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Abstract

The development of autonomous agents, such as
mobile robots and software agents, has generated
considerable research in recent years. Robotic
systems, which are usually built from a mix-
ture of continuous (analog) and discrete (digi-
tal) components, are often referred to as hybrid
dynamical systems. Traditional approaches to
real-time hybrid systems usually define behav-
iors purely in terms of determinism or sometimes
non-determinism. However, this is insufficient
as real-time dynamical systems very often ex-
hibit uncertain behaviour. To address this issue,
we develop a semantic model, Probabilistic Con-
straint Nets (PCN), for probabilistic hybrid sys-
tems. PCN captures the most general structure of
dynamic systems, allowing systems with discrete
and continuous time/variables, synchronous as
well as asynchronous event structures and uncer-
tain dynamics to be modeled in a unitary frame-
work. Based on a formal mathematical paradigm
uniting abstract algebra, topology and measure
theory, PCN provides a rigorous formal program-
ming semantics for the design of hybrid real-time
embedded systems exhibiting uncertainty.

1 Introduction
Dynamical systems are defined on time structures and do-
main structures. Both of which can be either discrete or
continuous. A hybrid dynamical system is a dynamical
system composed of a combination of discrete and contin-
uous time and domain structures. A robotic system consist-
ing of a computer-controlled robot coupled to a continuous
environment is an example of a hybrid dynamical system.
Zhang and Mackworth proposed a formal framework for
deterministic hybrid systems called Constraint Nets (CN)
[17]. Although their paradigm allows for the modeling of
non-deterministic systems through hidden inputs, it does
not permit the specification of uncertainty in the system.
However, real-time dynamical systems very often behave
unpredictably and thus exhibit (structured) uncertainty. It
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Figure 1: Simple Transduction with uncertainty

is therefore important to be able to model and analyze real-
time probabilistic systems.
In this paper we introduce a sound mathematical frame-
work for the modeling of probabilistic hybrid dynamical
systems that we call Probabilistic Constraint Nets (PCN).
PCN provides a model that is formal and general, modu-
lar and composite, powerful and practical. Moreover, PCN
has a graphical representation which simplifies the mod-
eling task. Based on algebraic, topological and measure-
theoretic structures of dynamics, the PCN framework ex-
tends the CN paradigm to allow the user to model uncer-
tainty in the dynamics of the system and in the environ-
ment. We will introduce the syntax of the modeling lan-
guage along with its semantics which leads to a fixpoint in
distribution.
However, before introducing the syntax of our framework,
we present an example of a basic dynamical system that we
will use throughout this paper. Consider the discrete time
dynamical system corresponding to the following recursive
function: f(t + 1) = 0.5f(t) + Y (ω), f(0) = 0, where
Y (ω) : Ω → {1, 2} is a random variable with a discrete
uniform distribution over the set {1, 2}. The PCN graph-
ical representation of this system is depicted in Figure 1.
This system will serve as a running example throughout
this paper. Figure 1 will be explained when we introduce
the PCN syntax in Section 3. We will also use this example
to illustrate the semantics of the PCN framework in Sec-
tion 4.



2 Mathematical Foundations
In this section, we present the essential mathematical con-
cepts needed to understand the theoretical results for the
semantics of the PCN framework. We assume the reader
is familiar with topology and measure theory concepts that
can be found in [2, 3] and in the first author’s dissertation
[13].
As we are interested in modeling dynamical systems, a
model of time and its evolution is necessary. In fact, a clear
notion of the concept of time is central to understanding dy-
namics. We formalize time using an abstract structure that
captures its most important properties. In general, a time
structure can be considered as a totally ordered set with an
initial start time, an associated metric for “the distance be-
tween any two time points" and a measure for “the duration
of an interval of time." Formally, we define the concept of
time structure as follows.
Definition 2.1 (Time structure) A time structure is a
triple 〈T , d, µ〉1 where

• T is a linearly ordered set 〈T ,≤〉 with 0 as the least
element;

• 〈T , d〉 forms a metric space with d as a metric satis-
fying: for all t0 ≤ t1 ≤ t2,

d(t0, t2) = d(t0, t1) + d(t1, t2),

{t|m(t) ≤ τ} has a greatest element and {t|m(t) ≥
τ} has a least element for all 0 ≤ τ < sup{m(t)|t ∈
T } where m(t) = d(0, t);

• 〈T , σ, µ〉 forms a measure space with σ as the Borel
set of topological space 〈T , d〉 and µ as a Borel mea-
sure satisfying µ([t1, t2)) ≤ d(t1, t2) for all t1 ≤ t2
where [t1, t2) = {t|t1 ≤ t < t2} and µ([t1, t2)) =
µ([0, t2))− µ([0, t1)).

As with time, we formalize domains as abstract structures
so that discrete and continuous domains are defined uni-
formly. A domain can be either simple or composite. Sim-
ple domains denote simple data types, such as reals, inte-
gers, Booleans and characters; composite domains denote
structured data types, such as arrays, vectors, strings, ob-
jects, structures and records.
Definition 2.2 (Simple domain) A simple domain is a
pair 〈A ∪ {⊥A}, dA〉 where A is a set, ⊥A 6∈ A means
undefined in A, and dA is a metric on A.
Let A = A ∪ {⊥A}. For simplicity, we will use A to refer
to simple domain 〈A, dA〉 when no ambiguity arises. For
example, let R be the set of real numbers, R is a simple
domain with a connected metric space; let B = {0, 1}, B is
a simple domain with a discrete topology on B.
Any simple domain A is associated with a partial order re-
lation ≤A. 〈A,≤A〉 is a flat partial order with ⊥A as the
least element. In addition, A is associated with a derived

1To abbreviate the notation, we will simply use T to refer to
the time structure 〈T , d, µ〉 when no ambiguity arises.

metric topology τ = τA∪{A}where τA is the metric topol-
ogy on A derived from the metric dA.
A domain is defined recursively based on simple domains.
Definition 2.3 (Domain) 〈A,≤A, τ〉, with ≤A as the par-
tial order relation and τ as the derived metric topology, is
a domain2 iff:

• it is a simple domain; or

• it is a composite domain, i.e., it is the product of a fam-
ily of domains {〈Ai,≤Ai , τi〉}i∈I such that 〈A,≤A〉
is the product partial order of the family of partial or-
ders {〈Ai,≤Ai〉}i∈I and 〈A, τ〉 is the product space
of the family of topological spaces {〈Ai, τi〉}i∈I .

We take a signature as a syntactical structure of a class of
multi-sorted domains with associated functions defined on
these domains. Let Σ = 〈S, F 〉 be a signature where S
is a set of sorts and F is a set of function symbols. F is
equipped with a mapping type: F → S∗ × S where S∗
denotes the set of all finite tuples of S. For any f ∈ F ,
type(f) is the type of f . We use f : s∗ → s to de-
note f ∈ F with type(f) = 〈s∗, s〉. For example, the
signature of an algebra on the Naturals can be denoted by
ΣN = 〈N, {0,+,−,×}〉. This signature has only one sort,
N, with 4 different function symbols.
A domain structure of a signature is defined as follows. Let
Σ = 〈S, F 〉 be a signature. A Σ-domain structure A is
a pair 〈{As}s∈S, {fA}f∈F 〉 where for each s ∈ S, As is
a domain of sort s, and for each f : s∗ → s ∈ F with
s∗ : I → S and s ∈ S, fA : ×IAs∗i → As is a func-
tion denoted by f , which is continuous in the partial order
topology. For example, 〈N, {0,+,−,×}〉 is a ΣN structure
where +,− and× are addition, subtraction and multiplica-
tion, respectively.
With any time structure and domain structure, we can de-
fine two basic elements in probabilistic dynamical systems:
stochastic traces, which are functions of time and sam-
ple space Ω, and transductions, which are mappings from
stochastic traces to stochastic traces.
Stochastic traces are a central notion in representing the dy-
namical behaviour of the systems modeled within the PCN
framework. A stochastic trace intuitively denotes the (ran-
dom) changes of values over time. Formally, a stochastic
trace is a mapping v : Ω × T → A from sample space Ω
and time domain T to value domainA. For a given ω ∈ Ω,
the function vω : T → A is simply called a trace. In the
literature, a trace is often referred to as a sample function, a
realization, a trajectory or a path of the underlying stochas-
tic process. We will use v to denote both the stochastic
trace v or one of its realization traces vω when it is clear
from the context and no ambiguity arises.
A stochastic trace v is well-defined iff v(ω, t) is well-
defined for all (ω, t) ∈ Ω × T . A stochastic trace v is
undefined iff v(ω, t) is undefined for any (ω, t) ∈ Ω × T .
For example, denote a Brownian motion process by Bt(ω)

2For simplicity, we will use A to refer to domain 〈A,≤A, τ 〉
when no ambiguity arises.
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and T = R+ and A = R. Then v = λω, t.Bt(ω) is a well-
defined stochastic trace. For a fixed ω in Ω, vω = λt.Bt(ω)
represents a path of the Brownian motion process. On the
other hand, v1 = λt. cos(t) and v2 = λt.e−t are well-
defined deterministic traces, i.e., stochastic traces for which
|Ω| = 1.
Due to the fact that physical systems encompass uncer-
tainty, one is often more interested in the distribution of
the set of all execution traces of system rather than in one
specific execution trace.
One important feature of a trace is that it provides complete
information about the current execution of the system of
interest at every time point. In the presence of uncertainty,
the limiting value of a specific execution trace vω is of little
interest since the measure of that trace is typically zero.
The distribution of a stochastic trace, on the other hand,
provides complete information about the probability of the
state of the system at every finite time point.
A transduction is a causal mapping from input stochastic
traces to output stochastic traces. The causal relationship
stipulates that the evolution of the system cannot be dic-
tated by the future state of the system, but only by past and
present values. Formally, causality can be defined as fol-
lows
Definition 2.4 (Causality via Ft-adaptedness) Assume
{Ft}t≥0 to be an increasing family of σ-algebra of sub-
sets of AΩ×T . A mapping F (v)(ω, t) : AΩ×T → A′Ω×T

′

is causal if F (v)(ω, t) is Ft-adapted. A causal mapping on
stochastic trace spaces is called a transduction.
Primitive transductions are defined on a generic time struc-
ture T and are functional compositions of three types of
basic transduction: generators, transliterations and delays.
Definition 2.5 (Generator) Let A be a domain, Ω be a
sample space and T a time structure. Moreover, let FX|A
denote the (potentially conditional) cumulative distribu-
tion function for the random variable X . A generator
GA
T (v0) : Ω × T × A → A is a basic transduction de-

fined as

GA
T (v0, FX )(v) = λω, t.

{
v0 if t = 0
rand(FX|v(ω,t)(t), ω) else

where rand(FX|A, ·) is a random number generator asso-
ciated with FX|A.
We allow the distribution function FX|A to be conditioned
on t and values of the systems to produce a general model
of uncertainty. This enables the user to model systems
where the uncertainty component is non-stationary and
conditioned on the state of the system. Also note that in
this paper, we are not interested in the simulation of ran-
dom variables per se, but rather in the analysis of the re-
sulting models. Hence, we will assume that we are given,
for each generator included in the model, appropriate ran-
dom number generators [5, 6].
Definition 2.6 (Transliteration) A transliteration is a
pointwise extension of a function. Formally, let f : Ω ×
A→ A′ be a function and T be a time structure. The point-
wise extension of f onto T is a mapping fT : AΩ×T →
A′Ω×T satisfying fT (v) = λω, t.f(v(ω, t)).

By this definition, (f ◦ g)T = fT ◦ gT . We will also use f
to denote transliteration fT if no ambiguity arises.
Intuitively, a transliteration is a transformational process
without memory or internal state, such as a combinational
circuit. Note that in the absence of any random variable
within the transliteration, the transformational process is
simply a deterministic function of the current input.
Now let us present the last type of basic transduction: de-
lays. There are two types of delay: unit delays and trans-
port delays.
For a given trace, a unit delay δAT (ω, v0) acts as a unit mem-
ory for data in domain A, given a discrete time structure.
We will use δ(v0) to denote unit delay δAT (ω, v0) if no am-
biguity arises.
Definition 2.7 (Unit delay) Let A be a domain, v0 a well-
defined value in A, and T a discrete time structure. A unit
delay δAT (ω, v0) : AΩ×T → AΩ×T is a transduction de-
fined as

δAT (ω, v0)(v) = λt.

{
v0 if t = 0
v(ω, pre(t)) otherwise

where v0 is called the initial output value of the unit delay.
However, in the presence of non-discrete time structures,
unit delays may not be meaningful. Hence we need a trans-
duction that is suitable for more general time structures.
Definition 2.8 (Transport delay) Let A be a domain, v0

a well-defined value in A, T a time structure and τ > 0.
A transport delay ∆A

T (τ)(ω, v0) : AΩ×T → AΩ×T is a
transduction defined as

∆A
T (τ)(ω, v0)(v) = λt.

{
v0 if m(t) < τ
v(ω, t− τ) otherwise

where v0 is called the initial output value of the transport
delay and τ is called the time delay.
We will use ∆(τ)(v0) to denote transport delay
∆A
T (τ)(ω, v0) if no ambiguity arises. Transport delays are

essential for modeling sequential behaviors in dynamical
systems.
With preliminaries established, we define an abstract struc-
ture of dynamics.
Definition 2.9 (Σ-dynamics structure) Let Σ = 〈S, F 〉
be a signature. Given a Σ-domain structure A and a time
structure T , a Σ-dynamics structure D(T , A) is a pair
〈V ,F〉 such that

• V = {AΩ×T
s }s∈S∪EΩ×T whereAΩ×T

s is a stochastic
trace space of sort s and EΩ×T is the stochastic event
space;

• F = FT ∪F◦T where FT is the set of basic transduc-
tions, including the set of transliterations {fAT }f∈F ,
the set of unit delays {δAsT (vs)}s∈S,vs∈As , the set
of transport delays {∆As

T (τ)(vs)}s∈S,τ>0,vs∈As , and
the set of generators {GAs

T }s∈S; F◦T is the set of
event-driven transductions derived from the set of ba-
sic transductions, i.e., {F ◦|F ∈ FT }.

3



3 Syntax of PCN
A probabilistic constraint net consists of a finite set of loca-
tions, a finite set of transductions and a finite set of connec-
tions. However, in order to be able to handle the uncertainty
in the systems that we model, we add an essential compo-
nent: the generator. A generator acts as a random number
generator, following a given probability distribution and in-
ducing a random location as its output. Thus, in practice,
generators can be represented as discrete (e.g. Poisson,
uniform) or continuous (Gaussian, exponential) probability
distributions although we will use a general (and formal)
measure theoretic definition.

Definition 3.1 (Probabilistic Constraint Nets) A proba-
bilistic constraint net is a tuple PCN = 〈Lc, Td, Cn〉,
where Lc is a finite set of locations, each associated with a
sort; Td is a finite set of labels of transductions (either de-
terministic or probabilistic), each with an output port and
a set of input ports, and each port is associated with a sort;
Cn is a set of connections between locations and ports of
the same sort, with the restrictions that (1) no location is
isolated, (2) there is at most one output port connected to
each location, (3) each port of a transduction connects to a
unique location.

Intuitively, each location is of fixed sort; a location’s value
typically changes over time. A location can be regarded as
a wire, a channel, a variable, or a memory cell. An output
location of a generator will be viewed as a random variable.
Each transduction is a causal mapping from inputs to out-
put over time, operating according to a certain reference
time or activated by external events. Note that probabilis-
tic transductions are built of at least one basic generator
transduction. Every generator is associated with a given
probability distribution, either discrete or continuous, thus
the sort of the output of a probabilistic transduction is the
sort of its probability distribution.
Connections link locations with ports of transductions. A
clock is a special kind of location connected to the input
event port of event-driven transductions. We will introduce
the notion of event-driven transduction in Section 5.
A location l is called an output location of a PCN iff l con-
nects to the output port of a transduction in Td; otherwise,
since isolated locations are not allowed it is an input loca-
tion. We will use the notation I(PCN) and O(PCN) to
denote the set of input and output locations of a probabilis-
tic constraint net PCN . A probabilistic constraint net is
open if there exists at least one input location, otherwise it
is said to be closed.
Another feature of our framework is its graphical repre-
sentation. A PCN can be represented by a bipartite graph
where locations are depicted by circles, transductions by
boxes, generators by double boxes and connections by arcs.
To differentiate them from deterministic locations, we de-
pict random locations with double circles.
Most commonly used families of probability distributions
are parameterized, i.e., one can fully specify a probability
distribution by giving values to the parameters of the fam-
ily. The ability of generators to be dependent on certain lo-

Ν(µ,σ )2
σ 2

µ Sensor Noise

Figure 2: Gaussian probability distribution as a Generator
and random location.

cations of the model also greatly simplifies the design task
when modeling a complex system for which the various un-
certain inputs are not fully known. Indeed, specifying the
parameters of a probability distribution is often hard and
counter-intuitive. Therefore, a designer could set the pa-
rameters of the distribution to some default location value,
and then, as the system evolves, learn the values of the pa-
rameters of the distribution, thus updating their values as a
better estimate is being learned. For example, to model sen-
sor noise with a PCN generator following a Gaussian prob-
ability distribution on the discrete time structure T = N,
one would simply need to connect the inputs of the genera-
tor to the locations holding the static values of the mean µ
and the variance σ2 to generate samples from the Gaussian
distribution at every time point in T (see Figure 2).
To exemplify the graphical syntax of PCN further, let us
return to the PCN of Figure 1. In this PCN model, there
are three locations (x′, x and y), one transduction, one gen-
erator and one unit delay. The transduction f(x, y) is a
transliteration with two inputs, namely x and y. The unit
delay δ(0) is introduced to eliminate an algebraic loop and
the generator Fy follows a discrete uniform distribution
over the set {1, 2}. Hence, the output of the transduction
would be a random sequence of values where the value at
time t + 1 would be half of the value at time t added to
either 1 or 2, with equal probability. The set of possible
execution traces resulting from this transduction on T = N
is {0, 1, 2.5, 3.25, 2.625, . . .}. This set of traces has a mea-
sure of 0.0625.

4 Semantics of PCN
We have briefly introduced the syntax of the probabilistic
constraint nets model, which has the useful properties of
being graphical and modular. However, the syntax does not
provide a meaning for the model. Indeed, there are mul-
tiple models with similar syntax to probabilistic constraint
nets (Petri Nets [11] and their generalization Coloured Petri
Nets [4] for example) that have completely different inter-
pretations. Therefore, it is necessary to have a formal se-
mantics of probabilistic constraint nets in order to correctly
interpret models of complex physical systems.
The fixpoint theory of partial order has been used as a se-
mantical model for programming languages and models
[3]: in this case, a program (or a model) defines a func-
tion f and its semantics are defined to be the least solu-
tion of x = f(x), or the least fixpoint of f . A similar ap-
proach was developed to provide a fixpoint semantics for
the Constraint Net model [17]. However, even though our
framework is similar to that of Constraint Nets, the seman-
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Figure 3: Simple PCN for a probabilistic sum.
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tics of PCN differ significantly from that of CN, because
we have introduced uncertainty into the set of equations in-
duced by the PCN model. Hence, a probabilistic constraint
net is a set of equations with locations serving as variables.
Some of the variables (locations) in the equations, those
that are outputs of generators, are in fact random variables,
obeying some probability distribution, which in turn affect
the value of the transductions for which they are inputs.
Transductions play the role of functions and the connec-
tions between locations and transductions generate a set of
equations. Obviously, the semantics of a PCN should be
a solution to this set of equations containing random vari-
ables. Figure 3 demonstrates the effect of random locations
on the transductions. Transduction Add is a very simple
transliteration representing the sum of two (probabilistic)
inputs X and Y . It is easy to notice that the output value
for this transliteration also follows a probability distribu-
tion. In this case, there are 4 possible values which each
have different likelihood of occurrence. One should note
that although the distribution of a random variable is help-
ful in reasoning about its behaviour, one can reason about
statistics such as the expected value, that is, one can rede-
fine the notion of behavior in terms of average behavior
for the system. In our simple example, we can see that the
average output value of the system is 9.25.
Since the equations in a PCN model do not converge to a
fixpoint but rather to a stationary distribution, the fixpoint
theory of partial order cannot be utilized directly to provide
a denotational semantics for PCN. In fact, in the presence
of uncertainty in the system, the least solution of an equa-
tion with random variables is a Markov stochastic process
[8].
To further illustrate the difference between the semantics of
a deterministic system (CN) and one encompassing uncer-
tainty (PCN), let us compare two dynamical systems with
nominal component

Ẋt = −Xt(Xt − 1)(Xt − 2).

The first one is deterministic and has two distinct stable at-

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0
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Distribution of dx = −x(x−1)(x−2)dt +dBt

x

Fx

Figure 5: Density of dX = −X(X − 1)(X − 2)dt+ dBt.

tractors (equilibria),3 at 2 and at 0, as shown in Figure 4(a).
The behaviour of this system is fully determined by its ini-
tial value and it reaches one of the two stable fixpoints
based on this initial value.
The second system, which cannot be modeled with a de-
terministic constraint net, is stochastically affected by a
simple Brownian motion process. A sample path for this
system, for an initial value of X0 = −2, is shown in Fig-
ure 4(b). For this specific realization, the system is ini-
tially attracted toward the closest equilibrium which is at
X = 0. The system then fluctuates around this attrac-
tor, reacting under the influence of the Brownian motion
component and, around time t = 12, a large enough noise
disturbance pushes the system over the value of 1, causing
the system to be attracted toward the other equilibrium, at
X = 2. Another spike of noise flips the system back to the
lower equilibrium at t = 35 and so on. This example shows
the effect of uncertainty on the system and its behaviour.
In this case, there is no fixpoint for this realization nor
for the full system. For a set of sample paths with non-
zero measure, the system will keep moving back and forth
between the two stable equilibria as it is affected by the
noise introduced by the Brownian motion component of
the equation. However, the system will reach a stationary
distribution. That is, in the long run, the probability distri-
bution of the system will remain unchanged, independent
of time. The corresponding density function for this distri-
bution is shown in Figure 5. One can clearly observe that
the system is symmetrically distributed with higher weight
around the two stable equilibria located at X = 0 and
X = 2. One should note that if the effect of the Brown-
ian noise is diminished, the peaks at X = 0 and X = 2
rise or fall (depending on the starting value) as the noise is
less likely to cause a jump large enough to cause the other
equilibrium to become the main attractor. Letting the effect
of the noise converge to zero would lead to the determin-
istic case as presented in Figure 4(a), that is, the stationary
distribution would be degenerate everywhere except at the
equilibrium corresponding to the initial value of the sys-
tem. Hence a deterministic system is in fact a special case
of the more general stochastic system.
We define the semantics for the Probabilistic Constraint

3There are in fact three different equilibria, at 0, 1 and 2 re-
spectively. However, the equilibrium at 1 is unstable. Any shift in
value will cause the system to move away from this unstable equi-
librium and move towards one of the other two stable equilibria.
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Net model to be the least fixpoint of the distribution of the
solution to the set of equations of the PCN model. These
semantics are, as it was mentioned in the previous para-
graph, applicable to any system, whether it be stochastic or
deterministic.

4.1 Fixpoint in distribution of partial orders

The fixpoint theorems used here are for complete partial
orders (cpo’s). Continuous functions are functions which
are continuous in partial order topologies. A fixpoint in the
distribution of a function f can be considered as a solution
of the equation x = f(x), where f(·) is an stochastic func-
tion. The least fixpoint is the least element in the fixpoint
set.
Definition 4.1 (Fixpoint in distribution and Least fix-
point) Let f : Ω × A → A be a function on a sample
space Ω and a partial order A. A function g : Ω×A→ A
is a fixpoint in distribution of f iff the distribution of g is
a stationary distribution for f . It is the least fixpoint in
distribution of f iff, in addition, Fg ≤ Fg′ for every other
function g′ which is a fixpoint in distribution of f .
Least fixpoints in distribution, if they exist, are unique. The
least fixpoint in distribution of f will be denoted by µ.Ff .
Based on the above definition, we can state our first fixpoint
in distribution theorem as follows.
Theorem 4.1 (Fixpoint Theorem I) Let A be a cpo and
assume that either A is also a total order or that the set
of distributions over A is a cpo and the function over
distributions is continuous. Then, every continuous func-
tion f : Ω × A → A or pathwise continuous function
fω : A → A (for a fixed ω ∈ Ω) has a least fixpoint in
distribution.
We now present our second fixpoint in distribution theorem
which is applicable to a function of two arguments.
Theorem 4.2 (Fixpoint Theorem II) LetA andA′ be two
cpos and assume that either A,A′ are also total orders or
that the set of distributions overA′ is a cpo and the function
over distributions is continuous. If f : Ω×A×A′ → A′ is a
continuous function, then there exists a unique continuous
function µ.f : Ω × A → A′, such that for all a ∈ A, the
distribution of (µ.f)(a) is the least fixpoint in distribution
of λω, x.fω(a, x).
Formally, a set of equations can also be written as ~o =
~f(~ω,~i, ~o) where ~i is a tuple of input variables and ~o is a
tuple of output variables. Based on our previous results, if
~f is continuous, then its least fixpoint in distribution is a
continuous function, denoted µ. ~f .

4.2 Semantics of Probabilistic Constraint Nets

In this section, we define the fixpoint in distribution se-
mantics of probabilistic constraint nets. Let Σ = 〈S, F 〉
be a signature and c ∈ S be a special sort for clocks.
A probabilistic constraint net with signature Σ is a tuple
PCNΣ = 〈Lc, Td, Cn〉 where

• each location l ∈ Lc is associated with a sort s ∈ S,
the sort of location l is written as sl;

Figure 6: Sample path of the system f(x) = 0.5x+ y.

• each transduction F ∈ Td is a basic transduction or
an event-driven transduction, the sorts of the input and
output ports of F are as follows:

1. if F is a transliteration of a function f : s∗ →
s ∈ F , the sort of the output port is s and the sort
of the input port i is s∗(i);

2. if F is a unit delay δs or a transport delay ∆s, the
sort of both input and output ports is s;

3. if F is an event-driven transduction, the sort of
the event input port is c, the sorts of the other
ports are the same as its primitive transduction;

Let D(T , A) = 〈V ,F〉 be a Σ-dynamics structure.
PCNΣ on 〈V ,F〉 denotes a set of equations {o =
Fo(~x)}o∈O(PCN), such that for any output location o ∈
O(PCN),

• Fo is a continuous or pathwise continuous transduc-
tion in F whose output port connects to o,

• ~x is the tuple of input locations of Fo, i.e., the input
port i of Fo connects to location ~x(i).

The semantics of a probabilistic constraint net is defined as
follows.
Definition 4.2 (Semantics) The semantics of a probabilis-
tic constraint net PCN on a dynamics structure 〈V ,F〉,
denoted [[PCN ]], is the least stationary distribution of the
set of equations {o = Fo(~x)}o∈O(PCN), given that Fo
is a continuous or pathwise continuous transduction in
F for all o ∈ O(PCN); it is a continuous or pathwise
continuous transduction from the input trace space to the
output trace space, i.e., [[PCN ]] : ×I(PCN)A

Ω×T
si →

×O(PCN)A
Ω×T
so .

Given any set of output locations O, the restriction of
[[PCN ]] onto O, denoted [[PCN ]]|O : ×I(PCN)A

T
si →

×OATso , is called the semantics of PCN for O. For ex-
ample, consider the probabilistic constraint net denoted by
equations x′ = f(x, ω) = 0.5x + y(ω) and x = δ(0)(x)
with FY = Uniform({1, 2}) and Ω = {ω1, ω2}. Given
a discrete time structure N, a domain I = {1, 2} for in-
puts and a domain O = R for output, the semantics for
x is F : IΩ×N → RΩ×N

such that F (v)(0) = 0 and
F (v)(n) = f(F (v)(n − 1), v(n − 1)) where the limiting
distribution for F is stationary.
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Figure 7: Empirical Distribution of f(x) = 0.5x + y after
10000 time steps.

Figure 8: Evolution of the distributions of f(x).

Let us show the derivation of the semantics of this model.
In Figure 6, we plot a realization trace of the system, while
in Figure 7 we can see the empirical distribution of the sys-
tem after 10000 time steps. The least fixpoint distribution
follows a uniform distribution over the range [2, 4]. The
evolution of the distributions is presented in Figure 8. One
can see that the system’s distribution starts as uniform over
the range {1, 2} and the distribution gradually increases to
reach a stationary distribution which follows a uniform dis-
tribution over [2, 4].

5 Modeling in PCN
We are interested in modeling the larger class of hybrid
probabilistic dynamical systems, that is, systems encom-
passing components of more than one basic type. Within
the PCN paradigm, a probabilistic hybrid dynamical sys-
tem consists of modules with different time structures, with
its domain structure multi-sorted and with a set of proba-
bilistic generators, as basic transductions, which allows for
the modeling of the uncertain components of these mod-
ules.
To model systems with modules that are associated with
different clocks we introduce the notion of event-driven
transductions. In order to properly introduce the notion of
event-driven transductions, we need to define the concept
of sample and extension traces. Let Tr be a reference time
of T with a reference time mappingh. The sample stochas-
tic trace of v : Ω × Tr → A onto T is a stochastic trace
v : Ω × T → A satisfying v = λω, t.v(ω, h(t)). The ex-

tension stochastic trace of v : Ω × T → A onto Tr is a
stochastic trace v : Ω× Tr → A satisfying

v = λω, tr.

{
v(ω, h−1(tr)) if cond
⊥A otherwise

where cond = ∃t ∈ T , µr([0r, tr)) ≤ µ([0, t)) or
µr([0r, tr)) < µ(T ) and h−1(tr) = {t|h(t) ≤r tr} ∈
T ∞.
Both sampling and extension can be seen as transforma-
tional processes on traces, hence they are transductions.
Sampling is a transduction whose output is a sample trace
of its input. Extending is a transduction whose output is an
extension trace of its input.
An event-driven transduction is a primitive transduction
augmented with an extra input which is an event trace; it
operates at each event point and the output value holds be-
tween two events. This additional event trace input of an
event-driven transduction is called the clock of the trans-
duction. Intuitively, an event-driven transduction works as
follows. First, the input trace with the reference time T
is sampled onto the sample time Te generated by the event
trace e. Then, the primitive transduction is performed on
Te. Finally, the output trace is extended from Te back to T .
Definition 5.1 (Event-driven transduction) Let T be a
time structure and FT : AΩ×T → A′Ω×T a primitive
transduction. Let EΩ×T be the set of all stochastic event
traces on time structure T . The event-driven transduction
of F is a mapping F ◦T : EΩ×T ×AΩ×T → A′Ω×T satisfy-
ing:

F ◦T (e, v) =





λt. ⊥A′ if e = λt. ⊥B

FTe(v) otherwise.

We will use F ◦ to denote event-driven transduction F ◦T if
no ambiguity arises.
Hence, we can unify, within the same model, modules with
different sample time structures generated by event traces.
There are two ways in which an event trace can be gen-
erated: either with a fixed sampling rate, or by an event
generator that reacts to changes in its inputs. Moreover,
we can also combine multiple event traces, yielding new
event traces. Typically, event traces are combined using
event logic which allow various asynchronous components
within a given set of modules to be coordinated. Common
logical interactions are “event or", “event and", and “event
select". With event logic modules, asynchronous compo-
nents can be coordinated.
We have modeled and analyzed several real world applica-
tions within the PCN framework. Such applications include
an elevator system with uncertain passenger arrivals, a mu-
seum surveillance robot and a package delivery robot. The
models and analysis can be found elsewhere [13, 14, 15].
Due to the hybrid nature of these system, their modeling
require generality which is attained via the unitary model
proposed within PCN. Although it is possible to model
such systems by combining various frameworks, for exam-
ple by combining finite state machines and PID controllers,
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it could lead to unclear semantics which would be a serious
shortcoming of that approach.

6 Related Work and Conclusion
The motivation for developing the PCN framework was to
be able to model hybrid dynamical systems while consider-
ing the underlying uncertainty in the system. Uncertainty is
inherent in any physical system, hence modeling its effects
and considering its impact on system behaviour is essen-
tial. While development of models for hybrids systems has
been very active in the last few years [7, 10], there also
exist a multitude of paradigms that allow the modeling of
uncertain system. Such paradigms include Markov Pro-
cesses [8], Markov Decision Processes [12] and Dynamic
Bayesian Networks [9]. However, in most cases, these
models are either hybrid and deterministic, or stochastic
and restricted to a single time structure (either discrete or
continuous). We have shown, in the dissertation associ-
ated with this work [13], that PCN subsumes most existing
computational models handling uncertainty, and that hy-
brid, sequential and analog computations can be modeled
effectively. The advantages of the subsumption offered by
PCN, other than the obvious advantage of parsimony, are
many. They include ease of implementation, absence of
redundancy while avoiding the requirement for the system
designer to have to learn and master multiple paradigms.
In conclusion, we have developed a semantic model for un-
certain hybrid dynamical systems, that we call Probabilistic
Constraint Nets (PCN). Based on abstract algebra, topol-
ogy and measure theory, we have represented both time and
domains in abstract forms, and uniformly formalized basic
elements of dynamical systems in terms of traces, trans-
ductions and probabilistic transductions. Furthermore, we
have also studied both primitive and event-driven transduc-
tions which are important elements of dynamical systems,
with or without uncertainty.
Since PCN is an abstraction and generalization of data-
flow networks, with the addition that we explicitly han-
dle the uncertain components of the system. Within this
framework, the behaviour of a system (the semantics of a
PCN model) is formally obtained using both the theory of
continuous algebra and stochastic systems. Specifically, a
probabilistic constraint net models an uncertain dynamical
system as a set of interconnected transductions, while the
behaviour of the system is the set of input/output traces of
the system satisfying all the relationships (constraints on
the dynamics) imposed by the transductions. PCN models
a hybrid system using event-driven transductions, while the
events are generated and synchronized within the system.
Complementary work on PCN was performed and led to
the development of language specification for behavioural
constraints on the dynamics of the systems. Moreover,
verification techniques were also developed to allow for
the probabilistic verification of the behavioural constraints
[15]. A control synthesis approach was also developed
which enables the system designer to synthesize the con-
troller component of a PCN model, hence simplifying the
modeling task greatly [13].
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8 Appendix
A Proofs of Theorems
Before presenting the proofs of the two fixpoint theorems,
we need the following result.
Proposition A Any continuous (or pathwise continuous)
function is monotonic, i.e., if f : Ω × A → A′

(fω : A → A′) is continuous (pathwise continuous),
then (ω1, a1) ≤Ω×A (ω2, a2) (a1 ≤A a2) implies
f(ω1, a1) ≤A′ f(ω2, a2) (fω(a1) ≤A′ fω(a2)).
Proof: We prove this result for pathwise continuous func-
tions. The result extends easily to continuous functions.
Suppose fω(a1) 6≤A′ fω(a2), then according to the defini-
tion of partial order topology, there is an open set S ⊆ A′

including fω(a1) but not fω(a2). Therefore, f−1
ω (S) ⊆ A

is an open set including a1 but not a2. So a1 6≤A a2. �
Now we are ready to present the proofs for the fixpoint the-
orems introduced in Section 4.1.
Theorem 4.1 Let A be a cpo and assume that either A is
also a total order or that the set of distributions over A is a
cpo and the function over distributions is continuous. Then,
every continuous function f : Ω × A → A or pathwise
continuous function fω : A→ A (for a fixed ω ∈ Ω) has a
least fixpoint in distribution.
Proof:
When A is a total order.
To prove this results, we will use the classic Tarski’s fix-
point theorem (Lattice-theoretical fixpoint theorem) [16].
Let us first introduce the theorem and then show how to
use the result to prove our Fixpoint Theorem.
Theorem A.1 (Tarski’s Fixpoint Theorem) Let

1. U = 〈A,≤〉 be a complete lattice,

2. f be a monotonically increasing function on A to A,

3. P be the set of all fixpoints of f .

Then the set P is not empty and the system 〈P,≤〉 is a com-
plete lattice.
Proof: (Theorem A.1) For the proof of this well-known
result the reader is referred to the original work by Tarski
[16]. �
In order to be able to use Tarski’s results, we need to show
that the set of distributions and its partial order define a
complete lattice. Moreover, we also need to show that the
function f on the set of distribution is monotonically in-
creasing.
First, denote the set of all distributions on A by D . We
formally define a partial order on the set of distributions D .
The binary relation≤D on D is defined as follow. Let FX1

and FX2 be distributions of two random variables, namely
X1 andX2. We write FX1 ≤D FX2 , if ∀a ∈ A, Pr(X1 ≤
a) ≥ Pr(X2 ≤ a). It is easy to show that ≤D induces a
partial order on D .
Second, we need to show that for any two distributions
F1, F2 ∈ D , there exists a least upper bound and a greatest

lower bound. To prove this, let us look at the cumulative
distribution function (cdf) of each distribution. Here we re-
produce Theorem 1.5.1 of [1] and refer to this reference for
the proof.

Theorem A.2 (Theorem 1.5.1 of Casela and Berger)
The function F (x) is a cdf if and only if the following three
conditions hold:

1. limx→−∞F (x) = 0 and limx→∞F (x) = 1.

2. F (x) is a nondecreasing function of x.

3. F (x) is right-continuous. That is, for every number
x0, limx↓x0F (x) = F (x0).

Proof: (Theorem A.2) See p. 30 of §1.5 from [1].
Since A is a total order, for each F ∈ D , we have a well
defined cdf. Hence every F ∈ D possess the three prop-
erties of a formal cdf. Based on these properties, it is easy
to show that the upper envelope of any set of cdf is a least
upper bound (LUB) while the lower envelope of the cdfs is
the greatest lower bound (GLB). Moreover, both the LUB
and GLB can be showed to be cumulative distribution func-
tions since they are nondecreasing, right-continuous and
converge to 0 and 1 as x ↓ −∞ and x ↑ ∞ respectively.
This demonstrate that we have a complete lattice.
Now let us show that f applied recursively generates a
sequence of monotonically increasing distributions. First
assume, without loss of generality, that f is Markovian.
Moreover, let us assume that at each transition, the events
{ω1, · · · , ωn} are independent and chosen from the sam-
ple space Ω. Order the events {ω1, · · · , ωn} such that
fω1(a) ≤A fω2(a) ≤A · · · ≤A fωn(a) for any a ∈ A.
Let ⊥A denote the least element of A and let FX denote
the distribution of the random variable X .
Now we want to prove that Ffn(⊥A) ≤D Ffn+1(⊥A).
Proof by Induction on n:

• For n = 0: We have that Ff0(⊥A) =⊥A

• For n = 1: From Proposition A, since fω is contin-
uous, we have that fω is also monotonic, ∀ω ∈ Ω.
Hence we have fω(⊥A) ≥A⊥A, ∀ω ∈ Ω. There-
fore, it is trivial to prove that Ff0(⊥A) = F⊥A ≤D
Ff1(⊥A).

• Induction Hypothesis: Assume that for an arbitrary
chosen n ∈ N, Ffn(⊥A) exists and is well-defined.
We now need to show that Ffn(⊥a) ≤D Ffn+1(⊥A).

Let M1 = max{fn(⊥A)} = fωn ◦ · · · ◦ fωn︸ ︷︷ ︸
n times

(⊥A

). Based on this definition, we have P (fn(⊥A) ≤
M1) = 1.

It is easy to show that fωn ◦ · · · ◦ fωn︸ ︷︷ ︸
n times

◦fωi ≥ M1

since fωn ◦ · · · ◦ fωn is monotonic.
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Hence, we get the following result:

P (fn+1(⊥A) ≤M1) ≤ 1−∑n
i=1 P (ωn · · ·ωnωi)

≤ 1− P (ωn · · ·ωnωi)︸ ︷︷ ︸
finite and >0

since
∑n

i=1 P (ωi) = 1
≤ 1− Pn(ωn)
< 1.

(1)

Let M2 = max{{fn(⊥A)} − M1} be the second
highest value after n iterations.

Say that M2 arose from fω∗(⊥A) where ω∗ ∈
ωi1ωi2 · · ·ωin with ωi ∈ Ω. Then,

P (fn(⊥A) ≤M2) ≤ 1− P (ωn · · ·ωn)
= 1− Pn(ωn)

(2)

Based on the same reasoning as above, we know that
fω∗ ◦ fωi(⊥A) ≥ fω∗(⊥A). Therefore, we have

P (fn+1(⊥A) ≤M2) ≤ 1− P n(ωn)︸ ︷︷ ︸
>0

−P (ω∗)︸ ︷︷ ︸
>0

< 1− Pn(ωn)
(3)

By applying this reasoning until Mn = min{fn(⊥A
)} = fω1 ◦ · · · ◦ fω1︸ ︷︷ ︸

n times

(⊥A), we get P (fn(⊥A) ≤

Mn) = Pn(ω1).

We know that fω1 ◦ · · · ◦ fω1︸ ︷︷ ︸
n times

◦fωi(⊥A) ≥

fω1 ◦ · · · ◦ fω1︸ ︷︷ ︸
n times

(⊥A) = Mn, which means that

P (fn+1(⊥A) ≤ Mn) = 0. We have proven that
Ffn(⊥A) ≤ Ffn+1(⊥A) for any value of n ∈ N.
Hence, the transformational process on the distribu-
tions is a monotonically increasing one.

By applying Tarski’s theorem, we have that the set
of fixpoints of the distributions is non-empty and is
a complete lattice. Therefore, there exist a least fix-
point in distribution and it concludes the proof under
the assumption that A is a total order. �

When the set of distributions over A, D , is a cpo and the
function over D is continuous.
To prove this result, we can simply claim the following fix-
point theorem on cpos:
Theorem A.3 Let 〈A,≤,⊥A〉 be a cpo with least element
⊥A. Let f : 〈A,≤,⊥A〉 → 〈A,≤,⊥A〉 be a continuous
function and let µ.f be the least upper bound of the chain
{fn(⊥A)|n ∈ N}. Then µ.f is the least fixpoint of f .

Proof: (Theorem A.3) The proof can be found in any ele-
mentary algebraic theory textbooks such as [3].

This concludes the proof of the Fixpoint Theorem under the
assumption that the set of distributions over A, D , is a cpo
and the function over D is continuous since we have satis-
fied all the necessary assumptions of the fixpoint theorem
on a cpo. �
Theorem 4.2 Let A and A′ be two cpos and assume that
either A,A′ are also total orders or that the set of distribu-
tions over A′ is a cpo and the function over distributions
is continuous. If f : Ω × A × A′ → A′ is a continu-
ous function, then there exists a unique continuous func-
tion µ.f : Ω × A → A′, such that for all a ∈ A, the
distribution of (µ.f)(a) is the least fixpoint in distribution
of λω, x.fω(a, x).
Proof: Let F 0(a) = f(ω, a,⊥A′) and F k+1(a) =
f(ω, a, F k(a)). Since f is continuous, it is continuous
w.r.t. the third argument. Moreover, a continuous func-
tion in any partial order is also monotonic. Therefore, for
every a,

F 0(a) ≤A′ F 1(a) ≤A′ F 2(a) · · · ≤A′ F k(a) ≤ . . . .

The proof of the existence of the least fixpoint µ.f is left to
the reader as it is very similar to the proof of Theorem 4.1.
Next, we prove that µ.f is continuous.
Clearly for every k, F k is continuous since f is continu-
ous and continuity is closed under functional composition.
Therefore, for any directed subset D of A,

µ.f(
∨

A

D) =
∨

A′
{F k(

∨

A

D)|k ≥ 0}

=
∨

A′

{
∨

A′

{F k(D)}|k ≥ 0}

=
∨

A′

{
∨

A′

{F k(a)|k ≥ 0}|a ∈ D}

=
∨

A′

µ.f(D).

�
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