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1 Introduction

A constraint can intuitively be thought of as a restriction on a space of possibil-
ities. Mathematical constraints are precisely specifiable relations among several
unknowns (or variables), each taking a value in a given domain. Constraints
restrict the possible values that variables can take, representing some (partial)
information about the variables of interest. For instance, “The second side of a
sheet of a paper must be imaged 9000 milliseconds after the time at which the
first side is imaged” relates two variables without precisely specifying the values
they must take. One can think of such a constraint as standing for (a possibly
infinite) set of values, in this case the set {(0,9000), (1500, 10500}, ...}.
Constraints arise naturally in most areas of human endeavor. They are the
natural medium of expression for formalizing regularities that underlie the com-
putational and (natural or designed) physical worlds and their mathematical
abstractions, with a rich tradition going back to the days of Euclidean geom-
etry, if not earlier. For instance, the three angles of a triangle sum to 180
degrees; the four bases that make up DNA strands can only combine in partic-
ular orders; the sum of the currents flowing into a node must equal zero; the
trusses supporting a bridge can only carry a certain static and dynamic load;
the pressure, volume and temperature of an enclosed gas must obey the “gas
law”; Mary, John and Susan must have different offices; the relative position
of the scroller in the window scroll-bar must reflect the position of the current
text in the underlying document; the derivative of a function is positive at zero;
the function is monotone in its first argument, etc. Indeed, whole subfields of
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mathematics (e.g. theory of Diophantine equations, group theory) and many
celebrated conjectures of mathematics (e.g., Fermat’s Last Theorem) deal with
whether certain constraints are satisfiable.

Constraints naturally enjoy several interesting properties. First, as remarked
above, constraints may specify partial information — a constraint need not
uniquely specify the value of its variables. Second, they are additive: given
a constraint ¢, say X + Y > Z, another constraint ¢, can be added, say
X +Y < Z. The order of imposition of constraints does not matter; all that
matters at the end is that the conjunction of constraints is in effect. Third,
constraints are rarely independent; for instance, once ¢; and ¢y are imposed it
is the case that the constraint X + Y = Z is entailed. Fourth, they are non-
directional: typically a constraint on (say) three variables X,Y, Z can be used
to infer a constraint on X given constraints on Y and Z, or a constraint on Y
given constraints on X and Z, and so on. Fifth, they are declarative: typically
they specify what relationship must hold without specifying a computational
procedure to enforce that relationship. Any computational system dealing with
constraints must fundamentally take these properties into account.

Constraint programming (CP) is the study of computational systems based
on constraints. It represents a harnessing of the centuries old notions of anal-
ysis and inference in mathematical structures with several modern concerns:
general languages for computational representation, efficiency of analysis and
implementation, tolerance for useful (albeit incomplete) algorithms (tied per-
haps to “weak” methods such as search) — all in the service of design and
implementation of systems for programming, modeling and problem-solving in
different domains. As discussed in the next section, work in this area can be
traced back to research in Artificial Intelligence and Computer Graphics in the
sixties and seventies which focused on explicitly representing and manipulat-
ing constraints in computational systems. Only in the last decade, however,
has there emerged a growing realization that these ideas provide the basis for
a powerful approach to programming, modeling and problem solving, and that
different efforts to exploit these ideas can be unified under a common conceptual
and practical framework.

The basic essence of this framework is the separation of concerns into two
levels. The first level is that of very generally defined constraint systems —
systems of inference with pieces of partial information based on such fundamen-
tal operations as constraint propagation, entailment, satisfaction, normalization
and optimization. In addition to the traditional constraint systems that have
already been investigated over centuries (such as over the real numbers, inte-
gers modulo p), CP brings a focus on a wide variety of systems (arising often
from application concerns) ranging from “unstructured” finite domains to equa-
tions over trees (“term-unification”) to temporal intervals. Increasing attention
is being paid to discovering efficient techniques for performing these constraint
operations across wide classes of such constraint system, to discovering common
exploitable structure across constraint systems.



Operating around this level is the second level of programming language
which allows the user to specify more information about which constraints
should be generated, how they should be combined and processed etc. Perhaps
unique to CP are modeling languages that exploit logic based control constructs
(e.g., constraint logic programming (CLP) or concurrent constraint program-
ming (CCP)). These languages interact with the first level purely via the basic
constraint operations. This provides the user with a very expressive framework
(parametric in the underlying constraint system) for generating, manipulating
and testing constraints, while (in the case of the logic-based languages) pre-
serving their declarative character. This realization of unified frameworks has
simultaneously been accompanied by the implementation of several general sys-
tems, which are finding wide-spread use in applications as diverse as modeling
physical systems and controlling robots to scheduling container ships in harbors.

This central organizational idea has many ramifications. What emerges is a
general declarative framework potentially more promising than either full first-
order logic (which is expressive, but undecidable in theory and usually inefficient
in practice) or restricted versions such as the Horn clause subset that underly
logic programming (which are usually efficient in practice, but not expressive
enough for many applications). For what is fundamentally acknowledged is that
different computational techniques (constraint-solving algorithms) will be use-
ful in different computational contexts — and a uniform scheme is provided for
integrating these techniques into a powerful computational framework. For the
theoretician meta-theorems can be proved (and analysis techniques invented)
once and for all that apply to an infinite family of systems; for the imple-
menter different constructs (backward chaining, backtracking, suspension) can
be implemented once and for all; for the user only one set of ideas needs to
be understood, though with rich (albeit disciplined) variation (via constraint
systems).!

Today CP is contributing exciting new research directions in a number of
distinct areas such as: artificial intelligence (natural language understanding,
scheduling, planning, configuration...), concurrent computing, database sys-
tems, graphical interfaces, hardware verification, operations research and com-
binatorial optimization, programming language design and implementation, re-
active systems, symbolic computing algorithms and systems. The field is being
driven both by a need for internal organization and structure, and by the de-
mands of increasingly sophisticated real-world applications to which it is being
applied.

IFrom a methodological point of view, it is important to realize that not all researchers in
CP work across both of these levels. Some prefer to exploit the unifying framework of con-
straints while working purely within the first level of constraint systems, considering issues
around programming to be orthogonal to their concerns. Others exploit the unifying frame-
work of constraints to develop programming language notions, while not paying attention to
the properties of particular constraint systems. Some focus on fruitfully exploiting the synergy
across the boundary between the two levels.



The state of the art in CP is reported in international conference on Prin-
ciples and Practice of Constraint Programming (PPCP) [99,38] and Practical
Applications of Constraint Technology (PACT), and in the recently established
CONSTRAINTS journal. Work continues to be reported in the conferences and
journals of related areas such as Artificial Intelligence, Logic Programming,
Databases, and Operations Research. Interested readers may find related sur-
veys in [61,40,69].

The rest of this paper is organized as follows. First we develop some back-
ground on the origin of constraint programming. The state of the art in the
application of constraint ideas in various fields is then discussed. Finally we
identify some key strategic directions for further development.

2 The Origins of Constraint Programming

Some of the earliest ideas leading to CP may be found in the Artificial In-
telligence (AI) area of constraint satisfaction, dating back to the sixties and
seventies. The pioneering works on networks of constraints were motivated
mainly by problems arising in the field of picture processing [97,127]. In these
works, constraints were explicitly represented as binary compatibility matrices
and the goal was to develop efficient polynomial algorithms that could discover
incompatibilities by looking at just a few constraints. This can greatly speed
up the subsequent phase in which one or all solutions are to be found via back-
tracking. In picture processing, these algorithms sometimes eliminated most
infeasible picture interpretations, for example those that were allowed by each
constraint alone, but not by a conjunction of a small subset. In some cases this
phase results in just one (the only one) alternative being left, thus eliminating
backtracking completely [127]. The main algorithms developed in those years
were related to achieving (variations of) arc- or path-consistency [97,89,87] (see
Section 3.1). The former finds (and eliminates) values from variables’ domains
which are incompatible with some constraint concerning that variable, while
the latter eliminates pairs of values which are allowed according to a given con-
straint ¢ but not if one looks at a chain (a path) of constraints which start and
end at the same points as c¢. In other words, one can say that these algorithms
propagate the information given by one constraint to other constraints.

In these systems, there was still no notion of constraint programming; rather
the problem was modeled directly via sets of constraints which were solved
using an algorithm. (Mention must also be made of the remarkably prescient
systems REF-ARF [34] and ALICE [82]. Both provided simple but very useful
constraint languages for specifying search problems, and solved them used cus-
tomized constraint solvers with embedded propagation and search techniques.)
However, we will see later that many constraint-based computational frame-
works counted on these algorithms and results to achieve simple and efficient
implementations.



Early application areas for constraints were interactive graphics and cir-
cuit modeling and diagnosis. The first of these systems was Ivan Sutherland’s
Sketchpad [123], developed in the early 1960s. Sketchpad was an interactive
graphics application that allowed the user to draw and manipulate constrained
geometric figures on the computer’s display. It included the concepts of a con-
straint as a declarative relation, enforced by the computer; of local propagation
constraint solvers; and of multiple cooperating solvers. A subsequent (similar)
system, ThingLab [8], included a facility for compiling constraint satisfaction
plans, allowing constraints to be re-satisfied rapidly for changing inputs. EL
[121] was an early constraint-based circuit analysis program. The concepts de-
veloped here led to a variety of other systems and languages, including Steele’s
constraint language [122], perhaps the first explicit effort at designing a pro-
gramming language based on constraints.

The main step towards modern constraint programming was achieved when
it was noted that logic programming was just a particular kind of constraint
programming. Logic programming is based on a declarative computational
paradigm where a program is a logic theory and each computation step solves
a system of term equations via the unification algorithm. Its declarative nature
made it already close to the idea of constraints, which indeed state what has
to be satisfied but not how. Moreover, the use of a backtracking search to find
the answer to a given query is also very similar to the standard backtracking
procedures usually used for solving constraint problems. However, what really
counted was the observation that term equations are just constraints of a special
type and that thus the unification algorithm is just a special kind of constraint
solving algorithm [81]. This has led to the definition of a general framework,
called Constraint Logic Programming (CLP) [68], which has all the features of
logic programming but is parametric with respect to the kind of constraints
used within the language. Moreover, it has also brought fundamental changes
in areas that were extensively based on equational term rewriting, like Com-
putational Logic, since researchers in that area realized that they could switch
to a more powerful and expressive paradigm by moving from term equalities to
constraints [74].

Although the CLP scheme immediately gave rise to languages like CLP(R)
[71] and Prolog III [25], it took the practical experience of application-oriented
research to link CLP to the propagation algorithms developed earlier in Al
The language CHIP [59,31] realized that extensive use of early ideas on prop-
agation was necessary at both the language and the implementation level to
make CLP languages useful for solving large combinatorial problems (which is
usually the task in constraint solving). Thus the language was equipped with
the possibility of defining a domain for each variable, and propagation algo-
rithms (mainly achieving arc-consistency) were used to reduce the search for a
solution. Facilities for controlling the generation of constraints (forward rules,
conditionals, annotations) were provided, though without a clear declarative
foundation. This is even more so in recently developed languages such as cc(fd)



[62], where constraint propagation methods can be specified in the language. In
this way, the underlying constraint solver can be tailored to the users’ needs,
achieving the so-called glass-box approach (Section 3.7.1).

But constraints in CLP-like languages showed their power not only to model
and solve combinatorial problems, but also to prune the search during the com-
putation and thus speed up the execution of a program. This also was a fun-
damental point, since until then constraints were seen mostly as a knowledge
representation tool rather than as a way to guide computations and prune un-
interesting branches.

Another step towards a more general notion of constraint programming came
from the area of concurrent logic programming. Concurrent logic programming
had already shown that it provided a beautiful, elegant and powerful notation
for concurrent programming, based on the so-called “process” reading of definite
clause programs [116].2 However, the field was hampered in part by the lack of
a clear logical analysis of the synchronization mechanisms introduced into such
languages primarily via operational notions. Maher provided a breakthrough
with his analysis that entailment lay at the heart of the synchronization mecha-
nisms [90]. On this basis, Saraswat developed the simple but general concurrent
constraint (CC) programming framework which views computation as arising
from the activities of agents that communicate via a shared set of variables on
which they can either impose (“tell”) or test (“ask”) for the presence of some
constraints[112]. The decoupling of this notion of constraint-based computation
from definite clause programming made possible the introduction of techniques
of process algebra for the further conceptual development of the framework (in-
cluding the introduction of indeterminacy, etc.). On the one hand, CC programs
without asks (and with “angelic” nondeterminism) can be viewed as CLP pro-
grams, and CC programs with constraints restricted to term equations are just
concurrent logic programs. On the other hand, CC provides a general declarative
framework for concurrency encompassing and extending data-flow languages,
languages based on “residuation” [2], and concurrent functional languages. For,
the CC paradigm was based on another fundamentally novel observation: that
constraints can be used not only to state and solve combinatorial problems, but
also to specify process communication and synchronization in a general way.
The definition of the CC framework also gave an important impulse to the de-
velopment of new semantics for such languages, which exploit the coexistence
of constraints and concurrency in order to be more informative and prove more
interesting properties. Examples are the semantics based on traces and closure
operators [7,114], and those based on truly concurrent models like Petri nets
[98,52].

Languages based directly upon the CC idea are Oz [117], AKL [57], and,
partly, CIAO [64]. However, the CC framework has to be seen more as a the-

2 Another important thread feeding into the work on concurrency was the study of “delay
primitives” in languages such as Prolog-II and Mu/Nu-Prolog.



oretical environment where new ideas and computational models are defined
formally and their theoretical power understood, rather than as a real lan-
guage. For example, the languages cc(fd) discussed above are based on the idea
of (partial) arc-consistency as closure operators, which arose from the study of
the CC semantics.

The two-level architecture of Constraint Programming is also suited for em-
bedding constraints in more conventional languages, as demonstrated by the
2LP system (which embeds a simplex-based solver into a C-like language), and
ILOG Solver, a successful commercial system that embeds many of the ideas
and flavor of CLP but as a C++ class library for finite domain constraints.

Among all the constraint languages that have been implemented, it is safe to
say that today the ones that are most widely used are those based on the CLP
framework (but not necessarily using a CLP-like syntax). In fact, these have
proven to be successful in many application areas, such as resource manage-
ment and resource allocation. In particular on benchmark Operations Research
(OR) problems such as job-shop scheduling, these techniques have led to great
improvements in performance.

3 Constraint Programming Today

This section contains an overview of the developments in constraint program-
ming in various subfields, For each subfield, we discuss the main contributions,
the applications and the open issues and directions. The overlap of interests in
various subfields will thereby be apparent; we shall also attempt to emphasize
the particular focii of interest that each subfield brings to the table.

3.1 Constraint Programming in Artificial Intelligence

AT research has contributed to considerable progress in constraint-based reason-
ing. Powerful algorithms perform orders of magnitude better than more naive
approaches on difficult combinatorial problems. Considerable attention has been
paid to tractability issues: identifying easy classes of problems, and generating
distributions of problem instances that are hard. Insights into problem structure
have supported and connected these research avenues.

Growing interest in applications has motivated increasing interest in rep-
resentation issues. For example, attention is being paid to overconstrained
systems [72], where preferences must be expressed. Modeling is emerging as
a major challenge: automating the formulation of real problems in a suitable
form for efficient algorithmic processing.

The classic Al constraint paradigm is the constraint satisfaction problem
(CSP). It consists of a set of problem variables, each associated with a domain
of values, and a set of constraints. Each of the constraints is expressed as
a relation, defined on some subset of variables, denoting the consistent value



assignments that satisfy the constraint. Often a problem is posed as a constraint
network, with variables corresponding to nodes and constraints corresponding
to arcs connecting variables occurring in the same constraint.

A solution is an assignment of a value to each variable such that all the
constraints are satisfied. Typical tasks are to determine whether a solution
exists, to find one or all solutions, to find whether a partial instantiation can be
extended to a full solution, and to find an optimal solution relative to a given cost
function. Constraints can be described by explicitly presenting the consistent or
inconsistent value combinations, or by mathematical expressions or computable
procedures that specify these combinations. Often restrictions are placed on
the paradigm, e.g. finite discrete domains or binary constraints (involving two
variables), but increasingly real-world problems are pushing towards extensions.

Algorithms In general, the tasks posed in the constraint satisfaction prob-
lem paradigm are computationally intractable (NP-hard). Over the last two
decades, a great deal of theoretical and experimental research has been focused
on developing algorithms for solving constraint satisfaction problems and on
identifying restricted subclasses that are tractable [27,86,125].

Techniques for processing constraints can be classified roughly as inference
or search, and these approaches interact. Inference methods (such as the path
and arc-consistency techniques described below) enforce various forms of local
consistency that add inferred problem constraints, which can prune away in-
consistent values and build up partial solutions. These methods are perhaps
the distinguishing contribution of AI to constraint reasoning. Search methods
divide into two broad classes, those that traverse the space of partial solutions
(or partial value assignments), and those that explore the space of complete
value assignments (to all the variables) stochastically.

Consistency inference Consistency-enforcing or constraint propagation al-
gorithms [97,89,35,87,29] transform a given constraint network into an equiva-
lent, yet more explicit network by deducing new constraints to be added onto
the network. Intuitively, a consistency-enforcing algorithm will make any par-
tial solution of a small subnetwork extensible to some surrounding network.
For example, an arc-consistency algorithm (Section 2) ensures that any legal
value in the domain of a single variable has a legal match in the domain of
any other single variable. Path-consistency ensures that any consistent solu-
tion to a two-variable subnetwork is extensible to any third variable, and, in
general, ¢-consistency algorithms guarantee that any locally consistent instan-
tiation of ¢ — 1 variables is extensible to any i** variable. When a network of
n variables is n-consistent it is said to be globally consistent, meaning that a
solution can be assembled in a backtrack-free manner in any variable ordering.
Consistency-enforcing algorithms can be used to preprocess a problem to prune
subsequent search, or they can be applied during search. By themselves, these



algorithms are, in essence, approximation algorithms that frequently can decide
imconsistency.

Systematic search The most common algorithm for performing systematic
search is backtracking. Backtracking incrementally attempts to extend a partial
solution that specifies consistent values for some of the variables, toward a com-
plete solution, by repeatedly choosing a value for another variable consistent
with the values in the current partial solution. When extension is impossible
the algorithm “backs up” to make alternative choices. Improvements of back-
tracking algorithms have focused on the two phases of the algorithm: moving
forward (look-ahead schemes) and backtracking (look-back schemes) [26,79].

When moving forward, to extend a partial solution, some consistency infer-
ence can be carried out to prune the remaining problem space and help decide
which variable and value to choose next [56]. These methods, which vary in
the strength of constraint inference (propagation), try to find a cost effective
balance between pruning and overhead.

Look-back schemes are invoked when the algorithm encounters a dead end.
These schemes perform two functions: One, decide how far to backtrack by an-
alyzing the reasons for the dead end, a process often referred to as backjumping,
[45]. Two, record the reasons for the dead end in the form of new constraints
so that the same conflicts will not arise again. Terms used to describe this idea
are constraint recording and no-good learning [26,121].

The order in which variables are instantiated (search order) can have an
enormous effect on the cost of finding a solution. An algorithm must choose in
which order to process variables, values and constraints. Often some form of
the “fail first principle” (which chooses the most constrained variable first) is
employed in an attempt to prune large portions of the search space by failing
high up in the backtrack search tree (e.g., [56]).

Stochastic search In the last few years, greedy local search strategies have
been reintroduced into the satisfiability and constraint satisfaction literature.
These algorithms incrementally alter inconsistent value assignments to all the
variables. They use a “repair” or “hill climbing” metaphor to move towards
more and more complete solutions [96]. To avoid getting stuck at “local max-
ima” they are equipped with various heuristics for randomizing the search or
for dynamically changing the guiding criterion function by constraint weighting.
While these methods can often be spectacularly successful, their stochastic na-
ture generally voids the guarantee of “completeness” provided by the systematic
methods, and thus, in particular, prevents a proof of unsatisfiability or optimal-
ity. Analyzing the power of these methods and understanding how to integrate
them into a general CP framework are challenging research topics.



Structure-driven algorithms Problem structure can be characterized and
exploited at the micro level (the structure of the constraints), and the macro
level (the structure of the constraint network) [27,37].

Many structure-driven techniques emerged from the topological characteri-
zation of tractable problems described in the next section. Various graph-based
techniques whose complexities are tied to graph parameters were identified.
Even when the macro structure of the original problem does not have a char-
acterized tractable structure, e.g. a tree structure, we may still take advantage
of tractability results. For example, tree-clustering transforms a problem into
a tree-structured meta-problem whose variables are subproblems of the original
problem, and the cycle cutset method extracts a tree-structured subproblem
from the original problem [27]. The micro structure can be exploited by, for ex-
ample, developing specific consistency enforcing algorithms for specific classes
of constraints, or removing values that are redundant because they participate
in the same solutions (e.g., see Section 3.7.1).

Structure-driven algorithms such as variable elimination, clustering, and con-
ditioning can be applied across many areas of reasoning such as satisfiability, so-
lution of linear inequalities, belief assessment and belief maximization in Bayes’
networks, combinatorial optimization, and planning under uncertainity [30].

Tractability The identification of polynomially recognizable restrictions that
are sufficient to ensure tractability is important from both the theoretical and
the practical points of view and has been extensively studied over the last
two decades. Most tractable classes were recognized by realizing that enforc-
ing low-level consistency (in polynomial time) guarantees global consistency, or
backtrack-free search (e.g., [36,29]).

The basic network structure that supports tractability is a generalized tree
structure. This has been observed repeatedly from different perspectives, in
constraint theory [88,27], complexity theory and database theory. In particular,
enforcing arc consistency in a network having a tree structure ensures global
consistency along some ordering.

Tractable classes characterized at the micro level have exploited ideas such
as tight domains and tight constraints, row-convex networks, implicational con-
straints and max-ordered constraints. These classes justify the intuition that
problems having large domains and higher arity constraints are generally harder.
The investigation of classes of constraints that ensure tractability in whichever
way they are combined has related tractability to algebraic closure properties
of the constraints [73].

Finally, special classes of constraints associated with temporal reasoning
have received much attention in the last decade. Tractable classses include
subsets of Allen’s (qualitative) interval algebra [3], as well as quantitative binary
linear inequalities over the reals, of the form X —Y < a [28]. The focus in the
AT community, (in contrast to OR), is on handling new types of queries and on
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combining such constraints with qualitative constraints.

Generating hard instances Another theme that has received great interest
recently is locating the “really hard” problems [19]. It turns out that when
problems are generated randomly, most of them are very easy. Consequently,
special care is needed in selecting the random generator if non-trivial problems
are to be produced. It has recently been demonstrated that most random gen-
erators have a phase transition from easy to hard, where hard distributions are
located wherever only few solutions exist.

Applications The algorithms described above serve as general-purpose infer-
ence engines for accomplishing tasks modeled as constraint satisfaction prob-
lems. Many tasks are naturally so modeled.

e Reasoning tasks including default reasoning, abduction, causal reasoning,
diagnostic reasoning, temporal reasoning, spatial reasoning.

e Cognitive tasks including machine vision, natural language processing,
planning.

e Task domains including scheduling, resource allocation, configuration, de-
sign.

3.2 Constraint Programming in Databases

The importance of constraints in the context of databases has been recognized
for a long time. For instance, in SQL/92, the current standard for SQL, simple
arithmetic constraints can be used in defining queries and assertions (which
are a form of “integrity constraint”, that is, conditions that must be satisfied
by a database instance). The use of arithmetic constraints for semantic query
optimization and optimization of SQL queries involving constraints has been
extensively investigated.

The area of constraint databases (CDBs), in which constraints are integrated
as a basic data-type, has emerged recently, prompted by the seminal work of [76].
Constraint databases naturally extend relational, deductive or object-oriented
databases by making feasible the use of constraints to represent possibly infinite,
but finitely representable complex data. This has turned out to be natural
for many application domains, since constraints possess great modeling power.
Constraints serve as a highly uniform data type for conceptual representation
of heterogeneous data, including spatial and temporal behavior, complex design
requirements and partial and incomplete information.

For example, arithmetic constraints over real variables within a subset of first
order logic can describe a wide variety of data, including 2- or 3-D geographic
maps; geometric modeling objects for CAD/CAM; fields of vision of sensors; 4-D
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(3 4+ 1 for time) trajectories of objects moving in 3-D space, based on the move-
ments equations; translation of different systems of coordinates; operations re-
search type models such as manufacturing patterns describing interconnections
between quantities of manufactured products and resource materials.

The notion of constraint data relies on a simple and fundamental duality: a

constraint (formula) ¢ in free variables x1, ..., x, is interpreted as a set of tuples
(a1,-..,an) over the scheme xq,...,x, that satisfy ¢. Conversely, a finitely
representable relation over the scheme (1, . . ., x,) can be viewed as a constraint.

For example, a constraint (—4 < w < 4) A (=1 < z < 2) with variables ranging
over reals is interpreted as the set {(w,z)|(—4 < w < 4) A (-1 < z < 2)}
and describes, say, the rectangle shape of a desk given in its local system of
coordinates (w,z). Users can intuitively think of a constraint as an object
in space (i.e. space of points) or as a symbolic expression, interchangeably,
depending on the application and context of its use. We will use a generic name
constraint object in the context of databases.

A constraint object is usually represented by a collection of atomic con-
straints, such as real polynomial, linear, or dense order, and their logical com-
binations. Constraint objects are manipulated by means of a constraint cal-
culus/algebra involving logical operations such as quantification, conjunction,
disjunction, negation and implication. If we only use linear constraint over reals
within first-order logic we can express any linear transformation such as rota-
tion, translation and stretch; check convexity, discreteness and boundedness;
compute convex hull, augment objects, change coordinate systems; etc.

Thus constraint objects can be manipulated by a very expressive and general-
purpose language, as opposed to using separate custom operators for each spe-
cific type of transformations (as done typically in extensible or spatial database
systems). For many useful constraint domains, query languages manipulat-
ing constraint objects are highly optimizable, in terms of indexing and filtering
(e.g., [13,77,118], and constraint algebra algorithms and global optimization
(e.g., [12,47]). Examples of implemented constraint databases are [49,16].

While the use of constraints as data is a central feature in constraint databases,
an important contribution of the field is the technology that has been devel-
oped with regard to the use of constraints for optimizing evaluation of database
queries. The idea of storing constraints as tuples in the database (so-called
“magic template” tuples) and using this information to prune the search during
database query evaluation was first proposed in [106]. The idea was refined in
[4,100] to allow constraint propagation without actually storing constraints in
the database, for the case of non-recursive SQL queries, by careful repositioning
of the constraints in a query. This prompted a series of work on the reposi-
tioning of constraints in (recursive and non-recursive) database queries for the
purpose of optimization, such as pushing constraint selections in [119,83] or
finding redundant parts of evaluation trees using query constraints in [84].

The promise of the emerging constraint database work is that it will provide
a uniform framework for the declarative and efficient querying of symbolically
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represented data. Developing custom tools for specific applications usually re-
quires considerable programming effort, and yields products that are not easy
to change, and may not perform overall optimizations that interleave database,
mathematical programming and computational geometry manipulation tech-
niques. Existing DBMS do not handle constraints as stored data; and CLP
implementation techniques need to be developed to deal with large amounts of
persistent data.

The work [55] considered polynomial equality constraints as rules, taking
advantage of their adirectionality. [76] proposed a framework for integrating
abstract constraints into database query languages by providing a number of
design principles, and studied, mostly in terms of expressiveness and complex-
ity, a number of specific instances. A restricted form of linear constraints, called
linear repeating points, was used to model infinite sequences of time points (e.g.,
[75]). More recent works on deductive databases (e.g., [100]) considered manip-
ulation and repositioning of constraints for optimizing recursion. Algorithms
for constraint algebra operators such as constraint joins, and generic global
optimization were studied in [12]. The work [77] proposed an efficient data
structure for secondary storage suitable for indexing constraints, that achieves
not only the optimal space and time complexity as priority search trees, but
also full clustering. The work [13] proposed an approach to achieve the optimal
quality of constraint and spatial filtering. A number of works consider special
constraint domains: integer order constraints [107]; set constraints [108]; dense-
order constraints [50]. Linear constraints over reals have drawn special attention
[1,12,51,126]. The use of constraints in spatial database queries was addressed
in [105]. The work [120] used constraints to describe incomplete information.
Constraint aggregation was studied in [80].

3.3 Constraint Programming in User Interfaces

Constraint programming has a long history of use in graphics and user interfaces,
beginning with Sketchpad system [123]. Common applications of constraints in
user interface construction include layout and other kinds of geometric con-
straints, maintaining consistency between application data and a view on that
data, keeping multiple views consistent, animation, and providing semantic feed-
back.

Supporting interactive user interfaces places a number of demands on con-
straint satisfaction algorithms that may not arise in other application areas. The
algorithms must be fast — in a typical interactive application, the constraints
must be re-satisfied each time the screen is refreshed while moving some part.
State and state change are also fundamental in these applications, as geometric
objects are moved on the screen, windows are reshaped, and so forth. We typ-
ically also require the algorithm to provide specific values for variables rather
than symbolic solutions, since the graphical elements must be shown in some
location.
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Two classes of algorithms in common use for User Interface (UI) applications
are one-way constraint algorithms, and multi-way local propagation algorithms.
In a one-way algorithm, each constraint has a distinguished output variable,
which the solver can set to satisfy that constraint; the other variables are only
referenced by the constraint. For example, if ¢ is the output variable in the
constraint a + b = ¢, the solver can update ¢ to satisfy the constraint if a or
b changes. A multi-way local propagation constraint includes a collection of
methods for satisfying that constraint. For example, the a + b = ¢ constraint
would have three methods: a < ¢ —b, b < ¢ — a, and ¢ + a + b, which can
be used to find a value for a, b, or ¢ that will satisfy the constraint. Examples
of user interface toolkits using one-way constraints include Amulet [101] and
its predecessor Garnet. Examples of multi-way local propagation algorithms
include DeltaBlue [111], SkyBlue [110], and QuickPlan [129]. (These multi-way
algorithms all also support constraint hierarchies [11,72], which allow for both
required and preferential constraints. Constraint hierarchies are useful in such
common User Interface (UI) tasks as specifying which parts of a figure we would
prefer to leave fixed while moving some other part.)

Some algorithms allow for cycles of constraints (e.g. simultaneous equations)
and inequalities, neither of which is supported by traditional local propagation
algorithms. Examples include QOCA [58], which solves simultaneous linear
equation and inequality constraints while optimizing a quadratic expression,
Bramble [46] and Juno-2 [65] which use numerical solvers, Indigo [9], an interval
propagation algorithm for inequality constraints, and DETAIL [67] and Ultravi-
olet [10], both of which are hybrid algorithms supporting both local propagation
and cycle solvers.

3.4 Constraint Programming in Operations Research

Operations Research is a vast field represented by departments in major univer-
sities and industrial settings around the world. The field of OR has significant
overlap with AI, branch-and-bound search being a classic example, tabu search
and simulated annealing being somewhat more recent examples. CP is a much
smaller but emergent discipline which is situated at the confluence of Computer
Science (CS), Al and OR.

A principal area of intersection of CP with OR is the field of NP-Hard com-
binatorial problems. What most distinguishes OR approaches to these problems
is the consistent use of continuous methods based on linear programming. With
this (very successful) method, known as mixed integer programming, an appli-
cation is modeled as a system of linear constraints on real and integer variables.
To assist in the solution process, the model is enhanced with constraints known
as cuts that tighten the linear relaxation of the model [102]. This is often critical
in limiting the amount of search that is required to find a solution. Generat-
ing the right cuts for a given application is a demanding craft which exploits
the mathematical structure of the problem. The problem solving process also
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requires a linear programming and/or mixed integer programming library.

On the other hand, in CP the emphasis has been less on the mathematical
structure of the particular application and more on higher level modeling and
solution methods and tools, and the integration of ideas from many different
constraint systems. This has led to languages based on finite domain solvers
and linear programming solvers, phase transition analysis of problem difficulty,
algorithmic advances, etc. It has also led to the expansion of the OR arsenal with
constraint solving libraries other than linear and mixed integer programming
libraries.

A classic shared interest of CP and OR is declarative programming. In fact,
in terms of languages, the interaction between CP and OR goes back at least
to [82]. The formulation of a mixed integer program is quintessentially declara-
tive. Moreover, the algebraic modeling languages of OR (such as GAMS, AMPL,
AIMMS) provide an example of a very pure form of declarative programming
system. This programming paradigm is in evolution and might well be converg-
ing with developments in the CP world, as declarative programming systems
become more open to integrating other paradigms. A case in point is the 2LP
language (“Linear Programming and Logic Programming”) which is designed
to encapsulate a part of the practice of OR, namely mixed integer programming
and extensions [93].

Work in OR on discrete optimization has also contributed to developments
in CP. Indeed, some of the recent success in CP on scheduling problems can
trace back to [17] on the Job Shop Problem. Conversely, the CP work has
led to new algorithms for these and related applications and to the creation of
software tools to facilitate exploitation of these techniques.

As computational sciences such as OR develop more complex methods to deal
with more challenging applications, a role to be played by CP is to furnish soft-
ware tools and concepts to organize the construction of these systems. To this
effort CP brings some new ideas and facility with program and language design
which will help bring OR technology to a much larger audience. CP systems are
being used commercially in many application areas, where they bring competi-
tive advantage to users over traditional approaches in terms that often include
application development ease, quality of solution, and speed at obtaining this
solution. Such applications are typically in the areas of scheduling (disjunctive
constraints, task intervals), resource control (cumulative, bottlenecks), trans-
portation (cycle constraints, labelling heuristics), personnel rostering (sequence
constraints), workforce scheduling (constraint cooperation), circuit verification
(Boolean constraints), electro-mechanical systems (constraints and finite state
machines, safety and fairness properties). Some of these applications are de-
scribed in the proceedings of the conferences on “Practical Applications of Con-
straint Technology - PACT”.
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3.5 Constraint Programming in Concurrency

As noted in Section 2, the use of constraints as a convenient mechanisms for
process communication and synchronization in a concurrent environment led
to the development of the CC paradigm, where processes interact by posting
and asking constraints over a shared set of variables. This very general and
elegant computational paradigm received a lot of both theoretical and imple-
mentational attention since its conception in 1989. In fact, the literature shows
many semantics efforts that try to adapt either the interleaving models of pro-
cess description algebras to CC [112,7] or the truly concurrent ones of Petri nets
and event structures [98,109]. Other theoretical efforts focus on the possibility
of analyzing CC-like programs at compile-time and thus derive properties to be
used at run-time. This holds, for example, for the works on abstract interpreta-
tion [128,22] which execute CC programs on an abstract constraint domain with
the hope to derive some useful knowledge for program simplification, for those
on suspension analysis [20], whose aim is to understand the conditions under
which CC program deadlock, and for those on relating CC and CLP languages
[15], which try to parallelize CLP programs using CC-based techniques or to
sequentialize CC programs via an analysis of their inherent concurrency.
Languages like AKL [57], Oz [117], and CIAO [64] are essentially based on the
CC ideas, although they add many features mainly because of application needs
and of efficiency reasons. For example, AKL employs a model of computation
based on the so-called Andorra principles, which basically leads to executing
all deterministic steps first. Oz is a lexically scoped language with first-class
procedures, state, and encapsulated search. CIAO is an extensible constraint
language supporting CC-style concurrency and synchronization primitives in
combination with standard CLP programming, as well as several control rules.

3.6 Constraint Programming in Robotics and Control The-
ory

A major challenge facing the constraint research community is to develop use-
ful theoretical and practical tools for the constraint-based design of embedded
intelligent systems. An archetypal example of an application in this class is the
design of controllers for sensory-based robots

If we examine this problem we see that many of the tools developed to date in
the CSP and CP paradigms are not adequate for the task, despite the superficial
attraction of the constraint-based approach.

The fundamental difficulty is that, for the most part, the CSP and CP
paradigms presume an off-line model of computation. But intelligent systems
embedded as controllers in real physical systems must be designed in an on-line
model. Moreover, the on-line model must be based on various time structures:
continuous, discrete and event-based. The requisite on-line computations, or
transductions, are to be performed over various type structures including con-
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tinuous and discrete domains. These hybrid systems require new models of
computation, constraint satisfaction and constraint programming. For exam-
ple, Zhang and Mackworth [130] defined constraint satisfaction as a dynamic
system process that approaches asymptotically the solution set of the given,
possibly time-varying, constraints. Under this view, constraint programming
is the creation of a dynamic system with the required property. Many robots
can be designed as on-line constraint-satisfying devices [104,131]. A robot in
this restricted scheme can be verified more easily. Moreover, given a constraint-
based specification and a model of the plant and the environment, automatic
synthesis of a correct constraint-satisfying controller becomes feasible, as shown
for a simple ball-chasing robot in [132].

Another approach has been developed recently in [113,53] for modeling timed
reactive systems. Reactive systems are those that react continuously with their
environment at a rate controlled by the environment. Execution in a reactive
system proceeds in bursts of activity. In each phase, the environment stimu-
lates the system with an input, obtains a response in bounded time, and may
then be inactive (with respect to the system) for an arbitrary period of time
before initiating the next burst. Examples of reactive systems are controllers
and signal-processing systems. The Timed concurrent constraint programming
(TCC) framework extends CCP by adopting the synchrony hypothesis of lan-
guages such as ESTEREL: Program control constructs are determinate primitives
that respond instantaneously to input signals. At any instant the presence and
the absence of signals can be detected. This is accomplished by augmenting
CCP with two constructs: first, hence A requires that the program A be ex-
ecuted at every time instant from the next time onwards. Next, a construct
if ¢ else A is added which requires A to be triggered if the constraint ¢ is not
enforced now or through quiescence. This “non-monotonic” control construct
is motivated by Reiter’s Default Logic and provides a very powerful and sim-
ple way to formalize the elaborate synchrony constructs of languages such as
ESTEREL, and LUSTRE. The same ideas have been used to extend CCP to
continuous time, by introducing the notion of autonomous activity (constraints
of the form (d/dt)(X) = k which allow a variable to vary continuously with
real time, independent of stimulus from the environment), and changing the
underlying model of time from the integers to the reals. The resulting frame-
work is quite simple mathematically and a very powerful basis for compositional
modeling [54].

The modeling and design of robotics systems and embedded control systems
presents a serious challenge and opportunity for constraint-based theories of
computation.

3.7 Constraint Systems and Programming Tools

Despite the youth of the field, a good number of tools for developing constraint
programs have become available, and a substantial set of techniques has been
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developed to support the efficient implementation of such programs.

3.7.1 Constraint Domains and Solving Techniques

A relatively small number of constraint systems (with their associated solution
techniques) have been used as a basis for several concrete implementations. The
four most important domains, other than rational trees, are Boolean constraints,
Finite Domains, real intervals and linear constraints; other examples include lists
and finite sets.

Boolean constraints are either treated by a specialized constraint solver, as
in CHIP or Prolog III, or seen as a specialized case of finite domain constraints.
In the latter, a Boolean is considered as an integer between 0 (false) and 1
(true), as in CLP(BNR), Prolog IV, clp(FD), or ILOG Solver. There has also
been work on constraint solving over more general Boolean algebras.

Finite domain constraints are constraints on integer valued variables. These
constraints are useful in many application areas. They are usually solved by
combining propagation techniques (such as arc-consistency) with backtracking
search. Each variable is associated with a finite set of possible values (possi-
ble starting time for an activity, possible component for an assembly, possible
coworkers for a team member, and so on). This set is called the domain of a
variable. Inconsistent values are removed from the domain of variables during
propagation, and then search tries to assign a value to each variable.

The propagation phase is built on a very simple idea: remove inconsistent
values from the domain of the variables. For instance assume that z, y, and
z are three variables with integer values in the closed interval [1,10], with the
constraint y < z. We can see that the value of y will be at least 1. Since the
constraint states that z must be greater than y, z = 1 is no longer possible.
For that reason, 1 is removed from the domain of z. which becomes [2,10].
Similarly, the domain of y becomes [1,9]. The domain of z remains unchanged
since no constraints involve x at this point. Let’s assume now that we add
another constraint, say, + = y + z. Now the minimal possible value for y is 1,
and the minimal possible value for z is 2, so x has to be at least 3. The domain
of x is then reduced to [3,10]. Furthermore, as the maximal possible value for
z is 10 and the minimal value of y is 1, z, which is equal to x — y must be at
most 8. Similarly, y, which is equal to x — z must be smaller than 8.

Real interval constraints are the analog of finite domains when reals are
considered instead of integers. As it is impossible to explicitly represent the set
of reals that a variable can take, the domain of a real variable is an interval whose
bounds are floating point numbers. The techniques for removing inconsistent
values are either similar to finite domain techniques (e.g. in CLP(BNR), Prolog
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IV and ILOG Solver), or they are based on mathematical techniques such as au-
tomatic differentiation and Taylor series, as in Newton and Helios. Real interval
constraints usually include trigonometric and other non linear constraints.

Linear constraints are constraints posted on real variables which have a
special form: they only involve weighted sums of variables (no product or more
complex expressions). For such constraints, very efficient constraint solvers have
been implemented using the Simplex algorithm as a starting point. Some linear
constraint solvers use infinite precision (rational numbers), some other use float-
ing point computations. The former is more accurate, while the latter is more
efficient. Interior point methods have been introduced in linear programming
libraries but have not impacted constraint programming more generally.

“Global” constraints The removal of inconsistent values can be tricky for
more complex constraints. An important line of work aims to define good prop-
agation algorithm for more complex constraints. This is sometime referred to
as global constraints. In this context, scheduling constraints, all-different (a set
of variables takes on values that are all different), and cardinality constraints
(the number of constraints within a set that must be satisfied is required to
be within given lower and upper bounds), and spatial constraints have been
studied in detail in the literature. The use of global constraints is often the key
for a successful application. For instance, in scheduling, some constraints can
be used to state that a given resource has a finite capacity, which limits the
number of tasks that can require the resource at any time. The propagation
of such a constraint requires sophisticated algorithm adapted from Operations
Research.

User-Defined Constraints. One of the lessons learned so far from the ap-
plication of CP tools in practice is that domain specific constraints are often
needed. In other words, the user of these systems often needs to extend the
constraint system with some constraints that are specific to the application in
hand. Several proposal have been made for making it possible for the user to
add domain specific constraints to the system and to tailor the underlying con-
straint solver (or program a new, specific solver) to these specific constraints.
This is called the glass-box approach, in contrast with the original CLP idea of
the constraint solver as a black box.

Building on progress in the area of Concurrent Constraint Programming
some languages provide constructs for defining the propagation of a constraint
within the language (examples are cc(fd) [62] and clp(fd) [23]). Some others
propose to view a constraint as a Boolean expression. The Boolean variable is
true if the constraint is necessarily true (entailed by the other constraints). The
Boolean variable is false if the negation of the constraint is entailed by the other
constraints. This enables the combination of constraints with logical operators
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(or, not, and), as well as some more complex constructs such as cardinality (used
for example in CLP(BNR), Prolog IV, and ILOG Solver). A related approach
is to define constraints using a rewrite system, as in the Constraint Handling
Rules solution [39]. The promise of such a special-purpose language for defining
constraint systems is that properties of a constraint-solver such as termination
and confluence can be tackled independently of a particular constraint system.

Yet another approach is to provide hooks in the parameter passing mech-
anism of the language (e.g., within unification, for CLP systems) through at-
tributed variables or meta-terms [103,66]. This approach is used extensively in
the implementation of constraint solvers in systems such as ECL'PS¢[32], SIC-
Stus, and CIAO [64]. A last approach is motivated by the need for adding
support for global constraints. In that case the definition of the constraint is
done in an imperative language and linked with the CP system using an object
oriented protocol (used in CHARME, ILOG Solver, Oz, CHIP). This approach
was called the “No Box” approach of Puget and Leconte, and potentially yields
the most efficient implementations, although implying a higher programming
load.

3.7.2 Constraint Programming Tools

The constraint systems discussed above have been integrated into different pro-
gramming languages, ranging from subsets of first order logic to imperative
languages such as C++, or even specialized languages. One of the most popu-
lar approaches is to use Horn clauses as a basis (as in Prolog), and then extend
this with one or more constraint systems, in addition to unification over Her-
brand terms. This Constraint Logic Programming approach has led to many
important tools, including CLP(R) (linear constraints), Prolog III (Booleans,
linear constraints and lists), CHIP (Booleans, linear constraints, finite domains),
clp(fd) (finite domains, Booleans), ECL'PS¢ (finite domains, linear constraints),
CAL, GDCC, etc.

Another popular approach is to embed CLP techniques in a different host
language, leading to another set of tools which includes the following (for each
of them we indicate both the underlying programming language together with
the constraint domains supported):

e CHARME: specialized language with C-like syntax and finite domains.
e 2LP: C-based language with linear constraints.

e ILOG Solver: C++ library with Booleans, finite domains, real intervals,
and linear constraints.

e HELIOS: specialized modeling language with real intervals.
Finally, a number of systems offer a concurrent language as the underlying

programming component (concurrent constraint languages):
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e AKL: non-deterministic concurrent constraint language with finite do-
mains. Supports both CC and CLP programming styles. Supports parallel
execution.

e Oz: specialized concurrent multiparadigm language (object oriented, higher-
order functional, search) with finite domains. Support for distributed ex-
ecution.

e CIAO: extensible concurrent constraint logic language with linear con-
straints. Supports CC-style programming within CLP, parallel and dis-
tributed execution, several control rules, functions.

In addition to these and other relatively general-purpose tools, also tools
which are specifically tailored to certain problem classes have been proposed.
For example, ILOG Schedule is a tool built using ILOG Solver functionality, and
is specifically tailored to solving scheduling problems while offering a simple,
graphical user interface.

3.7.3 Debugging and visualization tools.

The development of industrial applications using early CP systems has pointed
out the need for studying CP specific debugging techniques beyond those tra-
ditionally used for imperative or logic programming systems on which they are
based. Applying traditional methods, which include standard program tracing,
as well as declarative debugging approaches [115], often suffice for developing
correct programs, but understanding the performance of CP programs often
requires additional tools. Proposed solutions include both compile-time and
run-time techniques. A compile-time technique which has received some atten-
tion is the static generation and/or checking of assertions. Such assertions can
be seen as a generalization of type systems in which relatively general precondi-
tions and postconditions expressed as constraints can be declared for procedures.
Assertions can be provided by the user and/or checked by the compiler (when
possible) via global analysis. Alternatively they can be generated by the com-
piler and the user can inspect them for errors. In both cases global analysis
techniques and systems similar to those used by the compiler for optimization
purposes, discussed later in this section, can be used for these purposes (e.g.,
[42]), as well as, perhaps, other proof techniques previously used in logic pro-
gramming (e.g., based on induction assertion). A run-time technique which is
currently receiving much attention is the use of visualization, both of the search
space and of the constraint store at different points of execution [94].
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3.8 Constraint Programming Language Implementation
Techniques

Compilers and abstract machines. The programming component that CP
offers as an essential addition to the constraint solving capabilities is imple-
mented in an efficient way in most current CP programming systems via com-
pilation. In the case of “library systems”, built on top of conventional program-
ming languages (such as, for example, ILOG, built on top of C++) the com-
pilation of the control component is provided by the host language compiler.
In the case of systems which offer a programming language the programming
component is, as mentioned before, very often offered by a logic programming
based language. Compilation is then generally based, at least conceptually, on
a translation to an abstract machine instruction set (e.g., [70,62,31,23]. The
target abstract machines used are most often generalization of the Warren Ab-
stract Machine, which has proven extremely successful in the context of logic
programming. The WAM approach essentially provides a view of the compila-
tion of these languages as a generalization of the standard techniques used in
conventional languages, allowing most of the conventional optimizations.

Global Analysis. As a result of the compilation-based approach the perfor-
mance of current systems is quite acceptable when running code where general-
purpose constraint solving is performed. On the other hand, this approach alone
cannot always provide performance in the control component that is competi-
tive with other languages. In particular, their performance often does not reach
that of traditional logic programming systems in symbolic applications and is
generally far from that of traditional imperative programming languages in (non
constraint related) numerical applications. The most generally accepted solution
to this has been to develop advanced compilation technology capable of detect-
ing the cases where limited or no constraint solving is involved and compiling
those cases in the most efficient way. Some significant progress has already been
made in practical global analysis and optimization of constraint logic program-
ming systems. Results on the possible speedups obtainable with global analysis
information have been studied (e.g., [92,41]), practical frameworks for global
analysis developed (e.g., [42]), and some CP systems have been reported which
perform global analysis based optimization [78,41]. Such global analysis has
also been applied to concurrent CP systems, where one of the most important
objectives is to reduce suspension and resumption of goals and synchroniza-
tion overhead [21,33,91,15,44]. Finally, recent progress in incremental global
analysis (e.g., [63]) has the potential to solve most remaining problems related
to supporting large programs and the use of global analysis in the interactive
program development environment that is common in constraint programming
systems. However, the application of extensive optimization in commercial or
widely used public domain systems still remains a goal to be achieved. Also,
much research remains to be done in finding accurate abstraction techniques for
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standard constraint systems.

Parallelization. A program optimization which has shown significant speedups
in the context of logic programs is automatic parallelization [18]. Exploita-
tion of parallelism in the search (or-parallelism) is comparatively easy and has
been shown to provide speedups in several industrial applications containing
extensive search [60,32,85]. On the other hand comparatively little work has
been devoted so far to exploiting parallelism within a given path of the search
(and-parallelism) and in the solver itself. Although traditional concepts of in-
dependence used in imperative programming (e.g., the “Bernstein conditions”)
or even those of logic programming, do not apply in the context of CP [43],
notions of independence appropriate for (concurrent) CP have been recently
proposed [43,14]. Based on this, parallelizing compilers as well as and-parallel
abstract machines for CP languages have recently become available, and initial
performance results are encouraging [41].

4 Promising Directions

Constraint programming has by now shown that constraints can be used not only
to represent knowledge but also as a way to guide search, prune useless branches,
filter queries, and describe process communication and synchronization. With
this is mind, we may identify several directions for research that are promising
for systems, programming environments, models and application packages.

More realistic constraint systems and languages. We need to develop
more automatic and systematic ways to acquire and model domain-specific and
problem-specific knowledge, developing a richer paradigm to cope with the prop-
erties and uncertainties of real-world information. Of course, representation and
reasoning are always two sides of the same coin. As we consider new classes of
constraints, we must also consider new methods to compute with them; au-
tomating the modeling process will itself require capturing some very sophisti-
cated reasoning skills. Moreover, better theoretical and empirical understanding
is needed of the relationship between real-world problem parameters and search
methods. An important issue is that of over-constrained constraint problems
[72], since most real-life problems are indeed over-constrained. Thus either the
constraint domain, or the language itself, should be flexible enough to be able
to deal with such situations and solve them in some satisfactory way. For exam-
ple, the constraints and constraint solving algorithms could take into account
the presence of preferences of some sort [6,11,48], and/or the language could
allow for user-guided constraint retraction [24,5] and intelligible explanations
for failure. This of course would bring the constraint satisfaction and program-
ming tasks closer to the issues present in optimization problems, since in the
presence of preferences one has to decide the best way to choose and/or retract

23



constraints. Thus special attention has to be paid to the interrelation between
AT and OR techniques for such tasks. In particular, we must take advantage
of the coexistence, in the constraint satisfaction world, of different methods
(e.g. systematic and stochastic search) and different disciplines (e.g. artificial
intelligence and operations research).

Efficient modeling. Constraint satisfaction knowledge can be represented
very declaratively, without regard to how it is to be used. However, modeling
a specific problem is not a trivial task, especially since how it is modeled can
dramatically affect how well our algorithms perform. We need to automate the
process of moving from problem descriptions natural to the problem domain to
problem descriptions designed for efficient solution. A variety of problem-solving
techniques are now available to us, but synthesizing appropriate algorithms for
specific tasks should be automated [95]. In addition, robust constraint compu-
tation must cope with change in the world and in models, and with noise (e.g.,
in data), and uncertainity (e.g., in parameter values).

Towards constraint-based distributed systems. Another challenge for
constraint programming systems is related to the role of such systems in network-
wide programming. This type of programming is likely to be of growing impor-
tance given the fact that the recent wider diffusion of the Internet and the
popularity of the “World Wide Web” (WWW) protocols are effectively provid-
ing a new platform that is standard and ubiquitous, and allows a new class of
highly sophisticated distributed applications. Features of constraints like the
ability of describing intra- and inter-process communication and synchroniza-
tion are more and more important in practical applications which consist of
distributed environments where both local problem solving and global synchro-
nization and coordination is needed. This is added to the fact that many CP
systems already offer many other characteristics that make them well suited
in this context. These include dynamic memory management, well behaved
structure and pointer manipulation, robustness, dynamic compilation to archi-
tecture independent bytecode, dynamic databases, search facilities, grammars,
code motion, and sophisticated meta-programming. A number of distributed
concurrent constraint systems are currently being worked on, application de-
velopment libraries are being offered, and network and WWW applications are
being reported [124]. It appears that CP is a promising foundation for most as-
pects of the next generation of distributed systems, where all the advantages of
constraints may coexist and thus lead to simple, elegant and practically usable
environments.

Another interesting related application domain is 3D graphics and Virtual
Reality. Many interactions between objects (e.g. attachments, minimal dis-
tances, non-collision, etc) or general integrity rules (such as energy conservation
laws) can be considered as constraints, and implemented efficiently as such. This
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generalizes in an obvious way 2D geometrical constraints. Basically, constraints
can be used to enforce hidden relations between objects and thus make sure
that the simulated virtual world does not depart too much from our real one.

Towards faster, more efficient systems. While the performance and com-
puting resource economy of current CP systems has proved to be adequate in sig-
nificant industrial applications, competing very favorably with other techniques
and approaches, it appears that there still remain many avenues for improve-
ment, which would make the technology even more competitive. It is expected
that improving execution speed and reducing further resource consumption can
improve the acceptance of the approach for general purpose programming as well
as encouraging the inclusion of constraint programming techniques, constructs,
and libraries in conventional languages. Interesting techniques to be further ex-
plored include advanced compilation based on global analysis and (automatic)
program and solver parallelization. In fact, parallelization is becoming more and
more interesting since multiprocessing hardware is starting to be in many cases
the default installation platform (for example, for departmental servers where
multiprocessors using fast, inexpensive, off-the-shelf processors are often replac-
ing mainframes at a fraction of their cost). Also, multiprocessor workstations
are not unusual any more. It appears likely that this trend towards increased
use of parallelism will continue as multiprocessor architectures are better un-
derstood, interconnection network performance increases with new technologies
(specially if the promise of optical interconnect is finally delivered), and feature
size diminishes allowing placement of several processors on the same chip.

Constraint databases. Many challenges in constraint databases are yet to
be addressed. Specific directions of work include: constraint modeling, canonical
forms and algebras; data models and query languages; indexing and approximation-
based filtering; constraint algebra algorithms and global optimization; systems
and case studies. In addition robust widely available implementations of these
ideas need to be developed.

User interfaces. In user interface applications, there is a constant need for
new constraint satisfaction algorithms that can handle a wider range of con-
straints that arise in such applications, and algorithms and data structures
with improved space and time efficiency.

The development of better (performance) debugging techniques and more
useful visualization paradigms for several constraint domains and solving al-
gorithms also offers an interesting research direction. Currently, at least one
European project has started working on the development of both assertion-
based and visualization based debugging techniques for CLP systems.

Among the issues that should be addressed are ways of describing the desired
constraints at a higher level of abstraction (closer to the domain of interest);
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studying the models users have of constraint systems, and as needed evolving
those systems to allow for clearer and more easily understood user models.
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