NOTICE

This mat .
. eria]
PYTight Loy, of tb':a{] be protecteq by the

UNIVE, S (Tite 17 g,
RSITY oF NEBRASKA-Lingopy . Code),
LIBRA

The Complexity of Some Polynomial
Network Consistency Algorithms for

ARTIFICIAL INTELLIGENCE 65

‘Constraint Satisfaction Problems

Alan K. Mackworth

Department of Computer Science, University of British
Columbia, Vancouver, B.C., Canada

Eugene C. Freuder

Department of Computer Science, University of New
Hampshire, Durham, NH, US.A.

Recommended by Judea Pearl

ABSTRACT

Constraint satisfaction problems play a central role in artificial intelligence. A class of network
consistency algorithms for eliminating local inconsistencies in such problems has previously been
described. We analyze the time complexity of several node, arc and path consistency algorithms and
prove that arc consistency is achievable in time linear in the number of binary constraints. The Waltz
filtering algorithm is a special case of the arc consistency algorithm. In the edge labelling com-
putational vision application the constraint graph is planar and so the time complexity is linear in the

number of variables.

1. Introduction

The purpose of this paper is to analyze the network consistency algorithms
described previously [6].

A constraint satisfaction problem (CSP) is defined as follows: Given a set of
n variables each with an associated domain and a set of constraining relations
each involving a subset of the variables, find all possible n-tuples such that each
n-tuple is an instantiation of the n variables satisfying the relations. In this
paper we shall consider only CSPs in which the domains are discrete, finite sets
and the relations are unary and binary. These restrictions are not necessary for
consistency techniques to be applied [2, 6, 71.

Since graph colouring is an NP-complete CSP it is most unlikely that a
Artificial Intelligence 25 (1985) 65-74

0004-3702/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland)

66 A K. MACKWORTH AND E.C. FREUDER

polynomial time algorithm exists for solving general CSPs. Accordingly, the
class of network consistency algorithms was invented [2,6,8, 9]. These al-
gorithms do not solve a CSP completely but they eliminate once and for all
local inconsistencies that cannot participate in any global solutions. These
inconsistencies would otherwise have been repeatedly discovered by any back-
tracking solution. One role for network consistency algorithms is as a pre-
processor for subsequent backtrack search.

A k-consistency algorithm removes all inconsistencies involving all subsets of
size k of the n variables. For example, the node, arc and path consistency
algorithms detect and eliminate inconsistencies involving k=1, 2 and 3 vari
ables, respectively. Freuder [2] generalized those algorithms for k=1,...,n
thereby producing the complete set of solutions to the CSP.

Node, arc and path consistency can be achieved in polynomial time. The
most significant new result presented here is that arc consistency is achievable
in time linear in the number of binary constraints. If the constraint graph is
planar (see, for example, Waltz’s system [9]), then that time bound is also
linear in the number of variables.

2. The Complexity of Node and Arc Consistency

The algorithms below are reprinted from a previous paper [6] which should be
consulted for a full explanation. The domain of variable i is D; and Pj is the
binary constraint predicate on the variables i and j corresponding to an edge
between vertices i and j in the constraint graph G. The edge between i and j
may be replaced by the directed arc from i to j and the arc from j to i as they
are treated separately by the algorithms. Let the number of variables be n, the
number of binary constraints be e (the number of edges in the constraint
graph) and the edge degree of vertex i be d. The time unit used for our
complexity measures will be the application of a unary or binary predicate. To
simplify the description of the results of the analysis we shall assume that each
D, has the same size 4, and that there is no internal structure to D; or P, such
as strict ordering, that could be exploited.

As an illustrative example of these concepts, consider the n-queens problem.
The task is to place n queens on an n.xX n chessboard so that no queen is on the
same row, column or diagonal as any other. Since each queen must be in a
different column, the task can be formulated as a CSP with a set of n variables
{v, V2.« > v,}, one for each column. The value of v; is the row number of the
queen in column i. We have each D initially as the set {1,2,...,n}, and so
a = n. Each queen constrains each other so the edge degree of each vertex
d,=n-1. The constraint graph G is the fully connected complete graph on n
vertices, and so e = Yn(n — 1). The binary predicate P; with i#j1is

Py(x, y) = ((x# y) n (x =y #li = D)

The unary predicates P; are in this case vacuous.

9

M«c«epmf-mwxgmwﬁwtfrw;ﬁ&w

B O N T sl Al it

POLYNOMIAL NETWORK CONSISTENCY ALGORITHMS 67

We first make the obvious remark that node consistency is always established
in linear time by the algorithm NC-1. (See Fig. 1.)

procedure NC(/):
D;«D; N {x| P (x)}
begin
for i1 until n do NC(J)
end

Fi1G. 1. NC-1: the node consistency algorithm.

Using NC-1, node consistency is achieved in O(an) time.
Next we analyze the two arc consistency algorithms AC-1 and AC-3. (See
Figs. 2 and 3.)

procedure REVISE((/, j)):
begin
DELETE «false
for each x € D, do
if there is no y € D, such that P;(x, y) then
begin
delete x from Dj;
DELETE «true
end;
return DELETE
end

1 begin

2 for i<1 until n do NC(i);
3 Qi DI Earcs(G),i#]}
4 repeat

5 begin

6 CHANGE<«Halse;
7 for each (i, /) € Q do CHANGE «(REVISE((i, j)) or CHANGE)
8 end

9 until —CHANGE

0

10 end

FIG. 2. AC-1: the first arc consistency algorithm.

Consider AC-1. Note that the number of arcs on Q is twice the number of
edges and the length of Q does not change, that is, |Q| = 2e. The ‘repeat’ loop
of lines 4-9 in Fig. 2 iterates until there is no deletion from any D The
maximum number of iterations occurs when only one element is deleted from
one D; on each complete iteration. There are then at most na iterations. Each
iteration requires |Q| = 2e calls to REVISE. Each call to REVISE requires at
most a? evaluations of Py Hence the worst case time complexity of AC-1 is
O(a’ne).

i o

e A o e vene

e e e n T

Ay L

e e At B o 5w s Bt st b e et . vt s e g iy 3 ittt

PP P TP RGN T

e Bt T i RY WS B et

J

68 A.K. MACKWORTH AND E.C. FREUDER
1
2
3
4
5
6
7
8
9

FI1G. 3. AC-3: the third arc consistency algorithm.

begin
tor i«—1 until n do NC(/);

Q{(i.)| (i.j) € arcs(G), i # |}
while Q not empty do
begin
select and delete any arc (k, m) from Q;
it REVISE((k, m)) then Q —Q U{(i, k)|(i, k) € arcs(G), i # k, i # m}

end

o
3
Q

AC-3 is a simpler and more general version of AC-2, the Waltz filtering
algorithm. It improves on AC-1 by only reconsidering arcs that may have
become inconsistent whenever a deletion from a variable domain is performed.
As with AC-1 initially the length of the queue of arcs waiting to be made
consistent is |Q| = 2e. However Q may grow and shrink during the iterations of
the ‘while’ loop (Fig. 3, lines 4-8) until it is finally exhausted. The worst case
occurs when each element is deleted from each Dy on separate successful calls
to REVISE and when, moreover, none of the arcs to be subsequently added to
Q is already on it.

Entries are made in Q when a call to REVISE on an arc has succeeded. If
REVISE((k, m)) has succeeded, then at most (di — 1) arcs are added to Q. That
number may be entered a times per vertex and so the total number of new
entries made in Q is:

n

> a(d,—1)=aRe-n).

k=1
Regardless of whether REVISE succeeds, one arc is deleted on each iteration
and so the number of iterations is at most the original length of Q plus the

total number of new entries.
2e + a(2e —n).

Each iteration may require a? binary predicate evaluations and so, the total
number is at most a*(2e + a(2e — n)).

If the constraint graph is not connected, each of its components may be
treated independently so we may assume the graph is connected and hence
e = n — 1 and so the time complexity may be written as O(a’¢), that is, linear in
the number of edges or binary constraints.

A lower bound on the worst case complexity can be obtained by considering
the case when the network is already arc consistent. The number of predicate
evaluations required to confirm that could be simply the original length of Q
(=2e), times a? or 2a’e. Thus the worst case running time for AC-3 is bounded
below by Q(a2%) and above by O(a’e). Both bounds are linear in the number

of edges.

MBI A B SI. L ee

POLYNOMIAL NETWORK CONSISTENCY ALGORITHMS 69

For a complete graph, such as in the n-queens CSP, e = jn(n — 1) and so in
general AC-3 is O(a*n?). However many constraint graphs are sparse; that is,
the number of edges is only linear in the number of vertices. For such graphs, e
is O(n) and so AC-3 is at most O(a®n) and at least Q(a?n). Planar graphs are,
for example, sparse in that sense. Thus we have proven that the Waltz filtering
algorithm necessarily has linear behavior on planar graphs. This behavior is not
the result of any special attribute of the vision scene labelling domain in which
it arose other than the sparsity of the constraint graphs. Those constraint
graphs are planar because each vertex in the graph corresponds to a junction in
a two-dimensional projection of a three-dimensional scene and each edge in
the graph corresponds to the constraint that the three-dimensional edge
corresponding to a straight line in the image must have the same interpretation
at each of the two corners it connects. Those constraint graphs are thus
embedded in the two-dimensional image plane.

Another intriguing question not yet answered is: when do node and arc
consistency alone provide a sufficient guarantee that there is a complete
solution? Freuder [3] has observed that the definition of k-consistency implies
that any constraint network which is j-consistent for all j <k can have each
variable instantiated without backup due to failure on depth-first backtracking
if the order of instantiation guarantees that any variable, when instantiated, is
constrained directly by at most k — 1 other previously instantiated variables.
That is, under those conditions, a complete solution can be found from the net-
work in linear time. For k = 2 a constraint graph that is a strict tree satisfies
Freuder’s requirement if one instantiates the variables in top-down order from
the root of the tree to the leaves. When each variable is instantiated, only its
parent directly constrains it. If the tree is node and arc consistent, then there
must be at least one value for the variable consistent with the value for its
parent.

Our new result above shows that AC-3 can be applied in O(a>n) time since a
tree is a sparse graph. After applying AC-3 it is either the case that all the
domains are empty which indicates that there is no solution or each of the
domains contains at least one element and the network is node and arc
consistent. In the latter case, a solution can subsequently be instantiated in at
most O(an) predicate evaluations. Thus we have shown that when the con-
straint graph is a strict tree, a solution to the CSP will be found (or failure
reported if there are no solutions) in linear time.

Node and arc consistency alone may be sufficient in other cases not yet
explained by these results perhaps due to domain specific attributes such as
decoupling of constraint subgraphs or the degree of restrictiveness of the
individual binary constraints [4].

The running time of arc consistency methods has been a matter of some
controversy. Waltz [9] reported that his program required time ‘‘roughly
proportional to the number of line segments in the scene” (which is the number
of binary constraints). His program performed arc consistency using AC-2, a

70 A.K. MACKWORTH AND E.C. FREUDER

special case of AC-3. Waltz attributed the linearity in part to a special property
of polyhedral scene labelling, namely, the decoupling effect of T-junctions
which limit the propagation of inconsistencies. Mackworth [6, p. 115] has some
speculations on this topic which are not valid. Gaschnig [5] skeptically observed
that Waltz provided only six measurements and argued that “Little can be
concluded from so few datapoints”. Gaschnig carried out some data analysis
that cast doubt on the linear hypothesis, but cautioned that “little can be

concluded with confidence from this plot™.

3. The Complexity of Backtracking

The worst case of depth-first backtracking occurs when no solution exists solely
because of an inconsistency between the last variable instantiated and the other
variables. The number of pair tests is at most the number of leaves on the search
tree, a”, times the number of constraints, e, and so backtracking is O(ea"). This
emphasizes the importance of reducing the domain size a as much as possible.
This can be done beforehand by arc consistency and indeed for one class of
constraint graphs, trees, an exponential algorithm can be replaced by a linear one.

4. The Complexity of Path Consistency

The analysis of the path consistency algorithms, PC-1 and PC-2, is analogous to
the arc consistency analysis. PC-1 is due to Montanari [8]. We shall not repeat
all the justification and explanation of the algorithms and the notation from
Mackworth’s paper [6]. But we quote the following paragraph [6, p. 107]:

The arc consistency algorithms operate on an explicit data structure represen-
tation of the unary predicates, (i.e., the sets of all values that satisfy them, D)
deleting values that cannot be part of a complete solution because of the
restrictions imposed on adjacent nodes by the binary predicates. However, it is a
matter of indifference to those algorithms whether the binary predicates are
represented by a data structure or a procedure. The path consistency algorithms
can be seen as generalizations in that although the predicate Pis(x, y) may allow a
pair of values, say, Pis(a, b) that pair may actually be forbidden because there is
an indirect constraint on v; and v; imposed by the fact that there must be a value,
¢, for v, that satisfies Py(a, ¢), Pa(c) and Px(c, b). If there is no such value then
that fact may be recorded by deleting the pair (a, b) from the set of value pairs
allowed initially by Py, in a fashion directly analogous to the deletion of
individual values from the variable domains in the arc consistency algorithms. In
order to perform that deletion it is necessary to have a data representation for the
set of pairs allowed by a binary predicate. If the variable domains are finite and
discrete then a relation matrix with binary entries is such a representation.

We represent the predicate P by the relation matrix R;. The a rows of R;
correspond to the a possible values of v; and the a columns correspond to the
a possible values of v, The algorithm deletes entries from copies of the
relation matrices called Y; which are initialized to the corresponding R;. In the

POLYNOMIAL NETWORK CONSISTENCY ALGORITHMS 71

n-queens CSP, for example, two queens may be placed on rows in their
respective columns without violating the direct constraints. However, there
may be no legal position for the queen in a third column that is compatible
with both of those placements. This fact is recorded by deleting the entry in Y
that allowed that pair, since that pair of positions cannot appear in any legal
solution. This example is expanded in more detail in the earlier paper [6].

The path consistency algorithms ensure that any pair of domain elements
allowed by the direct relation R; between the vertices i and j is also allowed by
all paths of any length from vertex i to vertex j. A theorem of Montanari’s [8]
states that, in a network with a complete graph, if every path of length 2 is path
consistent then the network is path consistent. Both PC-1 and PC-2 thus need
only examine all length-2 paths.

1 begin
2 Y'<R
3 repeat
4 begin
5 YoeY”
6 for k<1 until n do
7 for i1 until n do
8 for j«1 until n do
9 Y‘;«— Yf.‘i" & Yj;(“ . Y:;’ . Y’;,“
10 end
11 until Y"=Y?
12 YYT
13 end

FIG. 4. PC-1: the first path consistency algorithm.

The operation at line 9 of PC-1 (see Fig. 4) updates the relation matrix Yj; by
deleting any pair of values for v; and v; that is illegal because there is no legal
value of v, consistent with it. The operation - is binary matrix multiplication
and & corresponds to element-by-element matrix intersection.

PC-1 is a symbolic relaxation algorithm that halts when there is no change in
any of the relation matrices, at which point all paths of length 2 are consistent.

In analyzing PC-1 and PC-2, we shall use as the time complexity measure the
number of binary operations. The loop of lines 3-11 in Fig. 4 is executed
repeatedly until no change is observed in the total set of binary relations. The
worst case is that at most one pair of elements is deleted from one relation on
each iteration. There are n? binary relations and a? elements in each so the
number of iterations is at most O(a*n?). Each iteration performs line 9 of Fig. 4
n3 times. The operation of making the path from vertex i to vertex j through
vertex k consistent requires O(a®) binary operations if implemented con-
ventionally. (This can be asymptotically improved to O(a*****) [1].) Hence the
worst-case time complexity of PC-1 is O(a’n’).

o ey e s

72 A.K. MACKWORTH AND E.C. FREUDER

ashion analogous to AC-3. It is based on the

following observation: whenever a binary or unary relation is modified it is not
necessary to re-examine, as PC-1 does, all the length-2 paths in the network; it
suffices to re-examine only those length-2 paths containing the modified relation.

In PC-2 we represent the path from vertex i through vertex k to vertex j as
the triple (i, k, j). The function RELATED PATHS((i, k, j)) returns the set of
length-2 paths that might have their consistency affected by a change in the
consistency of (i, k, j). Mackworth [6] gives the details of RELATED PATHS and
shows that if i # j the set returned has 2n - 2 members whereas if i = it has

%n(n + 1)— 2 members.

PC-2 (see Fig. 5) operates inaf

procedure REVISE((/, k. /)

begin
ZYy& Y Y Vi
it Z=Y; then return faise
else Y, <Z, return true

end
1 begin
Qi k.)G <), —li = k=]k
while Q is not empty do

2
3
4 begin

5 select and delete a path (i, k, j) from Q;

6 if REVISE((i, k, j)) then Q<«-Q U RELATED PATHS((/, k, j))
7

8

end
end

FIG. 5. PC-2: the second path consistency algorithm.

In analyzing PC-2 we use reasoning analogous to that used in analyzing AC-3
by examining the effect of successful and unsuccessful calls to REVISE on the

~ length of the queue of paths waiting to be made consistent. On the successful

calls to REVISE when i=j, an element has been deleted from Y and
In(n + 1)— 2 paths (at most) are added to Q. This can occur at most na times
since there are at most na non-z€ro entries initially in all the Y. When i<jan
element has been deleted from Y, and 2n — 2 paths are added to Q. This can

occur at most 3n(n — 1)a? times. And so the maximum number of new entries
on Q is:
naGn(n+1)—2)+ in(n — 1)a*(2n - 2) =
= (a?+ la)n’+ (a — 2a*)n*+(a*~ 2a)n
which is O(a’n?).
On each iteration of lines 4-7 (Fig. 5), one path is deleted from Q. If
REVISE is unsuccessful on that path, no new paths are added to Q, whereas if

it is successful, a number of new paths must be added as enumerated above.
Since the iteration proceeds until Q is exhausted the maximum total number of

POLYNOMIAL NETWORK CONSISTENCY ALGORITHMS 73

iterations is the number of paths originally on Q, 3(n*+ n?—2n), plus the
maximum number of new entries computed above. The time complexity of
PC-2 is then O(a’n?). This is an improvement by a factor of n? over the bound
on PC-1’s behavior. A lower bound on the behavior of PC-2 is obtained by
considering a network which is already path consistent yielding Q(a’n?) so the
algorithm is truly cubic in its behavior.

5. Conclusion

We have shown that arc consistency is achievable in time linear in the number
of binary constraints. For a fully connected graph of n nodes the time
complexity of AC-3 is Q(a®n?) and O(a®n?) but for sparse graphs, which occur
in many applications, the complexity is)(a’n) and O(a’n). Furthermore, if the
constraint graph is a strict tree, then one can find a complete instantiated
solution if one exists (or report failure if there are no solutions) in O(a’n) time.
Path consistency is achievable in Q(a*n®) and O(a’n’) time. Moreover, the
additional implementation complexity of AC-3 and PC-2 when compared with
AC-1 and PC-1 is justified by guaranteed worst-case complexity of O(n?) and
O(n?) respectively. It should be noted, however, that AC-1 and PC-1 have
more inherent parallelism that AC-3 and PC-2.

Finally, we note that there are several ways to use these algorithms to
achieve complete solutions to constraint satisfaction problems [2,6,7]. The
simple approach is to use them to preprocess constraint networks before
backtracking is applied. Constraint satisfaction techniques may also be inter-
leaved with variable instantiation (backtracking) or case analysis (domain
splitting). These techniques are attractive because at the cost of linear, quadra-
tic or cubic time they may reduce the worst-case time complexity of backtrack-
ing exponentially by reducing the size of the variable domains and relations.

ACKNOWLEDGMENT

We are grateful to Raimund Seidel and David Kirkpatrick for useful discussions on this topic and
to Judea Pearl and the referees for their suggestions. This material is based upon work supported
by the Natural Sciences and Engineering Research Council Canada under Grant A9281 and the
National Science Foundation under Grant No. MCS-8003307.

REFERENCES

1. Coppersmith, D. and Winograd, S., On the asymptotic complexity of matrix multiplication,
SIAM J. Comp. 11 (1982) 472492,

2. Freuder, E.C., Synthesizing constraint expressions, Comm. ACM 21 (1978) 958-966.

3. Freuder, E.C., A sufficient condition for backtrack-free search, J. ACM 29 (1982) 24-32.

4. Haralick, R.M. and Elliott, G.L., Increasing tree search efficiency for constraint satisfaction
problems, Artificial Intelligence 14 (1980) 263-313,

5. Gaschnig, J., Performance measurement and analysis of certain search algorithms, CMU-CS-79-
124 Tech. Rept., Carnegie-Mellon University, Pittsburgh, PA, 1979.

