diagnoses,usually only theminimal such setsof

failing componentsare represented.This methodof characterizingall diagnosesis

inadequatein general,in part becausenot every supersetof the faulty components

of a diagnosisnecessarilyprovidesa diagnosis. In this paperwe analyzethe notion

of diagnosisin depth exploiting the notionsof implicate/implicant and prime im-

plicate/implicant. We use thesenotions to proposetwo alternativeapproachesfor

addressingthe inadequacyof the conceptof minimal diagnosis. First, we propose

a new concept,that of kernel diagnosis,which is free of the problemsof minimal

diagnosis.Second,we proposeto restrict the axioms usedto describethe systemto

ensurethat the conceptof minimal diagnosisis adequate.

1Corrected(as of June29, 1988)versionof theAAAI-90 paper.
2Fellow, CanadianInstitute for AdvancedResearch.



1 Introduction

The diagnostictask is to determinewhy acorrectly designedsystemis not functioning as

it was intended— theexplanationfor the faulty behaviorbeing that theparticularsystem

underconsiderationis at variancein someway with its design. Oneof the main subtasks

of diagnosisis to determinewhat could be wrong with a systemgiven the observations

that havebeenmade.

Most approachesto model-baseddiagnosis [4] characterizeall the diagnosesfor a

systemas the minimal sets of failing componentswhich explain thesymptoms. Although

this methodof characterizingdiagnosesis adequatefor diagnosticapproacheswhich model

only thecorrectbehaviorof components,it doesnot generalize.For example,it doesnot

necessarilyextendto approacheswhich incorporatemodelsof faulty behavior[21] or which

incorporatestrategiesfor exoneratingcomponents[16]. In particular,not every superset

of the faulty componentsof a diagnosisnecessarilyprovides a diagnosis. In this paper

we analyzethe notion of diagnosisin depth and proposetwo approachesfor addressing

the inadequacyof minimal diagnoses.First, we proposean alternative notion, that of

kernel diagnosis,which is free of the problemsof minimal diagnosis.Second,we propose

to restrict the axiomsusedto describethe systemto ensurethat the concept of minimal

diagnosisis adequate.

The extendedversionof this paper[7] expandson theresults,includesproofs for all the

theorems,developsrestrictionson the systemdescriptionthat allow the useof minimal

diagnosis,and usesthe approachto analyzecurrent model-baseddiagnosticsystemsin

moredetail.

2 Problems with minimal diagnosis

Insofaras possiblewe follow Reiter’s [17] framework.

Definition 1 A systemis a triple (SD,COMPS,OBS)where:

1. SD, the systemdescription, is a set offirst-order sentences.

2. COMPS, the systemcomponents,is a finite set of constants.

3. OBS, a set of observations,is a set of first-order sentences.

Most model-baseddiagnosispapers[5, 6, 10, 16, 17, 21] define a diagnosisto he a set

of failing componentswith all othercomponentspresumedto be behavingnormally. We

representadiagnosisasa conjunctionwhich explicitly indicateswhethereachcomponent

is normal or abnormal. This representationof diagnosiscapturesthe sameintuitions as

the previousdefinitions but generalizesmorenaturally.



Weadopt Reiter’s [17] conventionthat AB(c) is a literal which holdswhencomponent

c ECOMPS is behavingabnormally. (Some of the model-baseddiagnosisliterature uses

—‘OK(c) insteadof AB(c) but this is just terminology and does not affect the results

of this paper.) Dependingon the exact definition of fault for the diagnostictask being

addressed,abnormalitywill meansomethingdifferent. This is reflectedin how AB is used

in the sentencesof SD. For example, in GDE [5], being abnormaldoes not restrict the

possiblebehaviorsin any way sinceAB only appearsin theform —‘AB(x) —* JVI where!vI

is the correct behaviorof componentx. In [16] being abnormalmeansthat component

behaviornecessarilydeviatesfrom correctbehaviorsince AB only appearsin the form

-‘AB(x) M.

Definition 2 Given two setsof componentsCp andCn defineV(Cp, Cn) to be the con-

junctzon:

[A AB(c)] A [ A ~AB(c)].
cECp cEC’~.

A diagnosisis asentencedescribingone possiblestateof the system,wherethis state

is an assignmentof the statusnormalor abnormal to eachsystemcomponent.

Definition 3 Let A cCOMPS.A diagnosisfor (SD,COMPS,OBS)is V(A,COMPS —

A) such that SD U OBSu {V(A, COMPS— A)} is satisfiable.

The following important observationfollows directly from the definition (similar to

proposition3.1 of [17]):

Remark 1 A diagnosisexistsfor (SD,COMPS,OBS)if SD U OBS is satisfiable.

Unfortunately,theremay be ~ diagnoses.Thereforewe seeka parsimonious

characterizationof the diagnosesof a system.

Definition 4 A diagnosisV(A, COMPS — A) is a minimal diagnosiszfffor no proper

subsetA’ of A is ‘D(A’, COMPS — A’) a diagnosis.

Thus a minimal diagnosisis determinedby a minimal set of componentswhich can be

assumedto be faulty, while assumingthe remainingcomponentsare functioning normally.

Note that thesedefinitionssubsumeReiter’s [17]. Reiter’sdefinition of the conceptof

diagnosiscorrespondsto our notion of minimal diagnosis. Reiter providesno definition

correspondingto our notion of a diagnosis. All the resultsof [17] thereforeapply to our

conceptof a minimal diagnosis.

The following is an easyconsequenceof the abovedefinitions:

Remark 2 If V(A,COMPS — A) is a diagnosis, then there is a mmimal diagnosis

D(A’, COMPS — A’) such that A’ c A.



Figure 1: Two inverters

Most previous approachesto model-baseddiagnosishave assumedthat the con-

verse holds, i.e., if V(A’,COMPS — A’) is a minimal diagnosisand if A’ c A, then
V(A, COMPS— A) is a diagnosis. However, as we relax the commonly made assump-

tions, for exampleby allowing fault models or exonerationaxioms, the converse fails to

hold and we must explore alternativemeansfor parsimoniouslycharacterizing all diag-

noses.

Remark 3 If V(A’, COMPS — A’) is a minimal diagnosis and A’ C A, then

D(A, COMPS— A) neednot be a diagnosis.

Thus,not every supersetof the faulty componentsof aminimal diagnosisneedprovide

adiagnosis. To seewhy, considerthe following two simple examples. The first example

arises if we presume we know all the possibleways a component can fail such as in [21].

Example 1 Considerthe simple two inverter circuit of Fig. 1. If weare making observa-

tions at different times, then we must represent this in SD in someway. One schemeis

to introduce observation time t as a parameter. Thus the model for an inverter is:

INVERTER(x)—* -‘AB(x) —+ [in(x,t) = 0 out(x,t) = 1].

We assumethat SD is extendedwith the appropriate axioms for binary arithmetic,etc.

Supposethe input is 0 and the output is 1: in(Ii,To) = 0,out(12,To)= 1. There are
three possiblediagnoses: AB(11)A -‘AB(12), AB(12)A -‘AB(11) and AB(11) A AB(12);

theseare characterized by the first two diagnoses,which are minimal. Supposewe know

that the inverters we are using have only two failure modes: they short their output to

their inputs or their output becomesstuck at 0. We model this as:

INVERTER(x)A AB(x) —~ [SAO(x)V SHORT(s)],

SAO(x)—~ out(x,t) = 0,

SHORT(s)—~ otzt(x,t)= in(x,t).

Fromthesemodelswe caninfer thatit is no longerpossiblethat both Ij and12 arefaulted.

Intuitively, if ‘2 is faultedandproducingthe observed1, then it cannot be stuck at 0, and

must have its input shorted to its output. But then I~mustbe outputting a 1 and there

‘1 ‘2



is no faulty behaviorof I~which producesa 1 for an input of 0. Thus, AB(11) A AB(12)

is no longer a diagnosis,but the minimal diagnoses(remain) unchanged.

The only way to determinewhich of Ii or ‘2 is actually faulted is to makeadditional

observations.For example,if we observedont(Ii, T0), we could distinguishwhether Ii or

‘2 is faulted. SupposeI~is faultedsuchthat out(Ii, T0) = 0. To identify the actual failure

modeof I~we haveto observeout(Ii,Ti) or out(12,Ti) given in(Ii,Ti) = 1.

This exampleshows that the use of exhaustivefault modelssuch as in [21] leads to

difficulties with the usual definition of diagnosis. Oneway to avoid this difficulty is not

to presumeall the faulty behaviorsare known as in [6]. However, if we do not know all

the faulty behaviors,then nothing useful can ever be inferred from a componentbeing

abnormalwhich defeatsthe purposeof fault modesin the first place(this is addressedin

[6]) by introducingprobabilities).

Example 2 The usual definition of diagnosisencounterssimilar difficulties with the

TRIAL framework of [16]. In this framework a componentis consideredfaulty if it is

actually manifesting a faulty behaviorgiven the current set of inputs. If we are only

concernedwith one set of inputs, then every componentis modeledas a biconclitional.

Thus, the invertersof Fig. 1 areinstead describedby:

INVERTER(x)—* [-~AB(x) [in(x) = 0 out(x) = 1]].

Supposethe input and output are measuredto be 0. There are only two diagnoses(the

secondof which is minimal):

AB(11)A AB(12), —iAB(11)A —~AB(I2).

It is not possiblethat one inverter is faulted and the other not. Eachinverter exonerates

the other. In terms of [16], each inverter is an alibi for the other. Thus, although

—~AB(I1)A —‘AB(12) is a minimal diagnosis,neither —iAB(11) A AB(12) nor AB(11) A

—‘AB(12) are diagnoses. Again, we seethat by including axioms which restrict faulty

behaviorin any way, the usual definition of diagnosisis inadequateto characterizeall

diagnoses.

In the remainderof this paperwe explore two approachesto addressthis problem:

(1) find an alternativemeansto characterizeall diagnoses,and (2) restrict the form of

SD U OBSsuch that thenotion of minimal diagnosisdoescharacterizeall diagnoses.We

first require somepreliminaries.

3 Minimal diagnoses

The minimal diagnosesare convenientlydefined in terms of the familiar [14] notionsof

implicates and implicants (see [13, 18] for similar usesof thesenotions).



Definition 5 An AB-literal is AB(c) or -iAB(c) for somec fi COMPS.

Definition 6 An AB-clauseis a disjunction ofAB-literals containingno complementary

pair ofAB-literals. A positiveAB-clauseis an AB-clauseall of whoseliterals are positive.

Note that the empty clauseis considereda positive AB-clause.

Definition 7 A conflict of (SD,COMPS,OBS,)is an AB-clauseentailed by SD U OBS.

A positive conflict is a conflict all of whoseliterals are positive.

If SD U OBS is propositional,then a conflict is any AB-clausewhich is an implicate

of SD U OBS.
Theconflicts providean intermediatestep in determiningthediagnosesandarecentral

to many diagnosticframeworks. The reasonfor this can be understoodintuitively as fol-

lows. The diagnostictask is to determinemalfunctions,andthereforethe primary source

of diagnosticinformation about a systemare the discrepanciesbetweenexpectationsand

observations.A conflict representssuch a fragmentof diagnosticinformation. For exam-

ple, the conflict AB(A) V AB(B) might result from the discrepancybetweenobserving

x = 1 while expectingit to be 2, if componentsA and B werenormal. As aconsequence,
we infer that at least one of A or B is abnormal, i.e., the conflict AB(A) V AB(B).

Most researchershavefocusedonly on positiveconflicts. (As most previousresearchhas

focusedon the positive conflicts, they usually representedconflicts as sets of abnormal

components.)However, as we see in Section 4, the non-positiveconflicts are important

whenwe model faults and do exoneration.

Remark 4 A diagnosisexistsfor (SD,COMPS,OBS)if the emptyclauseis not a conflict

of (SD,COMPS,OBS).

Theorem 1 Suppose(SD,COMPS,OBS)is a system,H is its set of conflicts, and A ç

COMPS. Then V(A,COMPS— A) is a diagnosis if [I U {V(A,COMPS— A)} is

satisfiable.

Definition 8 A minimal conflict of (SD,COMPS,OBS)is a conflict no proper subclause

of which is a conflict of (SD,COMPS,OBS).

Thus, if SD U OBS is propositional,thena minimal conflict is any AB-clausewhich

is a prime implicate of SD U OBS.

Theorem 2 Suppose(SD,COMPS,OBS)is a system, H is its set of minimal conflicts,

andAC COMPS.ThenV(A,COMPS—A)isa diagnosisif HU{V(A,COMPS—A)}

is satisfiable.
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As the minimal conflicts determinethe diagnoses,they play a central role in most

diagnosticframeworks.

Example 3 Consider the familiar circuit of Fig. 2. Supposethe componentmodelsare:

ADDER(s)—* [-~AB(s)—~ out(s) = mi(s) + in2(x)]

MULTIPLIER(s) —~ [—‘AB(x) —~ out(s) = mi(s) x in2(x)}.

As before we assumethat SD is extendedwith the appropriateaxioms for arithmetic,

etc. With the given inputs,thereare two minimal conflicts:

AB(A
1

) V AB(M
1

) V AB(M
2

),

AB(A1)V AB(M
1

) V AB(M~)V AB(A2),

and four familiar minimal diagnoses:

V({A1},{A2,M1,M2,M3}) : AB(A1)A~AB(A2)A ~AB(M1)A ‘AB(M2) A -‘AB(M3)

V({M1},{A1,A2,M2,M3}): AB(M1) A ~AB(A1) A ~AB(A2)A ~AB(M2) A ~AB(M3)

V({M2, M
3

}, {A
1

, A
2

, M
1

}) AB(M2) A AB(M3) A ~AB(A
1

) A ~AB(A2) A ~AB(M1)

D({A2,M2},{A1,M1,M3}) : AB(A2)A AB(M2)A ‘AB(A1) A ~AB(M1) A ‘AB(M3).

2

2

3

3

Remark 5 If all the minimalconflictsof (SD,COMPS,OBS)arenon-emptyandpositzve,

then D(COMPS,{}) is a diagnosis.



Definition 9 A conjunctionC ofliterals covers a conjunctionD ofliterals if every literal

of C occurs in D.

Definition 10 Suppose~ is a set of propositionalformulas. A conjunctionof literals ir

containingno pair of complementaryliterals is an implicant of>~if ir entailseachformula

in ~. ir is a prime implicant of~if the only implicant of~coveringir is ir itself.

Theorem 3 (Characterizationof minimal diagnoses)V(A, COMPS — A) is a minimal

diagnosisof (SD,COMPS,OBS~if ~ AB(c) is a prime implicant of the set ofpositive

minimal conflicts of (SD,COMPS,OBS).

This theoremunderliesmany model-baseddiagnosticalgorithms. The first step,con-

flict recognition, finds positive minimal conflicts, and the secondstep,candidategener-

ation, finds prime implicants. Clearly, if we were only interestedin minimal diagnoses,

then we would only be interestedin identifying the positive minimal conflicts, but, in

general,we must considerthe non-positive minimal conflicts as well.

Wenow havethe machineryto statepreciselywhentheminimal diagnosescharacterize

all diagnoses.

Theorem 4 The following are equivalent:

1. If V(A’,COMPS — A’) is a minimal diagnosis for (SD,COMPS,OBS),then

V(A,COMPS — A) is a diagnosisfor (SD,COMPS,OBS)for everyA such that

COMPS D A D A’ (i.e., everysupersetof the faulty componentsof a minimal

diagnosisprovidesa diagnosis).

2. All minimal conflicts of (SD,COMPS,OBS)are positive.

In Example1, AB(I1)A—~AB(I2)wasadiagnosis,but AB(11)AAB(12),which hasmore

faulty components,was not. By Theorem 4 this must arisebecauseone of the minimal

conflicts is not positive. In this example, the negativeclause,—‘AB(11) V iAB(12), is a

minimal conflict, which follows directly from the fault modelsof Ii and 12.

4 Partial diagnoses

Supposewe havethe following two diagnosesfor a threecomponentsystem: AB(ci) A

AB(c2) A AB(c3) and AB(ci) A AB(c2) A —‘AB(c3). We caninterpret this as sayingthat

c1 and c2 are faulty, and that c3 may or may not be faulty. Thus, the two diagnoses

may be representedmore compactly by AB(ci) A AB(c2). In fact, we can view this as

a ‘partial’ diagnosisin which we are uncommittedto the statusof c3 no matter what

that statusis, it leadsto a diagnosis. This is the basis for Poole’s observation[15] that



a diagnosisneednot commit to a statusfor eachcomponentwheneverthat statusis a

‘don’t care’. Accordingly, we introducethe conceptof a partial diagnosis. This concept

also has the nice side effect of providing a convenientrepresentationcharacterizingthe

set of all diagnoses.

Definition 11 A partial diagnosisfor (SD,COMPS,OBS)is a satisfiable conjunctionP

of AB-literals such that for everysatisfiable conjunction of AB-literals ~ coveredby F,

SD U OBS U ~ is satisfiable.

The following is an easyconsequenceof this definition:

Remark 6 If P is a partial diagnosisof (SD,COMPS,OBS) and C is the set of all com-

ponentsmentionedin P, then P A ~ A(c) is a diagnosis, where each A(c) is

AB(c) or ~iAB(c).

Thus, a partial diagnosisP representsthe set of all diagnoseswhich contain P as a

subconjunct. It is natural then to consider the minimal such F’s, which we call kernel

diagnoses.

Definition 12 A kernel diagnosisis a partial diagnosiswith the property that the only

partial diagnosiswhich covers it is itself.

The following easyresult providesexactly the characterizingpropertywe havebeenlook-

ing for:

Theorem 5 (Characterizationof diagnoses)V(A, COMPS— A) is a diagnosisif there

is a kernel diagnosiswhich coversit.

Considerthe exampleof Fig. 1. Without the introduction of fault modelstherewere

three diagnoses: AB(11) A -iAB(12), -iAB(11) A AB(12), AB(11) A AB(12) which are

characterizedby thetwo kerneldiagnoses:AB(11) and AB(12). With the additionof the

fault models,the kerneldiagnosesbecome: AB(I1) A -AB(12) and -iAB(Ii) A AB(12).

Partialandkerneldiagnosescanbe particularlyeasilycharacterizedin terms of prime
implicants and minimal conflicts. Recall that a conjunction of literals ir containingno

pair of complementaryhiterals is an imphicant of ~ if n entailseachformula in ~.

Theorem 6 The partial diagnosesof (SD,COMPS,OBS) are the implicants of the mini-

mal conflicts of (SD,COMPS,OBSJ).

Corollary 1 (C’haracterization of kernel diagnoses) The kernel diagnoses of (SD,

COMPS,OBS) are the prime implicants of the minimal conflicts of SD U OBS.



As aconsequenceof this corollary andTheorem3, if all minimal conflicts arepositive,

then thereis a simple one-to-onecorrespondencebetweenminimal diagnosesand kernel

diagnoses.

Corollary 1 providesadirect way of computing thekerneldiagnoses.Oneway of doing

this is to convert the CNF-form of the minimal conflicts to DNF and simplify as follows

(we omit the proof):

1. ‘Multiply’ the minimal conflicts to give adisjunctionof conjunctions.

2. Deleteany conjunctioncontaininga complementarypair of hiterals.

3. Deleteany conjunctioncoveredby someother conjunction.

4. The remainingconjunctionsare the prime imphicantsof the original minimal comi-

flicts, andhencethe kerneldiagnoses.

Example 4a ConsiderExample3. There are two minimal conflicts:

AB(A1)V AB(M1) V AB(M2),

AB(A1)V AB(MI) V AB(M3) V AB(A2),

and four kernel diagnoses:

AB(A1), AB(M1),

AB(M2) A AB(M3), AB(M2) A AB(A2).

As all minimal conflictsarepositive, thesediagnosescorrespondone-to-oneto the familiar

minimal diagnoses.

Example 4b If we considereda componentto be faulted only if it manifesteda faulty

behaviorunder the current set of inputs (such as in [16]), then we would use slightly

different componentmodels:

ADDER(x) [~AB(x) [out(s) = mi(s)+ in2(x)]I

MULTIPLJER(x) —~ [-iAB(~) [out(s) = mi(s) x in2(x)]].

In this casethe minimal conflicts become:

AB(AI) V AB(M1) V AB(M2),

AB(A1) V AB(A2)V AB(M1) V AB(M3),

AB(A2)V -‘AB(M2) V AB(M3),

AB(A2) v AB(M2) V —iAB(M3)



—~AB(A2)v AB(M3) V AB(M2),

and the kernel diagnosesbecome:

—~AB(A2)A AB(M1) A -‘AB(M2) A -‘AB(M3),

AB(A2)A AB(M1) A AB(M3),

AB(A1) A —~AB(A2)A -iAB(M2) A —‘AB(M3),

AB(A1)A AB(A2)A AB(M3),

AB(A2)A AB(M2), AB(M2) A AB(M3).

Note that becausethe positiveminimal conflicts areunchanged,the set of minimal diag-

nosesremainsunchanged.

In this examplethereareonly a few more kerneldiagnosesthanminimal diagnoses(6
vs. 4). However,onepossibledisadvantageof this approachis that theremay sometimes
be exponentiallymorekerneldiagnosesthan diagnoses.

It is interestingto note that the set of minimal conflicts may be redundant.In Exam-

ple 4b, the first and third minimal conflicts entail thesecond:

AB(A1)V AB(M1) V AB(M2)

AB(A2)V —~AB(M2)V AB(M3)

AB(A1)V AB(A2)V AB(M1) V AB(M3)

Therefore,the secondminimal conflict is redundant.Such redundancycanonly occur if

thereare non-positiveminimal conflicts. Unfortunately, theseobservationsdo not seem

to be of much practicalusebecausethereis no easyway to tell whetherthereareenough

minimal conflicts without first finding them all.

Definition 13 A set of kernel diagnosesis irredundant if it is a smallestcardinality set

with the property that everydiagnosisis coveredby at least one of its elements.

Remark 7 If all minimal conflicts are positive there is exactly one irredundant set of

kerneldiagnoses,namelythe set of all kerneldignoses.

A systemcanhavemultiple irredundantsetsof kerneldiagnoses.

Example 5 Considera circuit having threecomponentsA, B, C and the two minimal

conflicts:

AB(A) v AB(B) v AB(C), —‘AB(A)V -~AB(B)V —‘AB(C)

Thesehavesix prime imphicants(i.e., kernel diagnoses).

AB(A) A -iAB(B), —~AB(A)A AB(C), AB(B) A -~AB(C),



-iAB(A) A AB(B), AB(A) A —‘AB(C), —‘AB(B) A AB(C).

Thereare two irredundantsetsof kernel diagnoses:

{AB(A) A -iAB(B), -‘AB(A) A AB(C), AB(B) A -‘AB(C)}

{-~AB(A)A AB(B),AB(A) A -~AB(C),-~AB(B)A AB(C)}.

Our analysisof kerneldiagnosescorrespondsexactlyto theclassicalanalysisin switch-

ing theory of so-called two level minimization of boolean functions (e.g., the Quine-

McCluskey algorithm [ii, 14]). The problem there is to synthesizea circuit realizing

a given function as a disjunction of conjunctionsof literals in such a way as to minimize

the numberof and-, or- and not-gates. Such circuits are characterizedby irredundant

setsof prime implicantsof the given function. In the caseof diagnosis,the given boolean

function is specified by H, the set of conflicts of SD U OBS. The kernel diagnosesare

the prime implicants of H, and the minimal sets of kernel diagnosessufficient to cover

every diagnosisare the irredundantsetsof prime implicantsof H. It is well known from

switchingtheory that theminimization problemis computationallyintractable;theremay

he too many prime implicants, and evenif therearen’t, finding an irredundantsubsetof

them is NP-hard. Therefore,designersof VLSI circuits havedevelopedvarious approxi-

mationtechniques[1]. Becauseof theexact correspondencewith diagnosis,we can expect

to profit from thesetechniques.

5 Prime diagnoses

Raiman [16] proposesanotion of primediagnosisto characterizediagnoses.In hisTRIAL
architecture,componentsare individually incriminated and exonerated. Therefore,he

characterizesthe diagnosesof a systemin termsof the diagnosesinvolving its individual

components.The following is a generalizationof his definition.

Definition 14 Given (SD,COMPS,OBS),a prime diagnosisfor cECOMPSis a minimal

diagnosisfor (SD,COMPS,OBSU {AB(c)}).

Primediagnosescharacterizeall diagnosesas follows.

Theorem 7 (Raiman) SupposeV(A, COMPS — A) is a diagnosis. Thenfor eachc1 E

A there is a prime diagnosisV(A1, COMES — A1) for c1 such that A = U~A1.

Unfortunately,Examplei showsthat not every union leadsto adiagnosis.The prime

diagnosesare:

P(I1) = {AB(I1) A —~AB(I2)},



P(12) = {AB(12) A —‘AB(11)}.

However, AB(11) A AB(12) is not a diagnosis. Thus, prime diagnosesare inadequateto

characterizediagnoses.

Raiman [16] implicitly assumesall minimal conflicts contain at most one negative

literal. In this case Raiman shows that the converseof Theorem7 holds which makes

prime diagnosesadequatefor characterizingdiagnoses. This useful property holds if

SD U OBS is horn, but we do not know of any more general practical condition on

SD U OBSwhich ensuresit.

6 Restricting the system description

Our overall objective is to find methodsof characterizingall diagnoses. We saw that

minimal diagnoseswere inadequatefor this task in generaland we examinedkernel and

prime diagnosesas alternatives.Another approachis to restrict the form of the system

so that minimal diagnosesdo characterizeall diagnoses.We know from Theorem4 that a

necessaryandsufficient conditionensuringthat every supersetof the faulty components

of a minimal diagnosisprovides a diagnosis is that all minimal conflicts be positive.

Unfortunately, we arenot awareof any simple necessaryand sufficient conditionon the

syntacticform of a systemwhich ensuresthat all minimal conflicts arepositive. Clearly

both OBS and SD need to he restricted becausedefinition 1 allows non-positive AB-

clausesto be partof OBSandSD. In the extendedpaperweexploresomecommonlyused

practical restrictionson OBSand SD that suffice to ensurethat the minimal diagnoses

areadequateto characterizeall diagnoses.

7 Summary

The notions of minimal and prime diagnosisare inadequateto characterizediagnoses

generally. We argue that the notion of kernel diagnosiswhich designatessome compo-

nentsas normal, othersabnormal,and the remainderas being either, is a better way to

characterizediagnoses.We avoid significant complexity if kerneldiagnosescontain only

positive literals (i.e., all minimal conflicts arepositive). This can be achievedby limiting

the descriptionof the systemto ensurethis. Most current model-basedtechniquestake

this approach[7].

Thereareusuallya largenumberof minimal conflicts andkerneldiagnoses(or minimal

diagnoses). Therefore, the brute-forceapplication of the techniquessuggestedin this

paper is not practical. The contribution of this paper is that it providesa clear logical

framework for characterizingthe spaceof diagnosesin the generalcase. It thus provides

the specificationfor an ideal diagnostician.In practice,somefocusing strategymust he



brought to bear. Oneapproachis to exploit hierarchicalinformation as in [10]. Another

approachis to focus the reasoningto identify the most relevantconflicts in order to find

the most probablediagnoses[6, 8]. Flowever, both of theseapproachesrequireadditional

information: the structuralhierarchyand probabilistic information.
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