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ABSTRACT 

We propose a logtcal framework for deptctton and mterpretatton that formahzes tmage domain 
knowledge, scene domain knowledge and the deptctton mapping between the tmage and scene 
domains Thts framework requires three sets of axtoms tmage axioms, scene axtoms and deptctton 
axtoms An mterpretatton of an tmage ts defined to be a logtcal model of these axtoms 

The approach Ls dlustrated by a case study, a reconstructton tn first-order logw of a stmphfied 
map-understanding program, Mapsee. The reconstructton starts with a descrtptton of the map and a 
spectficatton of general knowledge of maps, geographtc oblects and thetr deptctton relattonshtps For 
the stmple map world we show how the task level spectficatton may be refined to a provably correct 
tmplementatton by applying model-preserving transformanons to the mlttal logtcal representatton to 
produce a set of propostttonal formulas The tmplementatton may use known constraint satt~factton 
techmques to find the ~et of models of the~e propostttonal formulas In addttton, we sketch 
prehmmary logtcal treatments for zmage querws, contingent scene knowledge, ambtgutty m tmage 
descrlptton, occluston, complex oblects, preferred mterpretattons and tmage synthests 

Thts approach provtdes a formal framework for analyzing and going beyond extsttng systems such 
as Mapsee, and for understanding the use of constraint sattsfactton techmques It can be used as a 
foundatton for the spectficatton, destgn and implementation of vtslon and graphtcs systems that are 
correct with rewect to the task and algortthm levels 

I. Introduction 

Computat ional  vision requires, no less than any other area of artificial intellig- 
ence, representations of knowledge that are complete,  correct,  flexible and 
efficient. In pursuit of that goal researchers have exploited a wide variety of 
knowledge representat ion schemes including grammars ,  semantic nets, pro- 
grams, logics, schemas, rules, constraints and neural nets. McCarthy and 
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Hayes [16] proposed some adequacy criteria tor knowledge representation 
schemes in general and used them to argue for a logical representation Vision 
researchers have, by and large, ignored that suggestion Clowes [5] and 
Huffman [8], lot  example, advocated a knowledge representation based on 
simple constraints in the scene domain, m a nonlogical framework Mackworth 
[14] argued that any adequate representahon scheme for visual knowledge 
should satisfy various criteria of descriptwe and procedural adequacy Here we 
can only briefly refer to some of them 

The relevant criteria of descriptive adequacy are capactty, prtmmves, compo- 
stnon, spectahzatton, subworlds, depiction and correctness; the relevant criteria 
of procedural adequacy are soundness, completeness, flextbthty and efficiency. 
If the generative power of the scheme is adequate then the capacay criterion Is 
satisfied. A generative scheme must be based on prtmmves and it must provide 
rules for the ~omposttton of structured objects, whose descrlpuons can be 
refined through spectalizatton. To satisfy the subworlds criterion the repre- 
sentation scheme must, minimally, maintain the distinction between knowledge 
ol the image and knowledge ot the scene; otherwise, elementary category 
errors, such as confusing a real scene edge w~th its depiction in the image, are 
bound to be made Moreover,  the scheme must carry mformatmn about the 
depiction relation itself: how objects in the scene domain appear in the image 
The task specification must be precise to determine correctness Only if the 
concept of an image interpretation is precisely defined can we determine if an 
implementation is complete and sound; that is, finds all and only the interpreta- 
tions allowed by the general knowledge and a description of the particular 
image A representation scheme achieves some measure of flexibility if it can 
exploit contingent knowledge or support both image interpretation and image 
generation. Efficiency can bc evaluated by complexity analyses of the task and 
proposed algorithms using measures of time, space, number ot processors or 
communication costs. Some measure of completeness or soundness may need to 
be sacrificed to e/ficiency through the use of approximation algorithms. This 
paper provides an adequate logical framework for depiction and mterpretatlon, 
and demonstrates its apphcatlon in a simple world 

Informally, to motivate the sceptical reader who asks "Why should I care'?" 
we can only say that, to our knowledge, this is the first paper to provide a 
precise defimtion of the concept of an interpretation of an image Furthermore,  
the point ot much of the resulting logical manipulation is to show how the 
nonprocedural specification reduces to a constraint satisfaction problem (CSP) 
This Is important for three reasons. First, there are well-understood algorithms 
for solving CSPs Second, the CSP is logically equivalent to the original 
spemfication, so we have a correctness proof. Third, the transformation from 
specification to CSP explains and justifies the central role that CSPs play in 
model-based wsion 
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2. An Illustrative Specification: Mapsee's Sketch Maps 

As an example of how one might logically specify the knowledge base for an 
image interpretation application, we focus on Mapsee, a long term research 
project at the University of British Columbia designed to interpret hand drawn 
sketch maps of geographical regions. 

The Mapsee project is a series of experiments in visual knowledge repre- 
sentation [18]. Mapsee-1 (Mackworth [10]) used n-ary constraints m the scene 
domain and a network consistency constraint satisfaction algorithm. Mapsee-2 
(Havens and Mackworth [7]) adopted a schema representation of knowledge 
that was simplified and enhanced in Mapsee-3 (Mulder [19]) and augmented 
with a hierarchical constraint satisfaction algorithm (Mackworth et al. [12[). 
These systems served as testbeds for new knowledge representation techniques 
and as useful artifacts in their own right, for example, acting as knowledge 
sources for the interpretation of satellite and aerial imagery, and as prototypes 
for more autonomous image understanding systems. However, since no precise 
definition of the notion of an interpretation has been provided and since much 
of the knowledge is procedurally encoded and distributed, ~t is not possible to 
determine if these programs are functioning correctly according to a formal 
specification of the task. One purpose of th~s paper is to provide a "logical 
reconstruction" of a fragment of the Mapsee project. 

For expository purposes, we considerably simplify the kinds of image and 
geographic features which Mapsee deals with, as well as the kinds of knowl- 
edge it uses m image interpretation. As a further caveat, we emphasize that the 
following specification is appropriate for the world of sketch maps; other 
apphcations may reqmre very different axioms and assumptions. Minimally, 
the principal feature which remains applicable is the defimtion below of just 
what one means by an interpretauon of an image (namely, a model of the 
axioms). Having a formal definition allows system designers to address in their 
specifications and implementations the issues of descriptive and procedural 
adequacy introduced in Section 1. 

The user of this proposed simple Mapsee would sketch the map input using a 
mouse or data tablet. The initial map description is a set of chains, where a 
chain is a list of consecutively drawn points connected by a line segment. From 
this description the system constructs an enriched descripUon that explicitly 
determines topologically connected spatial regions and the various relations of 
the chains and regions to be described in Section 2.1. Imtlally, we assume a 
carefully drawn map (with no gaps at the intended chain junctions, for 
example) which ensures a unique image descripuon but we show, in Section 
7.3, that th~s assumption can be relaxed. 

The task for this Mapsee is to compute the set of interpretations of the map 
as depicting a simple scene of roads, rivers, shorelines and areas of land and 
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water under various assumptions about what is permitted in the scene, to be 
described m Section 2 2, and how scene objects are depicted in images, to be 
described in Sectmn 2 3 

2.1. Specifying the image domain 

We assume that there are just two kinds of image primitives---chains and 
regions--so that the taxonomy of Image objects is given by Fig 1, which 
pictorially represents the following first-order formulas j. 

(Vx) image-oblect(x ) =- chain(x) v r e g l o t t ( X )  , 

(Vx) -q(cham(x) A regton(x)) 

In addition there are the following relationships which may hold between 
~mage primitives" 

tee(c,c'): 
chl(c,c'): 
bounds( c,r): 
closed(c)" 

intenor(c,r): 
extertor( c,r): 

chain c meets chain c' at a T-junction, as in Fig. 2(a) 

chains c meets chain c' at a X-junctmn, as in Fig. 2(b). 

chain c bounds region r, as m Fig. 2(c), 

chain c is a simple closed figure, as m Fig 2(d). 

an interior of closed chain c is region r, as in Fig. 2(e). 

an exterior of closed chain c is region r, as in Fig. 2(f). 

A gwen image will consist of finitely many chains and regions, together with 
fimtely many instances of the above relations. Mapsee makes the following: 

Closure Assumption (Closed World Assurnptton (Rei ter  [21[) for the image 
domain). All image domain predicates are completely known. This closure 
assumphon is logically specified by closure axioms of the form: 

image-oblect 

chain regmn 

Fig I A n  image  d o m a i n  t a x o n o m i c  h i e ra rchy  

t We deno te  image  d o m a i n  p red ica t e s  us ing lower  case cha rac te r s  and  scene  d o m a i n  p red ica t e s  m 

u p p e r  case 
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(a) 

(b) 

Relation Example 

tee(c,c') C ~ f ~ ,  

chl(c,c') ~ 
c 

(c) bounds(c,r) 

bounds(c,r) 

(d) closed(c) 

, .rj 
C 

(e) intenor(c,r) 

(f) exterlor(c,r) 

exterlor(c,r) C 

Fig 2 Rel~tlons m the tmage domain 

(Vx) c h a i n ( x ) ~ x = t  I v  " "  v x = t m ,  

(Vx) r e g i o n ( x ) - ~  x = i I v . . .  v x = i ,  , 
o¢ 

(Vx,y) t e e ( x , y )  =- ( x  = i 1 ^ y = i ' l )  v . . .  v ( x  = t k ^ y = I k )  , 

(Vx,y) b o u n d s ( x , y ) = - ( x  = i 1 /x y =  t ' l )  v . . .  v ( x  = t I ^ y = i ~ ) ,  

e t c . ,  

where the t and i' are all constants. 

Example 2.1. Figure 3 shows a simple hand drawn sketch map with its chains 
and regions labeled by suitable constants. The closure axioms for this image 



130 R REITER AND A K MACKWORTH 

/ '  Cl ~ ~ c 6  c5 c2 

r 2 

r 1 

Fig 3 A sketch map 

J 

a re :  

( V x )  c h a i n ( x ) = - x = c  1 v x =  c ,  v x = c~ 

V X :  C4 V X :  C¢, V X =  C6,  

( V x )  r e g i o n ( x )  =- x = r ,  v x = r 2 v x = r 3 v x = r 4 , 

( V x , y )  t e e ( x ,  y ) = - ( x  = c 2 A y = C , )  V (X  = C 2 A y = q )  

v (x  = c 4 A y = C5) V (X = C~ A y = q ) ,  

( V x , y )  c h t ( x , y ) - - =  (x = c~ A y = C4) V (X = C 4 A y = q )  , 

( V x ,  y )  b o u n d s ( x , y )  =- ( x  = c I A y = r , )  v ( x  = c ,  A y = r , )  

v (x = c~ A y = r , )  v (x = e~ A y = r2)  

v (x 

v (x 

v (x 

v (x 

( V x )  c l o s e d ( x )  =- x = cs  v x 

( V x ,  y )  m t e n o r ( x ,  y )  =- ( x  = 

= c  a A y = r , ) v ( x = c  a A y = r e )  

= c s A y = r l )  v (x = c 5 A y = r2)  

= c 5 A y = r3)  v ( x  = c~ A y = r~)  

= C ~ A y = r 4 ) ,  

~ C ~  

c~ A y = r4)  V (X = Cs A y = r ~ ) ,  

( V x , y )  e x t e r i o r ( x ,  y ) = - ( x  = c s A y = r l )  

v (x = c~ A y = r2)  v (x = c 6 A y = r3)  

I n  a d d i t i o n  to  t h e  c l o s e d  w o r l d  a s s u m p t i o n  fo r  t h e  ~mage  d o m a i n ,  M a p s e e  
a l so  m a k e s  t h e  f o l l o w i n g  a s s u m p t i o n .  
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Unique Names Assumption (Reiter  [22]). All image primitives (i.e. the chains 
and regions) are pairwise distinct. In other  words if t and i '  are different 
constants denoting image primitives, they denote different image primitives. 
Thus, the specification of the image domain mcludes the following untque 
names axtoms: 

i ~ i' for all d~stinct constants i and t' mentioned m the closure 
axioms for chain and region. 

Notice that we have been tmphcttly assummg suitable type constramts on the 
arguments of image predicates, e.g. that the first argument of bounds is a 
chain, and the second a region. We also want no constant mentioned in the 
closure axiom for chain to be mentioned in the closure axiom for region; 
otherwise, for any such constant i, both cham(t) and region(i) would hold, 
contradicting the taxonomic axiom (Vx)7(cha in(x)  A region(x)). 

We make these two assumptions explicit by imposing the following simple 
requirements on the above closure axioms: 

Coherence Requirements. 
(C1) Each constant occurring in the closure axiom for chain is distinct from 

any occurring in the closure axiom for regton. 
(C2) All constants mentioned in the closure axioms for tee are mentioned in 

the closure axiom for chain. We impose this by the following image type 
constraint: 

(Vx, y) tee(x, y) D chain(x) A chain(y). 

Similarly, 

(Vx, y) bounds(x, y) D chain(x) A region(y). 

Similar axioms hold for the image predicates chi, closed, interior and extertor. 

2.2. Specifying the scene domain 

We assume that the taxonomy of scene objects is given by Fig. 4, which 
pictorially represents the following first-order formulas2: 

(VX) SCENE-OBJECT(X) ~ LINEAR-SCENE-OBJECT(X) V AREA(X), 

(VX) -7(LINEAR-SCENE-OBJECT(X) A AREA(X)) , 

z Recall our convenUon that scene domain predicates are denoted by upper case characters, and 
image domain predicates by lower case 
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SCENE-OBJECT 

LINEAR-SCENE-OBJECT 

ROAD RIVER 

Fig 

AREA 

LAND WATER 

4 A scene domain taxonomic hierarchy 

(Vx) 
(Vx) 
(Vx) 
(Vx) 
(Vx) 
(Vx) 

LINEAR-SCENE-OBJECT(X) ~- ROAD(X) V RIVER(X) V SHORE(X) , 

--q(ROAD(X) A RIVER(X)), 

~(ROAD(X) A SHORE(X)) , 

"q(RIVER(X) A SHORE(X)), 

AREA(X) ~ LAND(X) V WATER(X) , 

-q(LAND(X) /X WATER(X)). 

In addmon to this taxonomic  information,  we assume the following general 
facts about the real world of  roads, rivers, shorelines,  land and water 

(i) Rivers do not cross each other' 

(Vx,y) RIVER(X) A RIVER(y) ~ ~CROSS(x,y) 

(n) Shorelines form closed loops: 

(VX) SHORE(X) D LOOP(X) 

(ili) Rivers cannot  form loops: 

(Vx) RIVER(X) ~ ~LOOP(X). 

(w) The  inside area of a shorehne  is land lff its outside is water ;  its inside is 
water iff ~ts outside is land: 

(Vx,y,z) SHORE(X) A INSlDE(x,y) A OUTSIDE(X,Z) 

D (LAND(y) -= WATER(Z)) A (WATER(y) --= LAND(Z)). 
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(V) If a road or a river is beside an area then that area is land: 

(Vx, y) BESIDE(X, y) ^ (ROAD(X) V RIVER(X)) :3 LAND(y). 

(vi) Rivers flow into other rivers, or into shores: 

(Vx) RIVER(x) D (3y) RIVER(y) A JOINS(X,y) 

v (::lZ) SHORE(Z) A JOINS(X,Z) . 

Finally, we require the following axioms which restrict the scene predicates 
to scene objects only: 

Scene Predicate Type Constraint Axioms. 

(Vx, y) CROSS(x, y) 

3 SCENE-OBJECT(X) A SCENE-OBJECT(y), 

(VX) LOOP(X) ~ SCENE-OBJECT(X) , 

(VX, y) INSIDE(X, y) 

D SCENE-OBJECT(X) A SCENE-OBJECT(y), 

(Vx, y) OUTSIDE(X, y) 

SCENE-OBJECT(X) A SCENE-OBJECT(y), 

(Vx, y) BESIDE(X, y) 

D SCENE-OBJECT(X) A SCENE-OBJECT(y), 

(Vx, y) JOINS(x, y) 

D SCENE-OBJECT(X) A SCENE-OBJECT(y). 

2.3. Specifying the image-scene domain mappings 

In any given application, there will be relaUons which hold between the image 
and scene domains, for example, relations specifying how various three- 
dimensional objects project onto the two-dimensional image plane, or what 
kmds of scene objects are depicted by image objects. We refer to such relaUons 
as mappings, and represent them by a distinguished binary predicate A(t,s) 
meaning that image object i depicts scene object s. 

In the case of Mapsee, the following assumptions are made: 

(i) The world consists of image objects and scene objects, and these form a 
taxonomy: 

(Vx) image-oblect(x ) v SCENE-OBJECT(X)  , 

(Vx) -7 (image-oblect(x) A SCENE-OBJECT(X)) . 
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(i 0 Every image object t depicts a umque scene object which we denote by 
' T O ) :  

(Vt) image-oblect(t)  D SCENE-OBJECT(o-(t)) 

A A [ ( V s )  a 0 , s )  s = • 

(ii0 Every scene object is depicted by a unique image object: 

(Vs) SCENE-OBJECT(S) D (JT , ) ,mage-oblect(t  ) A A(t ,s)  

Assumptions (i0 and 0ii) are very strong. For example, (10 forces the 
conclusion that a noise patch in the image depicts somethmg real in the scene, 
while (ili) precludes occluded objects m the scene. Clearly, there are settings 
where these assumpnons are unwarranted, where some of (n), (iii) and the 
other image, scene and mappmg axioms require more complex representanons. 
We gloss over this ~ssue for now but return to it briefly in Secnon 7.4 where we 
sketch a logical treatment of occlusion. 

(iv) Depiction holds only between image and scene objects: 

(Vt ,s)  A(t ,s)  D tmage-oblect(,  ) A SCENE-OBJECT(S) 

(V) Taxonomic mappings: 
- R e g i o n s  m the image depict areas m the scene: 

(Vt,s) A(t,s)  A regwn( i )  3 AREA(s) 

- C h a m s  in the image depict linear scene objects m the scene: 

(Vt,s) A(i ,s)  A c h a i n ( t ) D  LINEAR-SCENE-OBJECT(S). 

(vi) Relational mappmgs: 
- T e e  relanons in the ~mage depict jom relations in the scene, and wce 

versa: 

(Vi, ,/2,S1 ,$2) A(, 1 ,s 1 ) A A(i2, s2) ~ tee(t, ,t2) =--  JOINS(S1 ,$2)' 

- Similarly, for the other image relations (Fig. 2) and their correspond- 
mg scene relations: 

(Vi 1,12,S I ,$2) A(/1 ,s 1 ) A A(12, $2) ~ cht(i 1 ,t2) --= CROSS(S 1 , s 2 ) ,  

( V i  1 ,i2,s 1 ,s2) ,501 ,s, ) A A(t2, S2) 

D bounds( i l ,  '2) ~- BESIDE(s1 ,s2) , 
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(Vt,s) A(t ,s)  D closed(i) =- LOOP(s), 

(Vi, , i2,sl,s2) A ( i , , s 1 )  A A(i2, s2) 

D interior(t 1 , i 2) =- I N S I D E ( s  I ,S 2 ) ,  

( V l l , 1 2 , s I , S : )  A(/1 ,S l )  A A(i2, s2) 

D exterior(i~, t 2) =-- OUTSIDE(s I ,s 2 ) . 

3. What Is an Interpretation? 

In general, a logical specification of the relevant knowledge and underlying 
assumptions for an image understanding applicanon will consist of: 

(i) image axioms: an axiomatization of the image domain, 
(i 0 scene axioms" an axiomatization of the scene domain, and 

(iii) mappmg axioms: an axiomahzation of the mappings between the image 
and scene domains. 

Sections 2.1, 2.2 and 2.3 provide an example of this tripartite specification, 
for the sketch map task. 

With such an axiomatization in hand, we can provide a formal definition of 
an interpretation as follows: 

Definition 3.1. An mterpretatlon of an image is a model of the image, scene 
and mapping axioms. 

We use the term "model"  here in its strict logical sense (Mendelson [17]). 3 
At this point it is appropriate to say a few words about computational issues. 

Determining the models of an arbitrary set of first-order axioms is a wildly 
impractical task. To begin, It is undecidable in general whether such a set of 
formulas even has a model. Moreover, there may be infinitely many models. Is 
there anything special about vision which precludes these problems? 

At this stage of our research we can only speculate. The most promising 
observanon is that an image is finite. There are just fimtely many primitive 
image objects and relations between objects. Provided the depiction relation 
allows for just finitely many scene objects corresponding to the image primi- 
twes, then all quantifiers will have finite range. As we shall see, this is the case 
for our sketch map domain. Whenever this is the case, quantified formulas 
reduce to propositional ones and image interpretations are all computable. It is 
unclear just how general this observanon is. Very likely a variety of vision tasks 

~The term "'interpretation'" has a logical meaning  (Mendelson [17]) which differs from our use of 
the word Since we are grounding high level vision m logic, there is a risk of terminological 
confusion Since " interpreta t ion"  ~s so firmly entrenched in the computat ional  vision hterature,  we 
choose to continue use of the term m this paper  We emphasize that ~ts use does not refer to ~ts 
logical meaning 
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must be formalized before some general principles emerge regarding dc- 
cldability issues. 

4. Some Results Derivable from Mapsee's Axiomatization 

Let MAP-AXIOMS b e  those axioms specified in Sections 2.1, 2 2 and 2.3 for our 
simplified Mapsee domain, namely the image axioms, the scene axioms, and 
the mapping axioms In this section, we state various logical consequences of 
these axioms which will simplify the process of computing the interpretations 
for a hand drawn sketch map. We omit the proofs, which are contained in 
[24, Appendix A]. 

Notation. Whenever MAP-AXIOMS entails a closure formula of the form 

( V X , )  . . (VXtt)  e ( x l ,  . ,  Xn) 
1 ttl 

( X  I : l I A " ' "  A X;,, = t , l , )  V " ' "  V ( X  1 = t I A " ' "  A X n : t ; i ' ) , ,  

m m where the t/ are all terms, then [PI denotes {(tll . . . . .  tl, ) . . . . .  (t I . . . . .  t,, )} 

Result 4.1 (Closure on image objects). 

MAP-AXIOMS 

(Vx) tmage-ob lec t (x )  =- 

Result 4.2 (Closure for A) 

V (x = 
t c l ~ h a t n l U [ r e g  on[  

MAP-AXIOMS 

[= ( V x , y )  A ( x , y )  ~- V (x = i A y = o'(t )) 
t ~ ] t m a g e - o b l e ~  t l 

Result 4.3 (Uniqueness of all objects). I f  I,,,,I,, E l image-object] ,  

(1) MAP-AXIOMS ~ O'(Im) # tr(I,,) when m # n 

(2) MAP-AXIOMS ~ o'(I,,,) # 1,,, 

(3) MAP-AXIOMS ~ I,, # 1, when  m # n .  

Result 4.4 (Closure for scene objects). 

MAP-AXIOMS 

(VS) SCENE-OBJECT(S) V (s = o-(0). 
t ~ [ t m a g e - o b l e ~  t I 
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Result  4.5 ( D o m a i n  closure).  

MAP-AXIOMS 

(Vx) [  V (x = t v x = o( i ) ) ]  . 
~Eltmage-oblect I 

Result  4.6 (Closure for  l inear scene objects  and areas).  

( l )  MAP-AXIOMS 

(VS) LINEAR-SCENE-OBJECT(S) ~ V (S = or(i)) , 
t~lchatn I 

(2) MAP-AXIOMS 

(Vs) AREA(s) ----- V ( s =  o ' ( i ) ) .  
tCIreg~onl 

Result  4.7 (Closure  for scene domain  relations).  

(1) MAP-AXIOMS 

(Vx, y) JOINS(x, y) = 

(2) 

V (x = ~( i )  ^ y = o-(t ')) , 
(,a')Eltee[ 

MAP-AXIOMS 

(Vx, y) CROSS(X, y) - V 
O,,')Elch,I 

(3) MAP-AXIOMS 

(Vx, y) BESIDE(X, y) --= 

(x = o'(i) ^ y = o'(t ' ))  , 

(4) MAP-AXIOMS 

(VX) LOOP(X) --= 

V 
Oa')Elboundsl 

V (x= ~r(i)), 
t~-tclosed I 

(x = o'(t) ^ y = o '( i ' ))  , 

5. Simplifying MAP-AXIOMS 

We now show how the results of  the previous section allow us to systematically 
el iminate f rom considera t ion many  of  the axioms of  MAP-AXIOMS. This in turn 

(6) MAP-AXIOMS 
(Vx, y) OUTSIDE(x, y) ~- V (x = o-(i) ^ y = o-( i , ) ) .  

(ta')Elextertor [ 

(5) MAP-AXIOMS 
(VX, y) INSIDE(X, y) V (x = o 0 )  ^ y = o 0 ' ) ) ,  
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will considerably slmphfy the task of determining all interpretations of all 
image, as we shall see in Section 6 below 

Let SIMP-AXIOMS consist of the following groups of formulas: 

(S1) The closure axioms for tee, cht, bounds, closed, lntertor, exterior, chain 
and region of Section 2.1, augmented by the closure formulas for tmage-obyect, 
A, SCENE-OBJECT, LINEAR-SCENE-OBJECT, AREA, JOINS, CROSS, BESIDE, LOOP, 
INSIDE and OUTSIDE, derived in the previous section. 

($2) Unique names formulas of Result 4 3, together with the domain closure 
formula of Result 4.5 

($3) (1) For t E ]image-object], 

---IROAD(I) , 

--1RIVER(I) , 

~ S H O R E ( i )  , 

--ILAND(i) , 

---IWATER(t) . 

(11) For s E ]AREA I, 

(iIi) 

-1RIVER(S) , 

~ROAD(S)  , 

--qSHORE(S) , 

LAND(S) V WATER(S),  

--1LAND(S) V --'IWATER(S) . 

For s E ILINEAR-SCENE-OBJECTI, 

~ L A N D ( S )  , 

--IWATER(S) . 

(IV) For s • ILOOPI, 

(v) 

ROAD(S) V SHORE(S), 

-qROAD(S) V -qSHORE(S) , 

~RIVER(s) 

For s E ]LINEAR-SCENE-OBJECT]- ILOOPI, 

ROAD(S) V RIVER(S).  

-qROAD(S) V --qRIVER(S) , 

--qSHORE(S) . 
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($4) The following groups of formulas: 

(i) For ( x , y )  @ ICROSS[, 

--qRIVER(X) V -qRIVER(y). 

(ii) For ( x , y , z )  such that x E ILOOPI, (x,y) E IINSIDEI, (X,Z) E [OUTSIDE[, 

SHORE(X) D (LAND(y) ~ WATER(Z)). 

(iii) For ( x , y )  E IBESIDEI and x~/ILOOPI, 

LAND(y). 

For ( x , y )  ~ [BESIDE[ and x E [LOOP[, 

ROAD(X) D LAND(y). 

(iv) For x E ILINEAR-SCENE-OBJECT I -- ILOOP[, 

RIVER(x) D [ {yl(x,y)elJOiNS~l and y ~lLOOPi} RIVER(y) ] 

V [{zI(x,z,EIJOIN~Slandz~ILOOPE}SHORE(z)I" 

Proposition 5.1. MAP-AXIOMS and SIMP-AXIOMS are logically equtvalent. 

Proof. See [24, Appendix B]. [] 

In the next section we show how SIMP-AXIOMS may be used to compute 
interpretations of sketch maps. 

6. Determining the Interpretations of a Map 

It remains to compute the interpretations of a hand drawn sketch map, which 
means, by Definition 3.1, computing all models of MAP-AXIOMS, hence of 
SIMP-AXIOMS. All such models share the following properties: 

(1) Suppose ]image-object] = ( i  . . . . .  in}. By the domain closure and unique 
names formulas of ($2), the universe of any such model consists of 2n pairwise 
unequal elements. If we denote the elements of this universe corresponding to 
t 1 . . . .  , i , ,  tr(il) . . . . .  tr(t,) by themselves, then all models of SIMP-AXIOMS 
share the same universe { i l , . . . ,  i , ,  o-(il) . . . . .  tr(i,)} of pairwise unequal 
elements. 
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(2) The closure formulas of ($1) completely characterize their predicates 
Accordingly each predicate with a closure axiom has the same extension m all 
models of SIMP-AXIOMS, and these extensions are known to us a priori For 
example,  ]BESIDE[ is the extension of the predicate BESIDE common to all 
models of SIMP-AXIOMS. 

The only predicates lacking closure formulas are ROAD, RIVER, SHORE, 
LAND and WATER. Thus, the models of SIMP-AXIOMS can differ from one 
another  only in the extensions they assign to these predicates. It follows that 
the only formulas of SIMP-AXIOMS we need consider in computing these models 
are those of ($3) and ($4). Moreover ,  these are quantifier-free formulas,  so 
the problem reduces to determining the set of all propositional models of a set 
of formulas of the propositional calculus While this is in general an NP-hard 
problem,  at least it is decidable and various algorithms are known (Blbel [1], 
Purdom [20], Mackworth [13]. 

We illustrate the result of th~s calculation with the example sketch map of 
Fig 3 

Example 6.1 (The map of Fig. 3). All models share the same universe 
{cl . . . . .  c6, r l ,  , G,  Ci . . . . .  C 6, R l . . . .  , R4} where C, and R t denote  
o-(c,) and ~(r j )  respectwely. Table 1 summarizes the extensions common to all 
these models of the predicates with closure formulas in (S1). 

It remains to determine all models of ($3) and ($4) which, for this example,  
are the following groups of formulas: 

(s3) (1) 

(i0 

(ii~) 

For t E { c  1, , c , ,  r I . . . . .  r4} , 

~ R O A D ( / )  , 

-1RIVER(I )  , 

~ S H O R E ( / )  , 

-qLAND(t )  , 

~ W A T E R ( / )  . 

For s E {R t, , R4} , 

~R1VER(S)  , 

~ R O A D ( s )  , 

- SHORE(s), 
LAND(S) V WATER(S) ,  

"-ILAND(S) V -1WATER(S) . 

For s E { CI, . , C~, } 

~ L A N D ( S )  , 

~WATER(S)  . 
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Table 1 
The mterpretatmns of pre&cates w~th closure formulas 
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Predicate Extension (]Predlcate[) 

cha in  c I , c2~ c ~  c4~ c5, c 6 

reg ion  r 1 ~ r2~ F3, r 4 

tee (c2,cl) , (c2,c3) , ( G , c O ,  (c3,cs) 
chl (ca,c4) , (c4,c3) 
bounds (c a ,r 1 ), (c2,r , ), (c~,r,) ,  (c a,rz) , 

(c4,rl) ,  (ca,r2), (cs ,r  1 ), (cs,r2), (c5,r3) , 
(c6,r3), (G,r4)  

closed c 5, c 6 

mtertor (G ,  r4), (Cs, r3 ) 
exterior (cs,r  I ), (c5,r2) , (ca,r 0 
tmage-obyect c~, c 2 , c~, c n , c 5, c a, r l, r 2, r 3, r 4 

A (ClyCI), ( c 2 , C 2 ) ,  (c3,Cz~) , ( c 4 , C 4 ) ,  (c5,C5) , 
(c6,C6), ( r , , R , ) ,  (r2,R2) , (r~,R0, (r4,R4) 

LINEAR-SCENE-OBJECT C~, C2, C~, C 4, Cs, C a 
AREA Rj ,  R2, R3, R 4 
JOINS (C2,C,)  , (C2,C3), ( C 4 , 6 5 ) ,  (Ca ,C~)  

CROSS (G,G), (G,G) 
BESIDE ( C, ,R,  ), ( C2,R , ), ( C , , R , ) ,  ( C a,R2) , (C4,R l ) ,  

(C4,R2), (Cs,R,), ( C, ,R2) ,  ( C , , R  O, (Ca, Ra), 
(G,R~) 

LOOP C~, C 6 
INSIDE (C~,R4) ' (Cs,R3) 
OUTSIDE (Cs,R,), (Cs,R2) , (C~,,R~) 
SCENE-OBJECT C:, C 2, Ca, Ca, Cs, C~,, R 1 , R~, R a, R 4 

($4 )  ( i)  

(ii) 

(Iv) F o r  s U {Cs ,C6}  , 

ROAD(S) V SHORE(S), 

-~ROAD(S) V ~SHORE(S), 

-qRIVER(S) . 

(V) F o r  s ~ { C , , . . .  , C4} , 

ROAD(S) V RIVER(S) ,  

-qROAD(S) V 7RIVER(S)  , 

"-qSHORE(S) . 

~ R I V E R ( C 3 )  V ~ R I V E R ( C 4 ) .  

S H O R E ( G  ) D LAND(R3)  ~ WATER(R,  ) ,  

SHORE(C5)  D LAND(R3)  ~ WATER(R2)  ' 

SHORE(C6)  D LAND(R4)  ~- WATER(R3)  " 
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(ii,) 
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LAND(R I ) ,  

LAND(R2) , 

ROAD(Cs) D LAND(R, ) ,  

ROAD(Cs) ~ LAND(R2) , 

ROAD(C,) ~ LAND(R3) , 

ROAD(C~) ~ LAND(R3) , 

ROAD(C6) ~ LAND(R4) , 

(IV) RIVER(C l) 3false, 
RIVER(C2) ~ RIVER(C, ) v RIVER(Ca) , 

RIVER(C3) ~ SHORE(Cs) , 

RIVER(C4) ~ SHORE(Cs) 

After a certain amount of simplification (which would require a proposmonal 
theorem prover in general) we obtain the following equivalent set of formulas. 

The formulas of (S3)(i) above 

For s E { R  l ,  . , R 4 }  , 

~RIVER(S) , 

7ROAD(S) , 

~SHORE(S) , 

LAND(R1 ) ,  

LAND(R2) , 

"qWATER(R 1 ) ,  

~WATER(R2) . 

For s ~ {R3, R4}, 

LAND(S) V WATER(S), 

-'qLAND(S) V ~WATER(S) . 

The formulas of (S3)(iii) above. 

The formulas of (S3)0v) above. 

For s E {C2, .  , C4}, 
ROAD(S) V RIVER(S), 

"qROAD(S) V -"qRIVER(S) , 

 SHORE(s), 
ROAD(C1) , 

--qRIVER(C, ) ,  

--ISHORE(CI) . 
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The formulas of (S4)(i) above. 

SHORE(Cs) D WATER(R3) , 

SHORE(C6) D LAND(R4) --= WATER(8 3 ) 

ROAD(Us) D LAND(R3) , 

ROAD(C6) D LAND(R 3) ,  

ROAD(C6) D LAND(R4) . 

RIVER(C2) ~ RIVER(C 3) ,  

RIVER(C 3 ) D SHORE( C 5 ) ,  

RIVER(C4) ~ SHORE(Us) . 

It is a simple but tedious matter  to determine all propositional models of 
these formulas; there are six of them, as summarized in Table 2. This means 
there are six possible interpretations of the original image. 

The problem of determining all propositional models of these formulas can 
be formulated as a classical constraint satisfaction problem (CSP) [13] in two 
different ways. First, the problem of satisfiability of a propositional conjunctive 
normal form formula, SAT, is a CSP in which each atom is a variable with 
domain {true, false} and each clause is a constraint on the values of the atoms 
m the clause. In an alternative formulation, there are ten variables 
{ C l , . .  , C6, R I , . .  , R4}. For the variables { C 1 , . . .  , C6} the domain of 
possible values is {ROAD, RIVER, SHORE}; for the variables { 8 1 , . . .  , R4} the 
domain of possible values is {WATER, LAND}. Each propositional formula 
corresponds to constraint (either unary, binary or ternary) on the sets of 
possible values allowed for the variables mennoned  in the formula. Although, 
in general, CSPs are NP-hard there are several efficient approximation al- 
gorithms that may be useful. Network consistency approximation algorithms 
have been developed and used extensively in the Mapsee project [18]. 

In connection with implementing an image interpretation system, notice that 
the general form of SIMP-AXIOMS of Section 5, specifically the formula groups 

Table 2 
The six lnterpretanons of the map of Fig 3 

Predicate 

Extension ROAD RIVER SHORE LAND WATER 

1 C l, C2, C3, C4, C5, C 6 R 1 , R 2, R3, R4 
2 C~, C2, 63, C4, C 5 C 6 R I , R 2, R3 R4 
3 fly C2, C3, C 4 C5, C o R,,  R2, R 4 R 3 
4 C1, C2, C 3 C 4 C5, C 6 R~, R2, R 4 R 3 
5 C1, C2, C 4 63 C5, C 6 RI, 82, R 4 R 3 
6 C~, C4 C2, C~ C~, C O R~, R2, 84 R~ 



144 R REITER AND A K MACKWORTH 

($3) and ($4), strongly suggests the use of a relational database system [15] 
Predicates like CROSS, LOOP, etc. can be naturally viewed as relations, and 
[CROSS], [LOOr'l, etc. as their corresponding relational tables. For computattons 
involving these tables, we can use the relational algebra which was designed 
specifically for the manipulation of such tables [15, Chapter 2] For example by 
appeahng to the join operator  of the relational algebra, the formula group 
(S4)(il) may be expressed as. 

For (x,y,z) E ILooPl ~<,,~ (IINSIDE[ [:><~l 1 [OUTSIDEI) , 

SHORE(X) ~ LAND(y) -= WATER(Z), 

where ~ , . j  indicates that the join is taken over the ith and ]th columns of the 
first and second operands respectively of the join operator  4 

By appealing to relational database systems in this way, computational vision 
can exploit the efficient storage, retrieval, and special purpose hardware of 
current and future database technologies. This can be especially important for 
vision applications since the relational tables obtained from complex images 
are likely to be quite large. 

In connection with databases and vtsmn, it is interesting to note that Blbel 
[2] proposes solving constraint satisfaction problems by means of the relational 
algebra. As we have just seen, SIMP-AXIOMS leads to a constraint satisfaction 
problem whose solution yields all interpretations of a sketch map. We there- 
fore have the prospect of relational databases playing a major implementation 
role In high level vision. 

7. Some Additional Features of this Framework for Depiction 

We have emphasized that a logical foundation for high level vision provides a 
rigorous definition for the concept of an interpretation of an image. We have 
also demonstrated how logic can be used to refine a logical specification of an 
interpretation task to an algorithmic reahzation of this task. There are, 
however, other important advantages of a logical perspective. We sketch some 
of these here. 

7.1. Incorporating contingent knowledge 

In our axlomatizatlon of hand drawn sketch maps, the scene axioms of Section 
2.2 reflected general knowledge of the scene domain. These axioms were fixed 
in advance and, with the help of the other axioms, were refined to the groups 
of propositional formulas ($3) and ($4) of SIMP-AXIOMS. These formulas are 
used to determine all interpretatmns of a gwen image. 

4The reader unfamdlar w~th the relational algebra can safely ignore th~s example The ~mportant 
point ~s that the relational algebra prowdes operators for manipulating relatmnal tables and that 
these have been implemented and optimized m current relational database systems 
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It often happens, however, that contingent knowledge is available about a 
particular scene. Such knowledge is not universal to all scenes, nor can it be 
anticipated in advance. For example, we may know a priori something about 
the geographic region depicted by a particular sketch map, perhaps that the 
area contains a river with two tributaries, and it flows into a shore. This 1tern of 
contingent knowledge is an additional constraint on the possible interpretations 
of the map, and must be exploited in computing these. The particular fact has 
the following logical representation: 

(3r,s) RIVER(r) ^ SHORE(S) A JOINS(r,s) 

^ (3r  1, r2) RIVER(rl) ^ RIVER(r2) A r I ¢ r 2 

^ JOINS(r, ,r) ^ JOINS(r2,r) • 

Conceptually, to accommodate this new information, we need only add it to 
MAP-AXIOMS and find all models of the resulting formulas. Computationally, 
because MAP-AXIOMS must be refined to SIMP-AXIOMS, the contingent knowl- 
edge must similarly be refined. For the example at hand, it is straightforward to 
carry out this refinement using the methods referred to in Section 5. We obtain 
the formula 

V [RIVER(r) A SHORE(S) 
(r a)~lJO1NSl 

A V (R1VER(r 1) A RIVER(r2))] . 
{(rl,r2)[rl~r 2 and (rl,r)EIJOINS ] 

and (r2J)E[JOINSI) 

This can be added to SIMP-AXIOMS, and interpretations computed as before. 
It is clear in general how contingent knowledge can be accommodated by a 

logical approach to high level vision, at least conceptually. One merely 
augments the axiomatization with the contingent facts. The interpretations of 
an image are the models of the enlarged axiom set. Computationally realizing 
this approach is another matter entirely. Such contingent scene knowledge 
must be transformed in exactly the same way as general scene knowledge as a 
first step in computing the interpretations, and these transformations must be 
algorithmically determined. For our simple sketch map world, specifying these 
transformations would be relatively straightforward, although we have not 
done so in this paper. For more general settings, the problem of automatically 
accommodating contingent knowledge remains a future research topic. 

7.2. Querying an image 

In many applications one is not concerned with finding some or all interpreta- 
tions of an image. Rather,  one is concerned with determining whether some 
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property of the scene is depicted in a given image. For example,  m our map 
world, we might wish to know whether  part  of what the image depicts is a road 
leading to a shore. Formally, this query is 

(3r,s) ROAD(r) A SHORE(S) A JOINS(r,s) . 

In general, a query Q can be any formula If AXIOMS is a set of formulas 
formalizing the apphcation under consideration, the query has answer "yes"  
provided it is true in all interpretations of the image, i.e. provided 

AXIOMS ~ Q .  

Q has answer " n o "  provided it is false in all interpretations of the image, 1 e. 
provided 

AXIOMS ~ -'7 Q .  

Otherwise,  its answer is "possibly",  which is to say it 1s true in some, but not 
all interpretations of the image. 

One approach to answering a query is to compute  all interpretations of the 
image, then determine the truth values of Q in each such interpretation. The 
obvious problem with such an approach is that it is completely bot tom up; the 
query does not participate in the computat ion of interpretations. If answering 
the query requires just a few image properties,  or involves only a small local 
region of the image, we can hope to do better  than a generate and test 
algorithm. The natural approach is to revoke a theorem prover,  which at tempts 
to derive one or both of Q and ~ Q  using AXIOMS as premises. Notice, 
however,  that just as was the case for accommodat ing contingent knowledge, 
the axioms to be used for image interpretat ion will be some refined version ol 
the original speoficatlon In our map world, SIMP-AXIOMS IS such a refinement 
of MAP-AXIOMS. The example query above would also have to be similarly 
refined to the equivalent 

~/ ROAD(r) A SHORE(S) 
(r ~)@IJOINS] 

prior to a theorem prowng computat ion with SIMP-AXIOMS as premises 
Moreover ,  the theorem to be proved should be instrumental in guiding the 
search for its proof,  so some mechanism will be required analogous to the set 
of support  strategy in resolution theorem proving (Wos et al. [27]), or 
top-down derivations in PROLOG (Kowalski [9]). Since one can expect that this 
final theorem proving task will frequently be proposmonal ,  it is likely to appeal 
to constraint satisfaction techniques. In this case, we shall require mechanisms 
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whereby the theorem actively guides the search for solutions to a constraint 
satisfaction problem. Finally, when the answer to a query is "possibly",  we 
shall normally want to determine those image interpretations in which the 
query ~s true. All these issues remain totally unexplored in the vision setting. 

7.3. Accommodating ambiguity in image descriptions 

Ambigmty arises in vision in two fundamentally different ways. First, a 
well-specified image, for example the sketch map in Fig. 3, may have multiple 
scene interpretations. This scene ambiguity is reflected in the fact that the 
image, scene and mapping axioms may have multiple models (six in the case of 
Fig. 3). Second, the image itself may have multiple descriptions. Here  we deal 
with this possibility. 

The image axioms of Section 2 1 for our map world formahze the assumption 
that our reformation about the image is complete; the closure axioms state that 
we know all and only the instances of images relations like tee and b o u n d s ,  

while the unique names axioms provide complete information about the 
equality relation. This assumpnon of complete information is a gross simplifi- 
cation. 

Consider Fig. 5 where the result of imperfect segmentation or careless 
drawing leaves open the possibility of a tee or a cht m the image. This setting 
can easily be represented by the image axiom 

t e e ( c , , c : )  v c h i ( c , , c 2 )  

Of course, we now lose the closure axioms for tee and cht.  This in turn leads to 
the loss of closure axioms for JOINS and CROSS which will have repercussions 
for the simplifications of MAP-AXIOMS derived in Section 5. Exploring the 
consequences of such ambiguities m the image description remains an open 
problem 

Figure 6 illustrates a more interesting example of ambiguity in an image 
description, because it affects the treatment of the equality relation The 
question is whether to treat chains cj and c 2 as a single continuous chain, in 
which case r~ and r 2 must be distinct regions, or as two separate chains, in 
which case r~ and r 2 are identical regions. We adopt the convention that c~ = c 2 

means that c~ and c 2 define a single continuous chain, l e that this single chain 

Fig 5 An ~mage wah two possible descnpnons 
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r 
2 

c2 

3 

Fig 6 A broken chain 9 

has two different n a m e s  Similarly with respect to the regions rl and r_~. This 
setting can now be formalized as follows: 

(Vx) c h a m ( x ) = - x = c  1 v x =  c~ v x =  c 3 ,  

(Vx) r e g i o n ( x )  =- x = r I v x = r 2 , 

C 1 ~ - - c 2 = ~ r  I 5 ~ r  2 , 

c I ~ c 3 , c 2 ~ c  3 , c ~  r: 

Notice that closure axioms for c h a m  and r e g t o n  are preserved. The unique 
names axioms of Section 2 1 are n o t  preserved. Specifically, the image axioms 
do not contain the unique names axioms c~ ~ c 2 and r~ ~ r 2. In settings like 
this, where the full set of unique names axioms must be abandoned,  an 
equahty reasoner  will be necessary for computing image interpretations The 
consequences for vision of incomplete information about the equahty relation 
remains an open problem 

It is precisely with respect to the speofication of incomplete information that 
logic excels as a representat ion language. Whde the consequences of such 
incomplete axiomatizat~ons may be far from obvious, there can be no question 
of just what it is about an image that is being formally specified This is 
particularly important  when the image description is ambiguous. 

7.4. Occlusion 

To this part our sketch map world admits only two-dimensional scenes. For 
example,  MAP-AXIOMS precludes occlusion This results f rom the mapping 
axiom (iii) in Section 2 3: 

(VS) SCENE-OBJECT(S) D (3 ! i )  t m a g e - o b j e c t ( t ) / x  A(i, s) . 

To see why, consider Fig. 7 which depicts a bridge passmg over  what might be 
a river or a road occluded by the bridge. If R denotes this occluded road or 
river, then A ( c  1 , R )  and zl(c 2, R); since c~ ~ c 2 the umqueness property of the 
above mapping axiom is violated. 
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Fig 7 An occluding bridge 

To accomodate occlusions of this kind we must relax the above mapping to 

(VS) SCENE-OBJECT(S) ~D (3 0 image-obIect(i ) ^ A( i , s ) .  

One consequence of this is that we lose the unique names formulas ~r(Im) 
or(In) when m ~ n for scene objects (see the proof of Result 4.30)).  But as we 
are about to see, this price must be paid anyway in order to properly formalize 
occlusions of this kind. 

Following the approach of the previous section, if a linear scene object is 
occluded so that its image contains two distinct chains c I and c 2, we adopt the 
convention that o- (c l )=  ~r(c2) means that the two chains depict one and the 
same scene object. Equivalently, o-(c1) and or(c2) are two different names for 
the same scene object. With respect to Fig. 7, o-(cl) = or(c2) means that there 
is a single scene object depicted by the two chains c~ and c 2. We can formalize 
bridge occlusions by the following scene axiom: 

(Vb,st,s2,ll  ,/2) BRIDGE(b,st ,$2) A JOINS(I t ,S t ) A JOINS(12,S2) 

l 1 = l 2 A (ROAD(/1) V RIVER(/1)). 

Here ,  BRIDGE(b,sI,s2) means that b is a bridge with sides s t and s 2. 
Notice that this axiom forces us to abandon unique names for scene objects 

(Result 4.3(i)), much as the representation of ambiguous image descriptions of 
the previous section led to the rejection of some unique names for image 
objects. Notice also that the centrahty of the equality relation for a proper  
treatment of occlusion is non unique to our analysis. Whenever  Guzman's  [6] 
SEE program uses the back-to-back T's heuristic to link two regions in an image 
of a polyhedral scene it is, in effect, declaring that those regions depict a single 
surface. 

We do not presume to have solved the occlusion problem. Also there may 
well be other  reasons for weakening the mapping axiom (ii0 in Section 2.3. 
Many scene objects may not appear at all in the image because they are at the 
wrong scale, outside the frame of the map, inappropriate to the theme of the 
map or are totally occluded by, for example, a legend. The ramifications of 
abandoning unique names for image and scene objects requires explorauon,  as 
does the weakening of the mapping axiom (ili) in Section 2.3. What does 
emerge clearly is the centrality of the equality relation for reasoning about and 
representing occlusion. 
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7.5. Complex objects 

In our treatment of sketch maps, we have considered only simple scene obJects 
like roads and rivers, that is, objects with no component  parts. Most vision 
settings involve complex objects consisting of aggregations of components 
which in turn may have components,  etc. This observation has motivated the 
designers of several vision systems to incorporate composmon  hierarchies for 
the definmon of complex objects [3, 7, 25] 

We indicate how such complex objects may be treated in our logical setting. 
As an example, consider the concept of a river system which informally is a 
maximal collection of interconnecting rivers at least one of which flows into a 
shoreline As in most treatments of composition in the vision literature, we 
appeal to a predicate PART-OF(X, y) meaning that object x is a component  of 
the more complex object y. 

(1) Every river r is part of a unique river system which we denote by p(r)" 

(Vr) RIVER(r) 

RIVER-SYSTEM(p(r)) A PART-OF(r, p(r)) 

A (Vy) RIVER-SYSTEM(y) /x PART-OF(r, y) ~ y = p(r) 

(2) Properties of a river system. 

(Vx) RIVER-SYSTEM(X) 

[(Vy) PART-OF(y,x) 3 RIVER( y)] 

/~ [(Vr, p)RIVER(r) A PART-OF(p,x) A JOINS(r,p) 

PART-OF(r,x)] 

A [(::Is,z) SHORE(S) A PART-OF(Z,X) A JOINS(Z,S)]. 

(3) Equality of river systems: 

(VX, y) RIVER-SYSTEM(X) A RIVER-SYSTEM(y) 

3 X = y ~ [(Vp) PART-OF(p,X) ~ PART-OF( p,y )]  . 

The introduction of complex objects into our sketch map world necessitates 
a number of minor changes to the axiomatizatlon of Section 2. First, the scene 
domain taxonomy must be expanded to that of Fig. 8. Second, all references to 
the predicate SCENE-OBJECT in Section 2 and the subsequent analysis must now 
be replaced by the predicate SIMPLE-SCENE-OBJECT In all other respects, the 
image interpretation process remains the same, with one exception. When the 
axioms for river systems are taken into account, there may be fewer interpreta- 
tions of an image This is not too surprising since adding axioms may eliminate 
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SCENE~)BJECT 

SIMPLE-SCENE-OBJECT 

LINEAR-SCENE-OBJECT AREA 

Fig 8 An  expanded scene domain  taxonomy 

COMPLEX-SCENE~DBJECT 

RIVER-SYSTEM 

Fig 9 Two rivers 9 

models. For example, under MAP-AXIOMS the image of Fig. 9 has an interpre- 
tation in which RIVER(C1) and RIVER(C2), but the first two axioms above for 
river systems preclude this interpretat ion:  

In this section we have merely sketched how complex objects may be 
accommodated in a logical framework for depiction. The details of their logical 
representation, such as the axiomatization of RIVER-SYSTEM and PART-OF, 
remain to be worked out, as are algorithms for using such axioms in the 
interpretation process. 

7.6. Characterizing preferred interpretations 

On our account of high level vision, scene ambiguity is a purely logical 
property; multiple interpretations of an image arise from multiple models of 
the corresponding task axiomatizatlon. The fact is, however, that frequently 
humans are unaware of all or even some of the ambiguities inherent in an 
image; certain interpretations are preferred over others. 

SWe omit  the proof  of  this, a l though it is straightforward. The proof  makes  use of the taxonomy 
of Fig 8 It also reqmres  unique names  axLoms of the form p(x)  ~ o'(y)  1 e that complex scene 
objects are different than  simple scene objects 
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In this paper we have not addressed the important problem ot characterizing 
preferred interpretations At this level one can expect domain specific prob- 
abilistic information to be significant, as well as psychological data. It is 
possible that purely logical considerations will be relevant. For example, 
certain preferred interpretations may satisfy suitable extremal properties with 
respect to the space of all possible image Interpretations Such extremal 
properties arise in various formalizations of nonmonotonlc reasoning [23]. In 
fact, since nonmonotonic reasoning is primarily concerned with plausible 
inferences, it is likely to play an important role in characterizing preferred (l.e 
plausible) interpretations in vision. 

Whatever considerations turn out to be relevant for characterizing preferred 
interpretations, we believe that a theory of high level vision must provide an 
account of all possible interpretations, not simply the psychologically preferred 
ones. In other words, it must provide a competence as well as a performance 
theory 

7.7. Graphics applications 

Although we have concentrated on the task of interpreting images, the vision 
problem, the logic of depiction can equally well be applied to the task of 
generating images, the graphics problem [11]. One of the criteria of procedural 
adequacy is flexibility: the capacity of a knowledge representation scheme to 
support analysis and synthesis [14]. 

If we adopt the simple axioms of Section 2.3 then, based on the assumption 
that each scene object is depicted by a unique image object, we can postulate a 
function ~(s) satisfying the axiom: 

VS SCENE-OBJECT(S) 

D tmage-object(~(s)) A A(~(S),S) A [(Vt)A(t ,s)  D t = ~(s)l . 

Coordinate frame transformations including metrical constraints on the scale, 
location and orientation of image and scene objects can be specified by the 
depiction relation A(t,s) or, equivalently, by the function ~(s). 

To generate an image of a scene, one computes all models of the general 
image, scene and mapping axioms and the particular scene description. If the 
scene description is consistent (internally and with respect to the general 
axioms) and denotes a unique scene then it is well-specified in the sense that it 
is neither anomalous nor ambiguous. In that case there would be but one 
model of the axioms which would specify a unique image. 

One of the advantages claimed for logic-based systems such as PROLOG is 
that there is often an element of "reversibility" in the definition of predicates: 
one can sometimes interchange the roles of input and output variables (Clock- 
sin and Mellish [4]). However, in practice, one finds that PROLOG programs are 
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usually designed to exploit a particular direction of procedural interpretation. 
The analogy carries through to the logic of depiction. Just as we manipulated 
the axioms to support an efficient interpretation process, one would have to 
manipulate the axioms to support an efficient generation process. Although the 
knowledge base may have been optimized for a particular direction of use, 
these optimizations are model-preserving, which ensures that the same knowl- 
edge underhes image interpretation and generation. This guarantees, for 
example, that interpretation and generation are correct inverses of each other 
with the qualification, of course, that interpretation is, in general, a one-to- 
many mapping, and generation is many-to-one. 

Using this approach, there are advantages for building user-computer inter- 
faces. If an applications program is manipulating a database of objects a 
graphical display representing a view of those objects could be maintained by a 
separate system built on the principles outlined here. While the user actually 
interacts with the graphical description in the image domain both the user and 
the applications program can interpret the effects of each other's graphical 
actions in the scene domain. 

Without changing the scene domain rules one can easily change the image 
formatting and object depiction rules. For example, if the applications program 
and the user are manipulating sets and set inclusion relationships then a scene 
configuration could be depicted as a conventional tree (as in Fig. 4) or the user 
may prefer to use Venn diagram convenuons based on containment of closed 
regions (Wong [26]). The separation of the image, scene and mapping knowl- 
edge encourages the design of modular and correct graphics systems that go 
beyond device independence to image domain independence. 

7.8. Beyond Mapsee 

Many of the advantages of the logical framework discussed in Section 7 suggest 
that we can go beyond a reconstruction of some aspects of Mapsee. The extant 
Mapsee implementations cannot incorporate contingent knowledge, allow effi- 
cient responses to image queries, accommodate ambiguous image descriptions, 
deal sensibly with occlusion or generate maps; although, Mapsee-3 does deal 
well with complex objects. The framework presented here may prove to be a 
foundation for building better image-based systems. 

8. Conclusion 

We are far from having presented a completely adequate framework for 
depiction and image interpretation; however, we have outhned a formal 
treatment of a task level theory of model-based vision. General knowledge of 
the image domain, the scene domain and the depiction mapping can be 
expressed in first-order logic with equality. An interpretation of a particular 
image is a logical model of the general knowledge and a description of that 
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image. This perspective provides a purely logical account of scene ambiguity. It 
also provides a task level formulation of the interpretation problem. This 
specification is refined, through model-preserving transformations, to the equi- 
valent problem of determining the satlsfiablhty of a set of propositional 
formulas to which known constraint satisfaction algorithms can be applied. 

This approach provides a framework for analyzing existing vision systems by 
a process of logical reconstruction. It also shows, for significant task domains, 
how to design and implement vision systems that are correct with respect to 
both the task and algorithm levels The modular separation of the knowledge 
into three sets of axioms encourages portability and generality in the applica- 
tion of this framework for depiction to other domains. Consider, say, the task 
of interpreting diagrams of combinatorial l o g i c  c i r c u i t s  Many of the image 
axioms will be unchanged. The generic classification of the axioms (namely, 
Taxonomy, Closure, Unique Names, Coherence and Type Constramts, Dls- 
loIntness of Image and Scene Objects, Uniqueness of Depiction, Taxonomic 
Mapping and Relational Mapping) will survive. In any application, the founda- 
tion (namely, the definition of an interpretation as a model of an axiomatic 
formulation) will remain secure. In many applications, the methods used to 
transform to propositional form and the use of CSP techniques will, we 
hypothesize, still be appropriate. To that extent the framework is independent 
of the particular task and axiomatlzatlon exploited here as an example. 
Moreover, it apparently has applications in intelligent computer graphics as 
well. 

We have also sketched logical approaches to the problems of contingent 
scene knowledge, image queries, ambiguity in image descriptions, occlusion 
and complex objects These and many other issues of descnpuve and pro- 
cedural adequacy remain to be explored in depth. 
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