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Abstract The development of autonomous agents, such as mobile robots and soft-
ware agents, has generated considerable research in recent years. Robotic systems,
which are usually built from a mixture of continuous (analog) and discrete (dig-
ital) components, are often referred to as hybrid dynamical systems. Traditional
approaches to real-time hybrid systems usually define behaviors purely in terms of
determinism or sometimes non-determinism. However, this is insufficient as real-
time dynamical systems very often exhibit uncertain behavior. To address this issue,
we develop a semantic model, Probabilistic Constraint Nets (PCN), for probabilistic
hybrid systems. PCN captures the most general structure of dynamic systems,
allowing systems with discrete and continuous time/variables, synchronous as well
as asynchronous event structures and uncertain dynamics to be modeled in a unitary
framework. Based on a formal mathematical paradigm exploiting abstract algebra,
topology and measure theory, PCN provides a rigorous formal programming seman-
tics for the design of hybrid real-time embedded systems exhibiting uncertainty.
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1 Introduction

Dynamical systems are defined on time and domain structures. Both of which can
be either discrete or continuous. A hybrid dynamical system is a dynamical system
composed of a combination of discrete and continuous time and domain structures.
A robotic system consisting of a computer-controlled robot coupled to a continuous
environment is an example of a hybrid dynamical system. Hang and Tamworth
proposed a formal framework for deterministic hybrid systems called Constraint
Nets (CN) [1]. Although their paradigm allows for the modeling of non-deterministic
systems through hidden inputs, it does not permit the specification of uncertainty in
the system. However, real-time dynamical systems very often behave unpredictably
and thus exhibit (structured) uncertainty. It is therefore important to be able to
model and analyze real-time probabilistic systems.

In this paper we introduce a sound mathematical framework for the modeling
of probabilistic hybrid dynamical systems that we call Probabilistic Constraint Nets
(PCN). PCN provides a model that is formal and general, modular and compos-
ite, powerful and practical. Moreover, PCN has a graphical representation which
simplifies the modeling task. Based on algebraic, topological and measure-theoretic
structures of dynamics, the PCN framework extends the CN paradigm to allow the
user to model uncertainty in the dynamics of the system and in the environment. We
will introduce the syntax of the modeling language along with its semantics which
leads to a midpoint in distribution.

However, before introducing the syntax of our framework, we present an example
of a basic dynamical system that we will use throughout this paper. Consider the
discrete time dynamical system corresponding to the following recursive function:
f (t + 1) = 0.5 f (t) + Y(ω), f (0) = 0, where Y(ω) : " → {1, 2} is a random variable
with a discrete uniform distribution over the set {1, 2}. The PCN graphical represen-
tation of this system is depicted in Fig. 1. This system will serve as a running example
throughout this paper. Figure 1 will be explained when we introduce the PCN syntax
in Section 3. We will also use this example to illustrate the semantics of the PCN
framework in Section 4.

Fig. 1 Simple transduction
with uncertainty
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1.1 Practical application to dynamical systems: introduction to an elevator system

To further demonstrate the scope of the applicability of our approach, we will
analyze an elevator system exhibiting uncertainty. Elevator systems constitute a
useful tested for hybrid systems, as confirmed by the fact that they have been used
as a benchmark for various approaches to real-time systems [2–5]. Nevertheless,
most previous approaches focus on discrete deterministic dynamics. Combining
continuous Newtonian dynamics and discrete control from users’ requests, we extend
the benchmark example in [2] to account for the different types of uncertainty that
can arise in a real physical elevator system. We model the different levels of the
system (continuous motion, discrete controller) and, in [6], provide a methodology
for verifying the behavior of this system with respect to a behavioral constraint
of real-time response. We refer the reader to [2] for a complete description and
analysis of the deterministic hybrid version of this example. For another application
of our framework, the reader should consult [7] where we modeled and analyzed
a robotic museum surveillance system encompassing uncertainty, on which were
imposed constraints on the quality of service.

In Fig. 2, we show the PCN model of the elevator body as represented by a second
order stochastic differential equation, based on Newton’s second law:

ḧ = k(t)ḣ + F + w(t) (1)

where F is the motor force (control input), k(t) is the coefficient of friction and
h is the height of the elevator. Moreover, the model is augmented with two types
of uncertainty: (1) uncertainty in the dynamics through variation of the friction
coefficient k(t), and (2) a time-varying external disturbance force w(t) acting on the
elevator. We assume that k(t) has a nominal value of k0 = 1.05 and that it can vary
with k(t) ∈ [0.70, 1.40], modeled as a Gaussian White Noise process with zero mean
and standard deviation σ = 0.15. With these parameters, we have Pr(|k(t) − k0| ≤
0.35) ≥ 0.9804; that is, the value of the friction coefficient may exceed the presumed
bounds on the uncertainty, but with a small non-zero probability. This phenomenon
indicates a “soft” norm constraint on the uncertainty. We will later augment the
system with probabilistic passenger arrivals.
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Fig. 2 The BODY module of the elevator system
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2 Mathematical foundations

In this section, we present the essential mathematical concepts needed to understand
the theoretical results for the semantics of the PCN framework. These concepts are
based on general topology notions and probability and measure theory. General
topology allows us to reason about convergence, connectivity and continuity while
probability and measure theory are tools that enable us to reason about integration
in arbitrary measure spaces. For a more comprehensive introduction to the mathe-
matical foundations introduced here, the reader is referred to [8–13] while we suggest
[14–17] for a more thorough training in measure and probability theory.

As we are interested in modeling dynamical systems, a model of time and its
evolution is necessary. In fact, a clear notion of the concept of time is central to
understanding dynamics. We formalize time using an abstract structure that captures
its most important properties. In general, a time structure can be considered as a
totally ordered set with an initial start time, an associated metric for “the distance
between any two time points” and a measure for “the duration of an interval of time.”
Formally, we define the concept of time structure as follows.

Definition 2.1 (Time structure) A time structure is a triple 〈T , d, µ〉1 where

• T is a linearly ordered set 〈T , ≤〉 with 0 as the least element;
• 〈T , d〉 forms a metric space with d as a metric satisfying: for all t0 ≤ t1 ≤ t2,

d(t0, t2) = d(t0, t1) + d(t1, t2),

{t|m(t) ≤ τ } has a greatest element and {t|m(t) ≥ τ } has a least element for all
0 ≤ τ < sup{m(t)|t ∈ T } where m(t) = d(0, t);

• 〈T , σ, µ〉 forms a measure space with σ as the Boreal set of topological space
〈T , d〉 and µ as a Boreal measure satisfying µ([t1, t2)) ≤ d(t1, t2) for all t1 ≤ t2
where [t1, t2) = {t|t1 ≤ t < t2} and µ([t1, t2)) = µ([0, t2)) − µ([0, t1)).

Note that the set of rational numbers Q with the metric d and the measure µ

does not form a time structure. This can be proved using the fact that the set Q
of rationales lacks the least upper bound property stating that if a set S has the
property that every nonempty subset of S which has an upper bound also has a least
upper bound.

As with time, we formalize domains as abstract structures so that discrete and
continuous domains are defined uniformly. A domain can be either simple or
composite. Simple domains denote simple data types, such as reals, integers, Boolean
and characters; composite domains denote structured data types, such as arrays,
vectors, strings, objects, structures and records.

1To abbreviate the notation, we will simply use T to refer to the time structure 〈T , d, µ〉 when no
ambiguity arises.
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Definition 2.2 (Simple domain) A simple domain is a pair 〈A ∪ {⊥A}, dA〉 where A
is a set, ⊥A *∈ A means undefined in A, and dA is a metric on A. Let A = A ∪ {⊥A}.
For simplicity, we will use A to refer to simple domain 〈A, dA〉 when no ambiguity
arises. For example, let R be the set of real numbers, R is a simple domain with a
connected metric space; let B = {0, 1}, B is a simple domain with a discrete topology
on B.

Any simple domain A is associated with a partial order relation ≤A. 〈A, ≤A〉 is
a flat partial order with ⊥A as the least element. In addition, A is associated with a
derived metric topology τ = τA ∪ {A} where τA is the metric topology on A derived
from the metric dA.

A domain is defined recursively based on simple domains.

Definition 2.3 (Domain) 〈A, ≤A, τ 〉, with ≤A as the partial order relation and τ as
the derived metric topology, is a domain2 if:

• It is a simple domain; or
• It is a composite domain, i.e., it is the product of a family of domains {〈Ai,

≤Ai , τi〉}i∈I such that 〈A, ≤A〉 is the product partial order of the family of partial
orders {〈Ai, ≤Ai 〉}i∈I and 〈A, τ 〉 is the product space of the family of topological
spaces {〈Ai, τi〉}i∈I .

We take a signature as a syntactical structure of a class of multi-sorted domains
with associated functions defined on these domains. Let % = 〈S, F〉 be a signature
where S is a set of sorts and F is a set of function symbols. F is equipped with a
mapping type: F → S∗ × S where S∗ denotes the set of all finite tuples of S. For any
f ∈ F, type( f ) is the type of f . We use f : s∗ → s to denote f ∈ F with type( f ) =
〈s∗, s〉. For example, the signature of an algebra on the Naturals can be denoted by
%N = 〈N, {0,+, −, ×}〉. This signature has only one sort, N, with 4 different function
symbols.

A domain structure of a signature is defined as follows. Let % = 〈S, F〉 be a
signature. A %-domain structure A is a pair 〈{As}s∈S, { f A} f∈F〉 where for each s ∈
S, As is a domain of sort s, and for each f : s∗ → s ∈ F with s∗ : I → S and s ∈
S, f A : ×I As∗

i
→ As is a function denoted by f , which is continuous in the partial

order topology. For example, 〈N, {0,+, −, ×}〉 is a %N structure where +, − and ×
are addition, subtraction and multiplication, respectively.

With any time structure and domain structure, we can define two basic elements
in probabilistic dynamical systems: stochastic traces, which are functions of time
and sample space ", and transduction, which are mappings from stochastic traces
to stochastic traces.

Stochastic traces are a central notion in representing the dynamical behavior of the
systems modeled within the PCN framework. A stochastic trace intuitively denotes
the (random) changes of values over time. Formally, a stochastic trace is a mapping
v : " × T → A from sample space " and time domain T to value domain A. For
a given ω ∈ ", the function vω : T → A is simply called a trace. In the literature, a

2For simplicity, we will use A to refer to domain 〈A, ≤A, τ 〉 when no ambiguity arises.
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trace is often referred to as a sample function, a realization, a trajectory or a path
of the underlying stochastic process. We will use v to denote both the stochastic
trace v or one of its realization traces vω when it is clear from the context and no
ambiguity arises.

A stochastic trace v is well-defined if v(ω, t) is well-defined for all (ω, t) ∈ " × T .
A stochastic trace v is undefined if v(ω, t) is undefined for any (ω, t) ∈ " × T . For
example, denote a Browning motion process by Bt(ω) and T = R+ and A = R. Then
v = λω, t.Bt(ω) is a well-defined stochastic trace. For a fixed ω in ", vω = λt.Bt(ω)

represents a path of the Browning motion process. On the other hand, v1 = λt. cos(t)
and v2 = λt.e−t are well-defined deterministic traces, i.e., stochastic traces for which
|"| = 1.

Due to the fact that physical systems encompass uncertainty, one is often more
interested in the distribution of the set of all execution traces of system rather than
in one specific execution trace.

One important feature of a trace is that it provides complete information about
the current execution of the system of interest at every time point. In the presence of
uncertainty, the limiting value of a specific execution trace vω is of little interest since
the measure of that trace is typically zero. The distribution of a stochastic trace, on
the other hand, provides complete information about the probability of the state of
the system at every finite time point.

Although trace distribution values at infinite time points are not represented ex-
plicitly, they can be derived when limits (in distributions) are introduced. The limiting
distribution of a stochastic trace can provide useful information when assessing the
behavior of the system in the long run. For example, consider the stochastic trace as-
sociated to the system denoted by f : " × R+ → R+, where f (ω, t) = 1 + Bt(ω)e−t,
with Bt(ω) a Browning motion process. For each value of t, one can easily show that
f follows a Gaussian distribution with mean 1 and variance te−2t (F f = N (1, te−2t)).
The limiting distribution is hence limt→∞N (1, te−2t) = N (1, 0), which indicates that
in the long run, the system will converge to value 1 and will not fluctuate away from
it, despite being influenced by a Browning motion with increasing variance.

A transduction is a mapping from input stochastic traces to output stochastic
traces that satisfies the causal relationship between its inputs and outputs, i.e., the
output value at any time depends only on inputs up to and including that time. The
causal relationship stipulates that the evolution of the system cannot be dictated by
the future state of the system, but only by past and present values. Formally, causality
can be defined as follows

Definition 2.4 (Causality via Ft -advisedness) Assume {Ft}t≥0 to be an increasing
family of σ -algebra of subsets of A"×T . A mapping F(v)(ω, t) : A"×T → A′"×T ′

is causal if F(v)(ω, t) is Ft-adapted. A causal mapping on stochastic trace spaces is
called a transduction.

Primitive transduction are defined on a generic time structure T and are functional
compositions of three types of basic transduction: generators, transliterations and de-
lays. We differentiate between deterministic and probabilistic transduction depending
on whether or not they encompass a generator. Compound transduction of each type
are built by combining simple transduction of the same type with transliterations and
delays. Figure 3 shows the hierarchy of transduction within the PCN framework.
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Fig. 3 Transduction type
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Definition 2.5 (Generator) Let A be a domain, " be a sample space and T a
time structure. Moreover, let FX|A denote the (potentially conditional) cumulative
distribution function for the random variable X. A generator G A

T (v0) : " × T × A →
A is a basic transduction defined as

G A
T (v0, FX)(v) = λω, t.

{
v0 if t = 0
rand(FX|v(ω,t)(t),ω) else

where rand(FX|A, ·) is a random number generator associated with FX|A.

We allow the distribution function FX|A to be conditioned on t and values of
the systems to produce a general model of uncertainty. This enables the user to
model systems where the uncertainty component is non-stationary and conditioned
on the state of the system. Also note that in this paper, we are not interested in
the simulation of random variables per se, but rather in the analysis of the resulting
models. Hence, we will assume that we are given, for each generator included in the
model, appropriate random number generators [18–21].

Definition 2.6 (Transliteration) A transliteration is a pointiest extension of a func-
tion. Formally, let f : " × A → A′ be a function and T be a time structure.
The pointiest extension of f onto T is a mapping fT : A"×T → A′ "×T satisfying
fT (v) = λω, t. f (v(ω, t)).

By this definition, ( f ◦ g)T = fT ◦ gT . We will also use f to denote transliteration
fT if no ambiguity arises.

Intuitively, a transliteration is a transformational process without memory or
internal state, such as a combinational circuit. Note that in the absence of any
random variable within the transliteration, the transformational process is simply a
deterministic function of the current input.

Now let us present the last type of basic transduction: delays. There are two types
of delay: unit delays and transport delays.

For a given trace, a unit delay δA
T (ω, v0) acts as a unit memory for data in domain

A, given a discrete time structure. We will use δ(v0) to denote unit delay δA
T (ω, v0) if

no ambiguity arises.
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Definition 2.7 (Unit delay) Let A be a domain, v0 a well-defined value in A, and T
a discrete time structure. A unit delay δA

T (ω, v0) : A"×T → A"×T is a transduction
defined as

δA
T (ω, v0)(v) = λt.

{
v0 if t = 0
v(ω, pre(t)) otherwise

where v0 is called the initial output value of the unit delay.

However, in the presence of non-discrete time structures, unit delays may not be
meaningful. Hence we need a transduction that is suitable for more general time
structures.

Definition 2.8 (Transport delay) Let A be a domain, v0 a well-defined value in A,
T a time structure and τ > 0. A transport delay (A

T (τ )(ω, v0) : A"×T → A"×T is a
transduction defined as

(A
T (τ )(ω, v0)(v) = λt.

{
v0 if m(t) < τ

v(ω, t − τ ) otherwise

where v0 is called the initial output value of the transport delay and τ is called the time
delay. We will use ((τ )(v0) to denote transport delay (A

T (τ )(ω, v0) if no ambiguity
arises. Transport delays are essential for modeling sequential behaviors in dynamical
systems.

With preliminaries established, we define an abstract structure of dynamics.

Definition 2.9 (%-dynamics structure) Let % = 〈S, F〉 be a signature. Given a %-
domain structure A and a time structure T , a %-dynamics structure D(T , A) is a
pair 〈V,F〉 such that

• V = {A"×T
s }s∈S ∪ E"×T where A"×T

s is a stochastic trace space of sort s and E"×T

is the stochastic event space;
• F = FT ∪ F◦

T where FT is the set of basic transduction, including the set
of transliterations { f A

T } f∈F , the set of unit delays {δAs
T (vs)}s∈S,vs∈As , the set of

transport delays {(As
T (τ )(vs)}s∈S,τ>0,vs∈As , and the set of generators {G As

T }s∈S; F◦
T

is the set of event-driven transduction derived from the set of basic transduction,
i.e., {F◦|F ∈ FT }.

In this body of work, we are interested in modeling the larger class of hybrid
probabilistic dynamical systems, that is, systems encompassing components of more
than one basic type. Within the PCN paradigm, a probabilistic hybrid dynamical
system consists of modules with different time structures, with its domain structure
multi-sorted and with a set of probabilistic generators, as basic transduction, which
allows for the modeling of the uncertain components of these modules.

To model systems with modules that are associated with different clocks we
introduce the notion of event-driven transduction. In order to properly introduce
the notion of event-driven transduction, we need to define the concept of sample
and extension traces. Let Tr be a reference time of T with a reference time
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mapping h. The sample stochastic trace of v : " × Tr → A onto T is a stochastic
trace v : " × T → A satisfying v = λω, t.v(ω, h(t)). The extension stochastic trace of
v : " × T → A onto Tr is a stochastic trace v : " × Tr → A satisfying

v = λω, tr.
{

v(ω, h−1(tr)) if cond
⊥A otherwise

where contd = ∃t ∈ T , µr([0r, tr)) ≤ µ([0, t)) or µr([0r, tr)) < µ(T ) and h−1(tr) =
{t|h(t) ≤r tr} ∈ T ∞.

Both sampling and extension can be seen as transformational processes on traces,
hence they are transduction. Sampling is a transduction whose output is a sample
trace of its input. Extending is a transduction whose output is an extension trace of
its input.

An event-driven transduction is a primitive transduction augmented with an extra
input which is an event trace; it operates at each event point and the output value
holds between two events. This additional event trace input of an event-driven
transduction is called the clock of the transduction. Intuitively, an event-driven
transduction works as follows. First, the input trace with the reference time T is
sampled onto the sample time Te generated by the event trace e. Then, the primitive
transduction is performed on Te. Finally, the output trace is extended from Te back
to T .

Definition 2.10 (Event-driven transduction) Let T be a time structure and let the
mapping FT : A"×T → A′"×T a primitive transduction. Let E"×T be the set of all
stochastic event traces on time structure T . The event-driven transduction of F is a
mapping F◦

T : E"×T × A"×T → A′"×T satisfying:

F◦
T (e, v) =






λt. ⊥A′ if e = λt. ⊥B

FTe(v) otherwise.

We will use F◦ to denote event-driven transduction F◦
T if no ambiguity arises.

Hence, we can unify, within the same model, modules with different sample time
structures generated by event traces. There are two ways in which an event trace can
be generated: either with a fixed sampling rate, or by an event generator that reacts to
changes in its inputs. Moreover, we can also combine multiple event traces, yielding
new event traces. Typically, event traces are combined using event logic which allow
various asynchronous components within a given set of modules to be coordinated.
Common logical interactions are “event or,” “event and,” and “event select.” With
event logic modules, asynchronous components can be coordinated.

We have modeled and analyzed several real world applications within the PCN
framework. Such applications include an elevator system with uncertain passenger
arrivals, a museum surveillance robot and a package delivery robot. The model for
the elevator system is presented in Section 5 while the other models can be found in
[6, 7, 22].
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3 Syntax of PCN

A probabilistic constraint net consists of a finite set of locations, a finite set of
transduction and a finite set of connections. However, in order to be able to handle
the uncertainty in the systems that we model, we add an essential component: the
generator. A generator acts as a random number generator, following a given prob-
ability distribution and inducing a random location as its output. Thus, in practice,
generators can be represented as discrete (e.g. Poisson, uniform) or continuous
(Gaussian, exponential) probability distributions although we will use a general (and
formal) measure theoretic definition.

Definition 3.1 (Probabilistic constraint nets) A probabilistic constraint net is a tuple
PCN = 〈Lc, Td, Cn〉, where Lc is a finite set of locations, each associated with a
sort; Td is a finite set of labels of transduction (either deterministic or probabilistic),
each with an output port and a set of input ports, and each port is associated
with a sort; Cn is a set of connections between locations and ports of the same
sort, with the restrictions that (1) no location is isolated, (2) there is at most one
output port connected to each location, (3) each port of a transduction connects to a
unique location.

Intuitively, each location is of fixed sort; a location’s value typically changes over
time. A location can be regarded as a wire, a channel, a variable, or a memory cell.
An output location of a generator will be viewed as a random variable.

Each transduction is a causal mapping from inputs to output over time, operating
according to a certain reference time or activated by external events. Note that
probabilistic transduction are built of at least one basic generator transduction.
Every generator is associated with a given probability distribution, either discrete
or continuous, thus the sort of the output of a probabilistic transduction is the sort of
its probability distribution.

Connections link locations with ports of transduction. A clock is a special kind
of location connected to the input event port of event-driven transduction.

A location l is called an output location of a PCN if l connects to the output port of
a transduction in Td; otherwise, since isolated locations are not allowed it is an input
location. We will use the notation I(PCN) and O(PCN) to denote the set of input
and output locations of a probabilistic constraint net PCN. A probabilistic constraint
net is open if there exists at least one input location, otherwise it is said to be closed.

Another feature of our framework is its graphical representation. A PCN can be
represented by a bipartite graph where locations are depicted by circles, transduction
by boxes, generators by double boxes and connections by arcs. To differentiate them
from deterministic locations, we depict random locations with double circles.

Most commonly used families of probability distributions are parameterized, i.e.,
one can fully specify a probability distribution by giving values to the parameters
of the family. The ability of generators to be dependent on certain locations of
the model also greatly simplifies the design task when modeling a complex system
for which the various uncertain inputs are not fully known. Indeed, specifying
the parameters of a probability distribution is often hard and counter-intuitive.
Therefore, a designer could set the parameters of the distribution to some default
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Fig. 4 Gaussian probability
distribution as a generator
and random location

Ν(µ,σ )2

σ 2

µ Sensor Noise

location value, and then, as the system evolves, learn the values of the parameters
of the distribution, thus updating their values as a better estimate is being learned.
For example, to model sensor noise with a PCN generator following a Gaussian
probability distribution on the discrete time structure T = N, one would simply need
to connect the inputs of the generator to the locations holding the static values of the
mean µ and the variance σ 2 to generate samples from the Gaussian distribution at
every time point in T (see Fig. 4).

To exemplify the graphical syntax of PCN further, let us return to the PCN of
Fig. 1. In this PCN model, there are three locations (x′, x and y), one transduction,
one generator and one unit delay. The transduction f (x, y) is a transliteration with
two inputs, namely x and y. The unit delay δ(0) is introduced to eliminate an algebraic
loop and the generator Fy follows a discrete uniform distribution over the set {1, 2}.
Hence, the output of the transduction would be a random sequence of values where
the value at time t + 1 would be half of the value at time t added to either 1 or 2,
with equal probability. A possible execution trace resulting from this transduction
on T = N is {0, 1, 2.5, 3.25, 2.625, . . .}. This trace has a measure of 0.0625.

4 Semantics of PCN

We have briefly introduced the syntax of the probabilistic constraint nets model,
which has the useful properties of being graphical and modular. However, the syntax
does not provide a meaning for the model. Indeed, there are multiple models with
similar syntax to probabilistic constraint nets (Petri Nets [23] and their generalization
Colored Petri Nets [24] for example) that have completely different interpretations.
Therefore, it is necessary to have a formal semantics of probabilistic constraint nets
in order to correctly interpret models of complex physical systems.

The midpoint theory of partial order has been used as a semantical model for
programming languages and models [9]: in this case, a program (or a model) defines
a function f and its semantics are defined to be the least solution of x = f (x), or
the least midpoint of f . A similar approach was developed to provide a midpoint
semantics for the Constraint Net model [1]. However, even though our framework is
similar to that of Constraint Nets, the semantics of PCN differ significantly from that
of CN, because we have introduced uncertainty into the set of equations induced
by the PCN model. Hence, a probabilistic constraint net is a set of equations with
locations serving as variables. Some of the variables (locations) in the equations,
those that are outputs of generators, are in fact random variables, obeying some
probability distribution, which in turn affect the value of the transduction for which
they are inputs. Transduction play the role of functions and the connections between
locations and transduction generate a set of equations. Obviously, the semantics of
a PCN should be a solution to this set of equations containing random variables.
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p(Output=6) = 0.3
p(Output=7) = 0.1
p(Output=11) = 0.45
p(Output=12) = 0.15

Ε(Y) = 9.25Ε (Output) = Ε (X+Y) = (X)Ε +

p(x=1) = 0.75
p(x=2) = 0.25

p(y=5) = 0.4
p(y=10) = 0.6

Add Output

Y

XPx

Py

Fig. 5 Simple PCN for a probabilistic sum

Figure 5 demonstrates the effect of random locations on the transduction. Transduc-
tion Add is a very simple transliteration representing the sum of two (probabilistic)
inputs X and Y. It is easy to notice that the output value for this transliteration also
follows a probability distribution. In this case, there are four possible values which
each have different likelihood of occurrence. One should note that although the
distribution of a random variable is helpful in reasoning about its behavior, one can
reason about statistics such as the expected value, that is, one can redefine the notion
of behavior in terms of average behavior for the system. In our simple example, we
can see that the average output value of the system is 9.25.

Since the equations in a PCN model do not converge to a midpoint but rather
to a stationary distribution, the midpoint theory of partial order cannot be utilized
directly to provide a denotational semantics for PCN. In fact, in the presence of
uncertainty in the system, the least solution of an equation with random variables
is a Marked stochastic process [25].

To further illustrate the difference between the semantics of a deterministic sys-
tem (CN) and one encompassing uncertainty (PCN), let us compare two dynamical
systems with nominal component

Ẋt = −Xt(Xt − 1)(Xt − 2).

The first one is deterministic and has two distinct stable attractors (equilibria),3 at 2
and at 0, as shown in Fig. 6a. The behavior of this system is fully determined by its
initial value and it reaches one of the two stable midpoints based on this initial value.

The second system, which cannot be modeled with a constraint net, is stochasti-
cally affected by a simple Browning motion process. A sample path for this system,
for an initial value of X0 = −2, is shown in Fig. 6b. For this specific realization,
the system is initially attracted toward the closest equilibrium which is at X = 0.
The system then fluctuates around this attractor, reacting under the influence of
the Browning motion component and, around time t = 12, a large enough noise
disturbance pushes the system over the value of 1, causing the system to be attracted

3There are in fact three different equilibria, at 0, 1 and 2, respectively. However, the equilibrium at
1 is unstable. Any shift in value will cause the system to move away from this unstable equilibrium
and move towards one of the other two stable equilibria.
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Fig. 6 a ODE:Ẋt = −Xt(Xt − 1)(Xt − 2); X0 = −1 and X0 = 1.5; b SDE Ẋt = −Xt(Xt − 1)
(Xt − 2) + Nt; X0 = −2

toward the other equilibrium, at X = 2. Another spike of noise flips the system
back to the lower equilibrium at t = 35 and so on. This example shows the effect
of uncertainty on the system and its behavior.

In this case, there is no midpoint for this realization nor for the full system. For
a set of sample paths with non-zero measure, the system will keep moving back and
forth between the two stable equilibria as it is affected by the noise introduced by
the Browning motion component of the equation. However, the system will reach
a stationary distribution. That is, in the long run, the probability distribution of the
system will remain unchanged, independent of time.

The corresponding density function for this distribution is shown in Fig. 7. One
can clearly observe that the system is symmetrically distributed with higher weight
around the two stable equilibria located at X = 0 and X = 2. One should note that
if the effect of the Browning noise is diminished, the peaks at X = 0 and X = 2

Fig. 7 Density of dX =
−X(X − 1)(X − 2)dt + dBt
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rise or fall (depending on the starting value) as the noise is less likely to cause a
jump large enough to cause the other equilibrium to become the main attractor.
Letting the effect of the noise converge to zero would lead to the deterministic
case as presented in Fig. 6a, that is, the stationary distribution would be degenerate
everywhere except at the equilibrium corresponding to the initial value of the
system. Hence a deterministic system is in fact a special case of the more general
stochastic system.

We define the semantics for the Probabilistic Constraint Net model to be the least
midpoint of the distribution of the solution to the set of equations of the PCN model.
These semantics are, as it was mentioned in the previous paragraph, applicable to
any system, whether it be stochastic or deterministic.

4.1 Midpoint in distribution of partial orders

The midpoint theorems used here are for complete partial orders (cops). Continuous
functions are functions which are continuous in partial order topologies. A midpoint
in the distribution of a function f can be considered as a solution of the equation
x = f (x), where f (·) is an stochastic function. The least midpoint is the least element
in the midpoint set.

Definition 4.1 (Midpoint in distribution and Least midpoint) Let f : " × A → A be
a function on a sample space " and a partial order A. A function g : " × A → A is
a midpoint in distribution of f if the distribution of g is a stationary distribution for
f . It is the least midpoint in distribution of f if, in addition, Fg ≤ Fg′ for every other
function g′ which is a midpoint in distribution of f . Least midpoints in distribution,
if they exist, are unique. The least midpoint in distribution of f will be denoted by
µ.F f .

Based on the above definition, we can state our first midpoint in distribution
theorem as follows. The proofs of the following two theorems are shown in the
Appendix A.

Theorem 4.1 (Midpoint Theorem I) Let A be a cpo and assume that either A is
also a total order or that the set of distributions over A is a cpo and the function
over distributions is continuous. Then, every continuous function f : " × A → A
or g continuous function fω : A → A (for a fixed ω ∈ ") has a least midpoint in
distribution.

We now present our second midpoint in distribution theorem which is applicable
to a function of two arguments.

Theorem 4.2 (Midpoint Theorem II) Let A and A′ be two cpos and assume that
either A, A′ are also total orders or that the set of distributions over A′ is a cpo and
the function over distributions is continuous. If f : " × A × A′ → A′ is a continuous
function, then there exists a unique continuous function µ. f : " × A → A′, such that
for all a ∈ A, the distribution of (µ. f )(a) is the least midpoint in distribution of
λω, x. fω(a, x).
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Formally, a set of equations can also be written as 1o = 1f ( 1ω,1i, 1o) where 1i is a tuple
of input variables and 1o is a tuple of output variables. Based on our previous results,
if 1f is continuous, then its least midpoint in distribution is a continuous function,
denoted µ. 1f .

4.2 Semantics of probabilistic constraint nets

In this section, we define the midpoint in distribution semantics of probabilistic
constraint nets. Let % = 〈S, F〉 be a signature and c ∈ S be a special sort for clocks. A
probabilistic constraint net with signature % is a tuple PCN% = 〈Lc, Td, Cn〉 where

• Each location l ∈ Lc is associated with a sort s ∈ S, the sort of location l is written
as sl ;

• Each transduction F ∈ Td is a basic transduction or an event-driven transduction,
the sorts of the input and output ports of F are as follows:

1. If F is a transliteration of a function f : s∗ → s ∈ F, the sort of the output
port is s and the sort of the input port i is s∗(i);

2. If F is a unit delay δs or a transport delay (s, the sort of both input and output
ports is s;

3. If F is an event-driven transduction, the sort of the event input port is c, the
sorts of the other ports are the same as its primitive transduction;

Let D(T , A) = 〈V,F〉 be a %-dynamics structure. PCN% on 〈V,F〉 denotes a set
of equations {o = Fo(1x)}o∈O(PCN), such that for any output location o ∈ O(PCN),

• Fo is a continuous or g continuous transduction in F whose output port connects
to o,

• 1x is the tuple of input locations of Fo, i.e., the input port i of Fo connects to
location 1x(i).

The semantics of a probabilistic constraint net is defined as follows.

Definition 4.2 (Semantics) The semantics of a probabilistic constraint net PCN on a
dynamics structure 〈V,F〉, denoted [[PCN]], is the least stationary distribution of the
set of equations {o = Fo(1x)}o∈O(PCN), given that Fo is a continuous or g continuous
transduction in F for all o ∈ O(PCN); it is a continuous or g continuous transduction
from the input trace space to the output trace space, i.e., [[PCN]] : ×I(PCN) A"×T

si
→

×O(PCN) A"×T
so

.

Fig. 8 Sample path of the
system f (x) = 0.5x + y
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Fig. 9 Empirical Distribution
of f (x) = 0.5x + y after
10, 000 time steps

Given any set of output locations O, the restriction of [[PCN]] onto O, de-
noted [[PCN]]|O : ×I(PCN) AT

si
→ ×O AT

so
, is called the semantics of PCN for O.

For example, consider the probabilistic constraint net denoted by equations x′ =
f (x,ω) = 0.5x + y(ω) and x = δ(0)(x) with FY = Unif orm({1, 2}) and " = {ω1,ω2}
as described in Fig. 1. Given a discrete time structure N, a domain I = {1, 2} for
inputs and a domain O = R for output, the semantics for x is F : I"×N → R"×N

such that F(v)(0) = 0 and F(v)(n) = f (F(v)(n − 1), v(n − 1)) where the limiting
distribution for F is stationary.

Let us show the derivation of the semantics of this model. In Fig. 8, we plot a
realization trace of the system, while in Fig. 9 we can see the empirical distribution of
the system after 10,000 time steps. The least midpoint distribution follows a uniform
distribution over the range [2, 4]. The evolution of the distributions is presented in
Fig. 10. One can see that the system’s distribution starts as uniform over the range
{1, 2} and the distribution gradually increases to reach a stationary distribution which
follows a uniform distribution over [2, 4].

5 Practical application to dynamical systems: augmented model
of an elevator system

We augment the elevator system introduced in Section 1.1 with probabilistic pas-
senger arrivals, which are modeled as a PCN transduction of a Poisson process.

Fig. 10 Evolution of the
distributions of f(x)
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Passengers can arrive at any floor to request the use of the elevator. These requests
will be granted when they conform to the elevator serving state. Obviously, passenger
arrivals have an effect on the current passengers by increasing the time needed for
the elevator to service their request.

In the dissertation from which this work originated, we developed sets of au-
tomatic and semi-automatic rules to verify behavioral constraints on dynamical
systems. As an example, we have verified the non-trivial behavioral constraint
that a passenger request will be serviced on average within τ = 40 time units,
regardless of the incoming requests that can occur during that passenger’s travel.
These verification rules also allow us to obtain a probability bound on the time
that a request could take to be satisfied. Before we briefly present the results from
the application of our behavioral constraint verification method, let us describe the
elevator model in more detail.

5.1 Continuous model

Let us assume that floors are separated by H units. Using the continuous model of
the dynamics presented earlier we calculate the current floor number with:

f = [h/H] + 1 (2)

where [x] denotes the integer value closest to x. Using this relationship, we can
get the distance to the nearest floor from: ds = h − ( f − 1)H. We also say that the
elevator is at ‘home’ position, for some ε > 0, if:

eh : |ds| ≤ ε. (3)

In Fig. 11 we present the PCN module of the continuous component of the system.
In this diagram, Com is a high level command that can take values 1, −1 and 0,

Fig. 11 a The Elevator
module: continuous
components of the elevator
system; b the hybrid model
of the elevator

Com ehf

F h

BODY

FLOOR HOME

ELEVATOR

CONTROL_0
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respectively denoting up, down and stop. CONTROL_0 is an analog controller which
determines the force that drives the elevator body BODY (see Fig. 2). Since the
dynamics of the elevator are uncertain, CONTROL_0 needs to be optimal in some
stochastic sense. Finally, the components FLOOR and HOME are represented by
(2) and (3), respectively.

5.2 Discrete model

An important discrete component of the system is the set of push buttons used by the
users to issue requests. Each push button takes value 1 if pushed, and 0 otherwise.
In our model, we will consider three different types of buttons: Ub , Db and Fb ,
which respectively denote up, down, and floor buttons. For an elevator consisting of
n floors, we have Ub , Db , Fb ∈ {0, 1}n with Ub(n) = Db(1) = 0. The state of a push
button b s is determined by the user’s input bi and the reset signal br issued when a
request has been served. A floor button will be on until the elevator stops at that floor
while a direction button will be on until the elevator stops at the floor and is heading
in the corresponding direction. The next state of a push button can be represented
as: b ′

s = bi ∨ (¬br ∧ b s).

5.3 Hybrid model

Equipped with a model for the continuous dynamics of the elevator and a model for
the user’s input, we now need to combine the two to form an hybrid model of the
elevator system. A discrete event-driven controller CONTROL_1 takes as input the
current floor f and button states b s, and outputs the command Com and a serving
state as displayed in Fig. 12.

The events driving the controller are the results of the union of three event spaces:
(1) there is a user request when the elevator is idle at floor 1; (2) the elevator reached
a home position (|ds| ≤ ε); and (3) a request has been served for a given amount
of time. Therefore, when any of these events occur, CONTROL_1 proceeds to an
update using the current values of its inputs.

Fig. 12 The hybrid model:
combining continuous and
discrete components
of the elevator system

ELEVATOR

EVENT

bi BUTTON

Com
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eCONTROL_1

s

f

sb



A formal mathematical framework for modeling probabilistic hybrid systems 415

5.4 Control design

In the previous sections, we referred to CONTROL_0, an analog controller gen-
erating the force to drive the elevator’s body, and to CONTROL_1, a discrete
controller generating the high level command sent to the elevator. However, we did
not define the controllers completely, instead using them as black boxes assumed to
perform optimally in some sense. In general, the task of designing optimal controllers
is complex and no automatic method exists. Furthermore, remember that we are
dealing with uncertainty in the dynamics, which renders the design task harder.

5.4.1 H∞ control design

Assume that we are interested in finding a simple linear proportional and derivative
controller of the form:

F =






F0 if Com= 1
−F0 if Com= −1
−Kpds − Kvḋs if Com= 0

(4)

where F0 > 0 is a constant force, Kp is a proportional gain and Kv is the derivative
gain.

For a controller to be acceptable for our system, it needs to possess continuous
(and exponential) stability. Moreover, we require hybrid consistency. That is, the
analog controller must interface with the discrete control in a consistent fashion: if
a stop command is issued by CONTROL_1, then the elevator should continuously
maintain |ds| ≤ ε, for all time values.

Let us now show that we can design a stabilizing controller. To design the
controller for the elevator’s body, we chose to apply a robust control design using
an H∞ method [26, 27]. We can rewrite (1) in a mathematically sound fashion by
replacing the Gaussian white noise term with Browning motion and by using the Itô
stochastic differential equation:

dx = (Ax + B1u + B2w)dt + HxdW(t)
z = Cx + Du (5)

where x = [h ḣ]′ ∈ R2, z is called the uncertainty output [27]and W(t) is a scalar
Browning motion process with identity covariance . Furthermore from our elevator
model we get

A =
[

0 1
0 −1.15

]
; B1 =

[
0
1

]
; B2 =

[
0
1

]
;

C =




1 0
0 0
0 0



 ; D =




0
0
1



 ; F =
[

0
−1

]
; S =

[
0 1

]
.

We also define H = σ FS, where σ = 0.15 as specified in Section 3.
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We now apply Theorem 8.2.2 from [27] to obtain a stabilizing controller which
solves the H∞ problem associated with our stochastic dynamical system. The process
of designing a controller based on Theorem 8.2.2 involves solving a set of Privati
equations which can be solved by homotype method [28] or by a version of Newton’s
method introduced in [29–32]. We used the latter for this particular example. We
obtained a stabilizing controller of the form (4) with F0 = 0.31, Kp = 1.1547 and
Kv = 1.0691.

To demonstrate that this controller guarantees hybrid consistency, we needed to
show that, given the values of F0, Kp and Kv obtained above, we have maxt|ds(t)| ≤
ε for every possible value of k(t) ∈ [0.70, 1.40]. From the relationship between the
variables h and ds,we can see that ḣ = ḋs. Therefore, for Com= 0, and by combining
(1) with (4), we have

d̈s + (k(t) + Kv)ḋs + Kpds = 0 (6)

It is easy to deduce that the maximum distance to a floor D, once Com= 0, is
attained when ḋs = 0. At this point, it is important to notice that (6) can be critically
damped, undernamed or overlapped given that k(t) takes values 1.08, [0.70, 1.08) and
(1.08, 1.40], respectively. Therefore, we need to analyze the solution of (6) for those
three cases separately. Nevertheless, we showed that for each of these three cases,
we obtain hybrid consistency.

5.4.2 Discrete control design

At the discrete level, we adopt a control strategy that forces the elevator to move
persistently in one direction until there are no more requests in that direction. This
ensures that we avoid the presence of dead locks or live locks in the system. We
define CONTROL_0 as a controller which accepts the current request from the
push buttons b s along with the current floor f and state values s and determines:
(1) the next command to issue to the elevator module; (2) the updated value of the
serving state s. For our system, we assume three different serving states: up, down
and idle. The elevator is only idle at the first floor. We consider also three distinct
types of binary requests that can be sent to the elevator: Unrequested, Consequent
and Storehouses, which we define as follows:

Ur = UpRequest = Urb( f )
∨

n≥k> f

(Urb(k) ∨ Db(k) ∨ Fib(k))

Dr = DownRequest = Db( f )
∨

1≤k< f

(Urb(k) ∨ Db(k) ∨ Fib(k))

Sr = StopRequest =
{

(Db( f ) ∨ Fib( f )) if s = down
(Urb( f ) ∨ Fib( f )) otherwise
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Fig. 13 The module of the
discrete controller: Control_1

Ur Dr

DbUb Fb

Sr

(idle) Com

f

ServingState Commands

s’

CONTROL1

δ

UpRequest StopRequestDownRequest

Given these components, we can define the logical expressions for the transition
functions for the serving state and the command to the elevator:

s′ = ServingState( f, s, Uh, Dr) =






up if Ur ∧ (s *= down ∨ ¬Dr)
down if (¬Ur ∧ ( f > 1)) ∨

(Dr ∧ s = down)

idle otherwise

Com = Command(Sir, s) =






0 if Sr ∨ (s = idle)
1 if ¬Sr ∧ (s = up)

−1 otherwise

We show in Fig. 13 the PCN model of the discrete controller of the elevator,
obtained by combining the logical expressions above.

5.5 Example of behavioral constraint verification

Given a simple three-floor elevator modeled as in Fig. 11b, we can verify whether
or not a request to go up from floor 1 to floor 3 will be served within 40 units of the
elevator’s motion time. Even though the dynamics of the elevator are continuous, the
specification of the behavioral constraints are such that combined with our system’s
model, we can associate it to the stochastic transition system of Fig. 14. The corre-
sponding state space S is of the form ( f, s, Com, N1, N2, N3) where f, s and Com
are the current floor, serving state and command of the elevator. N1, N2 and N3
denote the number of passengers currently in the elevator wanting to go to floors 1, 2



418 R. St-Aubin, et al.

Floor 2

Floor 1

Floor 3

(2,up,1;0,0,3)

1

(1,up,1;0,1,1)
(1,up,1;0,0,1)

(2,up,1;0,0,1)

(2,up,1;0,0,2)

(2,up,0;0,0,2) (2,up,0;0,0,2)

1

(2,up,0;0,0,1)

p
1-p

1 1

1-p

1-p

p/2 p/2

1-p p

(1,up,0;0,1,1)(1,up,0;0,0,1)

(2,up,0;0,0,3)

1

16.8

p

1

(1,up,0;0,0,2)

(1,up,1;0,0,2)

29.5 29.6 35.5

32.5
25.2

26.5

19.8
14.4 18.8 18.9 17.4

15.8

(3,down,0;0,0,0)

1 1

1

1

0

Fig. 14 Stochastic state transition system of the elevator behavior

and 3, respectively. The initial state * is set to (1, up, 0; 0, 0, 1). Furthermore, to keep
it simple, we assume: (1) only one arrival can occur at any floor; (2) the average time
required for someone to get in or out of the elevator is 5 U; and (3) the time to close
the elevator doors is 3 U. By simple analysis of the passenger arrival probabilities,
we obtain that the probability for the occurrence of a new request for the elevator
is p = 0.15. Indeed, since we assume that the arrivals follow a Poisson process, and
given the fact that the events triggering the discrete controller only happens once the
elevator has reached a floor (there is no events possible while the elevator is traveling
between floor), we can assume that the arrivals are concentrated at the time when the
elevator reaches a new floor. Therefore, we can summarize the probability of arrivals
with a single probability, p, obtained from solving p = Pr(X(tmax) = 1), where X(t)
is the Poisson process modeling the arrivals and tmax is the maximum traversal time
of the elevator from one floor to another. To calculate tmax, we perform a worst
case analysis, for all possible values of k(t), on ḣ = (F0/k(t))(1 − e−k(t)t) and h(0) = 0.
we obtain that h = (F0/k(t))(t + (1/k(t))e−k(t)t) − F0/K2). Assume that the distance
between two floors if H. Then the time to traverse one level from stationary state
will be t ≤ Hk(t)/F + 1/K. If we assume H = 2, we get tmax = 9.75 time units. The
evolution kernel P is represented by the values at the head of the arrows in Fig. 14.

We have showed, in [6], that the average time for a passenger located at floor
1 to be taken to floor 3 is 29.6 < 40 time units. Hence we have shown that the
constraint on the elevator behavior is satisfied. Note that this is not an absolute
bound on the value. The completion time of an instance of the request may exceed
40 time units. With our method, we can automatically obtain probability bounds on
the possible time of service. For the elevator example discussed here, we can show
that Pr(time of service > 90 time units) ≤ 0.12.
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6 Related work and conclusion

The motivation for developing the PCN framework was to be able to model hybrid
dynamical systems while considering the underlying uncertainty in the system.
Uncertainty is inherent in any physical system, hence modeling its effects and
considering its impact on system behavior is essential. While development of models
for hybrids systems has been very active in the last few years [33, 34], there also
exist a multitude of paradigms that allow the modeling of uncertain system. Such
paradigms include Marked Processes [25], Marked Decision Processes [35] and
Dynamic Batesian Networks [36]. However, in most cases, these models are either
hybrid and deterministic, or stochastic and restricted to a single time structure (either
discrete or continuous). We have shown, in the dissertation associated with this work
[6], that PCN subsumes most existing computational models handling uncertainty,
and that hybrid, sequential and analog computations can be modeled effectively. The
advantages of the subsumption offered by PCN, other than the obvious advantage of
parsimony, are many. They include ease of implementation, absence of redundancy
while avoiding the system designer having to learn and master multiple paradigms.

Some recent work is very relevant to the PCN approach. In [37, 38] methods are
described for efficiently estimating the state of large hybrid systems with, typically, a
very large number of discrete modes. This is an important problem, with application
to fault diagnosis and repair, that we have not addressed here. Their methods could
be fruitfully adopted within the PCN framework. Also relevant is recent work on
reactive robot planning as exemplified by [39]. The authors present Probabilistic
Hybrid Action Models (PHAMs) as a model of the behaviors generated by reactive
plans. They go on to show how PHAMs can be used for online robot planning. Again,
online planning is not a focus of our current work. Future work could consider ways
these insights could be incorporated into the PCN framework.

In conclusion, we have developed a semantic model for uncertain hybrid dynam-
ical systems, that we call Probabilistic Constraint Nets (PCN). Based on abstract
algebra, topology and measure theory, we have represented both time and domains
in abstract forms, and uniformly formalized basic elements of dynamical systems
in terms of traces, transduction and probabilistic transduction. Furthermore, we
have also studied both primitive and event-driven transduction which are important
elements of dynamical systems, with or without uncertainty.

Since PCN is an abstraction and generalization of data-flow networks, with the
addition that we explicitly handle the uncertain components of the system. Within
this framework, the behavior of a system (the semantics of a PCN model) is for-
mally obtained using both the theory of continuous algebra and stochastic systems.
Specifically, a probabilistic constraint net models an uncertain dynamical system as
a set of interconnected transduction, while the behavior of the system is the set of
input/output traces of the system satisfying all the relationships (constraints on the
dynamics) imposed by the transduction. PCN models a hybrid system using event-
driven transduction, while the events are generated and synchronized within the
system.

Complementary work on PCN was performed and led to the development of
language specification for behavioral constraints on the dynamics of the systems.
Moreover, verification techniques were also developed to allow for the probabilistic
verification of the behavioral constraints [7]. A control synthesis approach was also
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developed which enables the system designer to synthesize the controller component
of a PC model, hence simplifying the modeling task greatly [6].
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Appendix A: Proofs of theorems

In order to prove the midpoint theorems introduced in this paper, we need to present
the following two propositions:

Proposition A.1 Let I ⊆ J be an index set. If f : " × (×I Ai) → A is a continuous
or pathwise continuous function, then the extension of f , f ′ : " × (×J AJ) → A
satisfying f ′(ω, a) = f (ω, a|I), is a continuous or pathwise continuous function.

Proof According to the definitions of continuous functions and product topologies.
56

Proposition A.2 Any continuous (or pathwise continuous) function is monotonic,
i.e., if f : " × A → A′ ( fω : A → A′) is continuous (pathwise continuous), then
(ω1, a1) ≤"×A (ω2, a2) (a1 ≤A a2) implies f (ω1, a1) ≤A′ f (ω2, a2) ( fω(a1) ≤A′ fω(a2)).

Proof We prove this result for pathwise continuous functions. The result extends
easily to continuous functions. Suppose fω(a1) *≤A′ fω(a2), then according to the
definition of partial order topology, there is an open set S ⊆ A′ including fω(a1) but
not fω(a2). Therefore, f −1

ω (S) ⊆ A is an open set including a1 but not a2. So a1 *≤A a2.
56

We are now ready to prove both our midpoint theorems.

Theorem 4. 1 Let A be a cpo and assume that either A is also a total order or that the
set of distributions over A is a cpo and the function over distributions is continuous.
Then, every continuous function f : " × A → A or g continuous function fω : A →
A (for a fixed ω ∈ ") has a least midpoint in distribution.

Proof

When A is a total order
To prove this results, we will use the classic Tarksi’s midpoint theorem (Lattice-

theoretical midpoint theorem) [40]. Let us first introduce the theorem and then show
how to use the result to prove our Midpoint Theorem. 56

Theorem A.1 (Tarksi’s Midpoint Theorem) Let

1. U = 〈A, ≤〉 be a complete lattice,
2. f be a monotonically increasing function on A to A,
3. P be the set of all midpoints of f .
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Then the set P is not empty and the system 〈P, ≤〉 is a complete lattice.

Proof (Theorem A.1) For the proof of this well-known result the reader is referred
to the original work from Tarksi [40]. 56

In order to be able to use Tarksi results, we need to show that the set of
distributions and its partial order define a complete lattice. Moreover, we also need
to show that the function f on the set of distribution is monotonically increasing.

First, denote the set of all distributions on A by D . We formally define a partial
order on the set of distributions D . The binary relation ≤D on D is defined as follow.
Let FX1 and FX2 be distributions of two random variables, namely X1 and X2. We
write FX1 ≤D FX2 , if ∀a ∈ A, Pr(X1 ≤ a) ≥ Pr(X2 ≤ a). It is easy to show that ≤D
induces a partial order on D .

Second, we need to show that for any two distributions F1, F2 ∈ D , there exists
a least upper bound and a greatest lower bound. To prove this, let us look at the
cumulative distribution function (CDs) of each distributions. Here we reproduce
Theorem 1.5.1 of [41] and refer to this reference for the proof.

Theorem A.2 (Theorem 1.5.1 of Caseosa and Buerger)
The function F(x) is a CDs if and only if the following three conditions hold:

1. limx→−∞ F(x) = 0 and limx→∞ F(x) = 1.
2. F(x) is a nondecreasing function of x.
3. F(x) is right-continuous. That is, for every number x0, limx↓x0 F(x) = F(x0).

Proof (Theorem A.2) See p. 30 of Section 1.5 from [41]. 56

Since A is a total order, for each F ∈ D , we have a well defined CDs. Hence every
F ∈ D possess the three properties of a formal CDs. Based on these properties, it
is easy to show that the upper envelope of any set of CDs is a least upper bound
(LUG) while the lower envelope of the CDs is the greatest lower bound (GLIB).
Moreover, both the LUG and GLIB can be showed to be cumulative distribution
functions since they are nondecreasing, right-continuous and converge to 0 and 1 as
x ↓ −∞ and x ↑ ∞, respectively. This demonstrate that we have a complete lattice.

Now let us show that f applied recursively generates a sequence of monotonically
increasing distributions. First assume, without loss of generality, that f is Harrovian.
Moreover, let us assume that at each transition, the events {ω1, · · · , ωn} are indepen-
dent and chosen from the sample space ". Order the events {ω1, · · · , ωn} such that
fω1(a) ≤A fω2(a) ≤A · · · ≤A fωn(a) for any a ∈ A. Let ⊥A denote the least element
of A and let FX denote the distribution of the random variable X.

Now we want to prove that F f n(⊥A) ≤D F f n+1(⊥A).
Proof by Induction on n:

• For n = 0: We have that F f 0(⊥A) =⊥A
• For n = 1: From Proposition A.2, since fω is continuous, we have that fω is

also monotonic, ∀ω ∈ ". Hence we have fω(⊥A) ≥A⊥A, ∀ω ∈ ". Therefore, it
is trivial to prove that F f 0(⊥A) = F⊥A ≤D F f 1(⊥A).

• Induction Hypothesis: Assume that for an arbitrary chosen n ∈ N, F f n(⊥A) exists
and is well-defined. We now need to show that F f n(⊥a) ≤D F f n+1(⊥A).
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Let M1 = max{ f n(⊥A)} = fωn ◦ · · · ◦ fωn︸ ︷︷ ︸
n times

(⊥A) Based on this definition, we have

P( f n(⊥A) ≤ M1) = 1.
It is easy to show that fωn ◦ · · · ◦ fωn︸ ︷︷ ︸

n times

◦ fωi ≥ M1 since fωn ◦ · · · ◦ fωn is monotonic.

Hence, we get the following result:

P( f n+1(⊥A) ≤ M1) ≤ 1 − ∑n
i=1 P(event ωn · · ·ωnωi)

≤ 1 − P(event ωn · · ·ωnωi)︸ ︷︷ ︸
finite and >0

since
∑n

i=1 P(ωi) = 1

≤ 1 − Pn(ωn)

< 1. (7)

Let M2 = max{{ f n(⊥A)} − M1} be the second highest value after n iterations.
Say that M2 arose from fω∗(⊥A) where ω∗ ∈ ωi1ωi2 · · ·ωin with ωi ∈ ". Then,

P( f n(⊥A) ≤ M2) ≤ 1 − P(ωn · · ·ωn)

= 1 − Pn(ωn)
(8)

Based on the same reasoning as above, we know that fω∗ ◦ fωi(⊥A) ≥ fω∗(⊥A).
Therefore, we have

P( f n+1(⊥A) ≤ M2) ≤ 1 − Pn(ωn)︸ ︷︷ ︸
>0

− P(ω∗)︸ ︷︷ ︸
>0

< 1 − Pn(ωn) (9)

By applying this reasoning until Mn = min{ f n(⊥A)} = fω1 ◦ · · · ◦ fω1︸ ︷︷ ︸
n times

(⊥A), we get

P( f n(⊥A) ≤ Mn) = Pn(ω1).
We know that fω1 ◦ · · · ◦ fω1︸ ︷︷ ︸

n times

◦ fωi(⊥A) ≥ fω1 ◦ · · · ◦ fω1︸ ︷︷ ︸
n times

(⊥A) = Mn, which means

that P( f n+1(⊥A) ≤ Mn) = 0. We have proven that F f n(⊥A) ≤ F f n+1(⊥A) for any value
of n ∈ N. Hence, the transformational process on the distributions is a monotonically
increasing one.

By applying Tarksi’s theorem, we have that the set of midpoints of the distribu-
tions is non-empty and is a complete lattice. Therefore, there exist a least midpoint in
distribution and it concludes the proof under the assumption that A is a total order.

56

When the set of distributions over A, DD , is a cpo and the function over DD is
continuous

To prove this result, we can simply claim the following midpoint theorem on cops:

Theorem A.3 Let 〈A, ≤, ⊥A〉 be a cop with least element ⊥A. Let f : 〈A, ≤, ⊥A〉 →
〈A, ≤, ⊥A〉 be a continuous function and let µ. f be the least upper bound of the chain
{ f n(⊥A)|n ∈ N}. Then µ. f is the least midpoint of f .
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Proof (Theorem A.3) The proof can be found in any elementary algebraic theory
textbooks such as [9]. 56

This concludes the proof of the Midpoint Theorem under the assumption that the
set of distributions over A, D , is a cpo and the function over D is continuous since
we have satisfied all the necessary assumptions of the midpoint theorem on a cpo.

Theorem 4.2 Let A and A′ be two cpos and assume that either A, A′ are also
total orders or that the set of distributions over A′ is a cpo and the function over
distributions is continuous. If f : " × A × A′ → A′ is a continuous function, then
there exists a unique continuous function µ. f : " × A → A′, such that for all a ∈ A,
the distribution of (µ. f )(a) is the least midpoint in distribution of λω, x. fω(a, x).

Proof Let F0(a) = f (ω, a, ⊥A′) and Fk+1(a) = f (ω, a, Fk(a)). Since f is continuous,
it is continuous w.r.t. the third argument. Moreover, a continuous function in any
partial order is also monotonic. Therefore, for every a,

F0(a) ≤A′ F1(a) ≤A′ F2(a) · · · ≤A′ Fk(a) ≤ . . . .

The proof of the existence of the least midpoint µ. f is left to the reader as it is very
similar to the proof of Theorem 4.1.

Next, we prove that µ. f is continuous.
Clearly for every k, Fk is continuous since f is continuous and continuity is closed

under functional composition. Therefore, for any directed subset D of A,

µ. f

(
∨

A

D

)

=
∨

A′

{

Fk

(
∨

A

D

)

|k ≥ 0

}

=
∨

A′

{
∨

A′

{
Fk(D)

}
|k ≥ 0

}

=
∨

A′

{
∨

A′

{
Fk(a)|k ≥ 0

}
|a ∈ D

}

=
∨

A′

µ. f (D). 56

Proposition A.1 Let I ⊆ J be an index set. If f : " × (×I Ai) → A is a continuous
or g continuous function, then the extension of f , f ′ : " × (×J AJ) → A satisfying
f ′(ω, a) = f (ω, a|I), is a continuous or g continuous function.

Proof According to the definitions of continuous functions and product topologies.
56
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