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Announcements (1)

Assignment 4 was due today.

The list of short questions for the final is online ... please
use it!

Please submit suggested review topics on Connect for
review lecture(s).

Previous final has been posted.

Additional review lecture(s) and TA hours will be scheduled
before the final, if needed.

TA hours to continue as scheduled during exam period,
unless as posted otherwise to Connect.

Exercise 12, for single-stage Decision Networks, and
Exercise 13, for multi-stage Decision Networks, have been

posted on the home page along with Alspace auxiliary
files.



Announcements (2)

Teaching Evaluations are online

— You should have received a message about them
— Secure, confidential, mobile access

Your feedback is important!

— Allows us to assess and improve the course material
— luse it to assess and improve my teaching methods
— The department as a whole uses it to shape the curriculum
— Teaching evaluation results are important for instructors
« Appointment, reappointment, tenure, promotion and merit, salary
— UBC takes them very seriously (now)
— Evaluations close at 11:59PM on April 9, 2013.
» Before exam, but instructors can’t see results until after we submit grades
— Please do it!

Take a few minutes and visit https://eval.olt.ubc.ca/science
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Lecture Overview

Recap: Single-Stage Decision Problems
— Single-Stage decision networks
— Variable elimination (VE) for computing the optimal decision

Sequential Decision Problems
— General decision networks
— Policies

Expected Utility and Optimality of Policies
Computing the Optimal Policy by Variable Elimination

Summary & Perspectives



Recap: Single vs. Sequential Actions
Single Action (aka One-Off Decisions)

— One or more primitive decisions that can be treated as a single macro
decision to be made before acting

Sequence of Actions (Sequential Decisions)
— Repeat:

« observe

e act

— Agent has to take actions not knowing what the future brings



Recap: Optimal single-stage decisions

Definition (optimal single-stage decision)
An optimal single-stage decision is the decision D=d,__,
whose expected value is maximal:

d... € argmax E[U|D=d]

d;e dom(D)
Best decision: (wear pads, short way) Conditional .
. P 3 y orobability Utility E[U|D]
accident w,. wi 0.2 35
short wayﬁ,@-—:::_‘_‘_'_ i 83
~_— " no accident™ W1 0.8 95
wear pads T~ ;
P long way— *QE-E—E{EL‘J—?‘FI* w2 0.01 30 .
no accident>™ W3 0.99 75
> accidenty, w4 0.2 3 206
g short wa ,,7{ e .
don't ﬁﬁf"l no accident > W2 0.8 100
wear -
T accident 3, w6 . 0
pads long way ™ 7 .01 79.2

no accldeﬁt—} w7 099 80



Recap: Single-Stage decision networks

/4

\4001'0’@111‘ )
e
Which Way
Wear Pads

« Compact and explicit representation
— Compact: each random/decision variable only occurs once

— Explicit: dependences are made explicit
* e.g., which variables affect the probability of an accident?

« Extension of Bayesian networks with
— Decision variables
— A single utility node



Recap: Types of nodes in decision networks

\ A random variable is drawn as an ellipse.
; — Parents pa(X): encode dependence
/Q Conditional probability p( X | pa(X) )

Random variable X is conditionally independent

of its non-descendants given its parents
— Domain: the values it can take at random

* A decision variable is drawn as an rectangle.

— Parents pa(D)
information available when decision D is made
« Single-stage: pa(D) only includes decision variables

— Domain: the values the agents can choose (actions)

* A utility node is drawn as a diamond.

— Parents pa(U): variables utility directly depends on
« utility U( pa(U) ) for each instantiation of its parents

— Domain: does not have a domain! 8

WY
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Computing the optimal decision: we can use VE

Accident

/' \
° Which Way
Denote /”®

— the random variables as X, ..., X Wear Pads
— the decision variables as D
— the parents of node N as pa(N)

EU) = EP(Xp , X, [ D)U(pa(U))

n

_ E P(X,| pa(X;))U(pa(U))

Xl,...,X l_

« To find the optimal decision we can use VE:
1. Create a factor for each conditional probability and for the utility

2. Sum out all random variables, one at a time
« This creates a factor on D that gives the expected utility for each d,

3. Choose the d; with the maximum value in the factor 10



VE Example: Step 1, create initial factors

Abbreviations:
W = Which Way
P = Wear Pads
A = Accident
Accident
v

Which Way

Wear Pads

EU) = ZP(A (WYU(A, W, P)
=Zf1(A,W)f2(A, W, P)

Which Way W | Accident A | P(aw) | f1(A,W)
long true 0.01
long false 0.99
short true 0.2
short false 0.8

- T~ f,(A,W,P)
Which way W Accident A Pads P Utility
long true true 30
long true false 0
long false true 75
long false false 80
short true true 35
short true false 3
short false true 95
short false false 100
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VE example: step 2, sum out A

Which Way

Wear Pads

/

Step 2a: compute product
f,(A,W) x f,(A,W,P)

What is the right form for the product f,(A,W) x f,(A,W,P)?

FAWT fAP)

f(A)

f(A,P,W)

12



VE example: step 2, sum out A

Accident

Y

Step 2a: compute product

Which Way

T f(AW,P) =f,(A,W) x f,(A,W,P
( ) 1( ) 2( )

Wear Pads

What is the right form for the product f,(A,W) x f,(A,W,P)?

eIt is f(A,P,W):

the domain of the product is the union of the multiplicands’ domains
f(A,P,W) = f,(AW) x f,(A,W,P)
- le., f(A=a,P=p,W=w) = f,(A=a,W=w) x f,(A=a,W=w,P=p)
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VE example: step 2, sum out A

Aevident Step 2a: compute product

— — f(AW,P) = f,(A,W) x f,(A,W,P)
Which Way 1 2

Wear Pads f(A=a,P=p,W=w) = f(A=a,W=w) x f,(A=a,W=w,P=p)
Which way W | Accident A | f,(A,W)
long | true | 0.01 Which way W AccidentA PadsP | f(AW,P)
long false 099 long true true | 0.01*30
short true 0.2
long true false
short false 0.8
long false true
Which way W AccidentA PadsP | f,(A,W,P) long false false e
short true true
long true true | 30 short true false
long true false 0 short false true
long false true 75 short false false
long false false 80
short true true 35
*
short true false 3 _ 0.01*80
short false true 95
short false false 100 0.99 * 80 0.8 * 30 1




VE example: step 2, sum out A

Q BN Step 2a: compute product
> — f(AW,P) = f,(A,W) x f,(A,W,P)
Which Way
Wear Pads f(A=a,P=p,W=w) = f(A=a,W=w) x f,(A=a,W=w,P=p)
Which way W | Accident A | f,(A,W)
long true 0.01 Which way W Accident A  Pads P f(A,W,P)
ong false 0.99 long true true 0.01 * 30
short true 0.2 '
long true false 0.01*0
short false 0.8 long false true 0.99*75 |
Which way W Accident A Pads P | f,(A,W,P) long false false 0.99%80
short true true 0.2*35
long true true | 30 short true false 0.2*3
long true false 0 short false true 0.8*95
long false true 75 short false false 0.8*100
long false false 80
short true true 35
short true false 3
short false true 95

short false false 100 15




VE example: step 2, sum out A
Step 2b: sum A out of the

— /@.’® product f(A,W,P):
Which Way

Wear Pads f3 (W, P) = Z f(A, W, P)
Which way W Accident A Pads P f(A,W,P)
Which way W | Pads P | f5(W,P)
long true true 0.01 * 30
|Ong true 0.01*30+0.99*75=74.55 |Ong true false 0.01*0
long false long false true 0.99*75
27
short true t long false false 0.99*80
short false short true true 0.2*35
short true false 0.2*3

_ short false true 0.8*95
short false false 0.8*100

0.2*35 + 0.8"95
0.99*80 + 0.8"95

0.8 *95 + 0.8*100 y



VE example: step 2, sum out A
Step 2b: sum A out of the

product f(A,W,P):

f,(W,P) = Z f(A, W,P)

Accident
/ \
Which Way /
Wear Pads
Which way W | Pads P f3(W,P)
long true 0.01*30+0.99*75=74.55
long false 0.01*0+0.99*80=79.2
short true 0.2*35+0.8*95=83
short false 0.2*3+0.8*100=80.6

Which way W Accident A Pads P f(A,W,P)
long true true 0.01 * 30
long true false 0.01*0
long false true 0.99*75
long false false 0.99%80
short true true 0.2*35
short true false 0.2*3
short false true 0.8%95
short false false 0.8*100
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VE example: step 3, choose decision with max E(U)

Step 2b: sum A out of the

Accident

product f(A,W,P):

/ \
Which Way /y"®

Wear Pads

f,(W,P) = Z f(A, W,P)

Which way W Accident A Pads P f(A,W,P)
Which way W | Pads P f.(W,P
y o(W.P) long true true 0.01*30
|Ong true 001*30+099*75=7455 |Ong true false 001*0
|Ong false 001*0"'099*80:792 |Ong false true 099*75
short true 0.2*35+0.8*95=83 |Ong false false 0.99*80
short false 0.2*3+0.8*100=80.6 short true true 0.2*35
short true false 0.2*3
short false true 0.8*95
short false false 0.8*100

The final factor encodes the
expected utility of each decision

p@@@

* Thus, taking the short way but wearing pads is the best choice, with an
expected utility of 83
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Variable Elimination for Single-Stage
Decision Networks: Summary

1. Create a factor for each conditional probability
and for the utility

2. Sum out all random variables, one at a time
— This creates a factor on D that gives the expected utility for each d.

3. Choose the d. with the maximum value in the factor

This is Algorithm OptimizeSSDN, in P&M, Section 9.2.1, p.387

19



Learning Goals So Far For Decisions

« Compare and contrast stochastic single-stage (one-off)
decisions vs. multistage (sequential) decisions

» Define a Utility Function on possible worlds

« Define and compute optimal one-off decisions

* Represent one-off decisions as single stage decision networks
« Compute optimal decisions by Variable Elimination

20



Lecture Overview

Recap: Single-Stage Decision Problems
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Sequential Decision Problems

An intelligent agent doesn't make a multi-step decision
and carry it out blindly

— It would take new observations it makes into account

A more typical scenario:
— The agent observes, acts, observes, acts, ...

Subsequent actions can depend on what is observed
— What is observed often depends on previous actions

— Often the sole reason for carrying out an action is to provide
information for future actions

« For example: diagnostic tests, spying

General Decision networks:

— Just like single-stage decision networks, with one exception:
the parents of decision nodes can include random variables

22



Sequential Decision Problems: Example

« Example for sequential decision problem

— Treatment depends
on Test Result (& others)

Decision node: Agent decides

« Each decision D, has an information set of variables pa(D;),
whose value will be known at the time decision D, is made
— pa(Test) = {Symptoms}
— pa(Treatment) = {Test, Symptoms, TestResult}

O Chance node: Chance decides



Sequential Decision Problems: Example

Another example for sequential decision problems

— Call depends on | | ’_‘
Report and SeeSmoke ‘/@Q @

(and on CheckSmoke)
Cseesmote >

Check |—w»

i

Smoke \!

Decision node: Agent decides Report »| Call

%

O Chance node: Chance decides



Sequential Decision Problems

« What should an agent do?
— What an agent should do depends on what it will do in the future
« E.g. agent only needs to check for smoke if that will affect whether it calls
— What an agent does in the future depends on what it did before

« E.g. when making the decision it needs to know whether it checked for
smoke

— We will get around this problem as follows
» The agent has a conditional plan of what it will do in the future
* We will formalize this conditional plan as a policy

Tampering Fire

U
Alarm Smoke
Leaving SeeSmoke

Check |—w

Smoke
v — N .

Report - Call




Policies for Sequential Decision Problems
Definition (Policy)
A policy is a sequence of 0,,....., 0, decision functions
0, : dom(pa(D;)) — dom(D,)
This policy means that when the agent has observed
o € dom(pa(D,)) , it will do &,(0)

There are 22=4 possible decision

functions &, for Check Smoke:
A Decision function needs to specify a value

i

@ for each instantiation of parents
CheckSmoke

Check _--—P Report 5031 5c32 5033 5cs4
Smoke \ T T T F F

Report | Call F T F T F

Call



Policies for Sequential Decision Problems

Definition (Policy)
A policy r is a sequence of 9,,....., 8, decision functions

&, : dom(pa(D;)) — dom(D))

|.e., when the agent has observed o € dom(pD,) , it will do §,(0)

There are 28=256 possible decision functions o for Call:

R=t, | R=t, | R=t, | R=t, | R=f, | R=f, | R=f, | R=f,

CS=t, | CS=t, | CS=f, | CS=f, | CS=t, | CS=t, | CS=f, | CS=f,

SS=t | SS=f | S§S=t | SS=f | S§S=t | SS=f | §S=t | SS=f
SlR) | T T T T T T T T
5.2R) | T T T T T T T F
53R | T T T T T T F T
5 AR) | T T T T T T F F
5.BR) | T T T T T F T T
5..256(R) | F F F F F F F F

27



How many policies are there?

 If a decision D has k binary parents, how many
assignments of values to the parents are there?

2k 2tk k22

28



How many policies are there?

 If a decision D has k binary parents, how many
assignments of values to the parents are there?

_2k

 If there are b possible value for a decision variable, how
many different decision functions are there for it if it has k
binary parents?

O ST

29



How many policies are there?

 If a decision D has k binary parents, how many
assignments of values to the parents are there?

_2k

 If there are b possible value for a decision variable, how
many different decision functions are there for it if it has k
binary parents?

— b?, because there are 2% possible instantiations for the parents and
for every instantiation of those parents, the decision function could
pick any of b values

 If there are d decision variables, each with k binary parents
and b possible actions, how many policies are there?

dbk  bdk d(b2) (b2

30



How many policies are there?

 If a decision D has k binary parents, how many
assignments of values to the parents are there?

_2k

 If there are b possible value for a decision variable, how
many different decision functions are there for it if it has k
binary parents?

— b?, because there are 2% possible instantiations for the parents and
for every instantiation of those parents, the decision function could
pick any of b values

 If there are d decision variables, each with k binary parents
and b possible actions, how many policies are there?

— (b2)¢, because there are b? possible decision functions for each
decision, and a policy is a combination of d such decision functions
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Possible worlds satisfying a policy

Definition (Satisfaction of a policy)
A possible world w satisfies a policy wt, written w * m, if the

value of each decision variable in w is the value selected

by its decision function in policy t (when applied to w)

Consider our previous example policy:
— Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
— Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true

Does the following possible world satisfy this policy?

—-tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call

el o
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Possible worlds satisfying a policy

Definition (Satisfaction of a policy)
A possible world w satisfies a policy wt, written w * m, if the

value of each decision variable in w is the value selected
by its decision function in policy t (when applied to w)

« Consider our previous example policy:
— Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
— Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true

* Do the following possible worlds satisfy this policy?
-tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call
 Yes! Conditions are satisfied for each of the policy’ s decision functions

-~-tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, -call

Nesi o
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Possible worlds satisfying a policy

Definition (Satisfaction of a policy)
A possible world w satisfies a policy wt, written w * m, if the

value of each decision variable in w is the value selected
by its decision function in policy t (when applied to w)

« Consider our previous example policy:
— Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
— Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true

* Do the following possible worlds satisfy this policy?
-tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call
 Yes! Conditions are satisfied for each of the policy’ s decision functions

-~-tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, -call
* No! The policy says to call if Report and CheckSmoke and SeeSmoke all true

-tampering,fire,alarm,leaving,-~report,~smoke,~checkSmoke,-seeSmoke,-call

Yes No ° Yes!Policy says to neither check smoke nor call when there is no report 15



Expected utility of a policy

Definition (expected utility of a policy)
The expected utility E[r] of a policy nt is:

E[r] = 2 P(w) U(w)

wET

This term is zero if D;’ s value
does not agree with what the

S

policy dictates given D;’ s

E[rn] = z P(w)U(w) parghts.

wETT

m

[ P@lpa) | | (pa(D)) =D) Upa(V))

j=1

36



Optimality of a policy

Definition (expected utility of a policy)
The expected utility E[r] of a policy nt is:

E[r] = z P(w) U(w)

wET

Definition (optimal policy)
An optimal policy =, Is a policy whose expected utility
Is maximal among all possible policies | [:

Mo € argmax E [ 7]

mell

37
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One last operation on factors: maxing out a variable

« Maxing out a variable is similar to marginalization
— But instead of taking the sum of some values, we take the max

(maXXl )(Xz,...,XJ.)= MAX o x) f(X, = x,XZ,...,XJ.)

maxg f4(A,B,C) = f,(A,C)

B|A|C f,(A,B,C)
t |t | t 0.03
t |t | f 0.07
fl| ot | t 0.54
f |t | f 0.36
t | f | t 0.06
t | f | f 0.14
f|f |t 0.48
f|f | f 0.32

A | C | f,AC)
t | t | 054
t | f | 0.36
fol ot ?

f| f

032 0.06 0.48

0.14
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One last operation on factors: maxing out a variable

« Maxing out a variable is similar to marginalization
— But instead of taking the sum of some values, we take the max

(maXXl )(Xz,...,Xj)= MAX o x) f(X, = x,XZ,...,X].)

maxg f4(A,B,C) = f,(A,C)

B|A|C f,(A,B,C)
t |t | t 0.03

t |t | f 0.07

fl| ot | t 0.54

f |t | f 0.36

t | f | t 0.06

t | f | f 0.14
f|f |t 0.48
f|f | f

0.32

A | C | f,AC)
t | t | 054
t | f | 0.36
f | t | 048
f | f | 032

40



The no-forgetting property

* A decision network has the no-forgetting property if
— Decision variables are totally ordered: D,, ..., D

— If a decision D; comes before D; ,then
* D,is a parent of D,
* any parent of D; is a parent of D,

m

Tampering ‘@

Check _-—-’P
Smoke \

Report | Call

i

41



ldea for finding optimal policies with VE

* Idea for finding optimal policies with variable elimination (VE):
Dynamic programming: precompute optimal future decisions

— Consider the last decision D to be made

 Find optimal decision D=d for each instantiation of D’ s parents

— For each instantiation of D’ s parents, this is just a single-stage decision
problem

* Create a factor of these maximum values: max out D

— l.e., for each instantiation of the parents, what is the best utility | can achieve by
making this last decision optimally?

» Recurse to find optimal policv for reduced network (now one less decision)

Tampering Fire

Alarm Smoke
Leaving Chock Ly SeeSmoke

i » Smoke \E‘

Report > Call 42




Finding optimal policies with VE

1. Create a factor for each CPT and a factor for the utility

2. While there are still decision variables
— 2a: Sum out random variables that are not parents of a decision node.
E.g Tampering, Fire, Alarm, Smoke, Leaving

—  2b: Max out last decision variable D in the total ordering

Keep track of decision function

3. Sum out any remaining variable:
this is the expected utility of the optimal policy.

This is Algorithm VE_DN in P&M, Section 9.3.3, p. 393

Tampering Fire

N ¥

Alarm

v

Y

Smoke

Leaving

Check
Smoke

| SeeSmoke

‘o

\}(

Report

| Call

AJ)space
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Computational complexity of VE for
finding optimal policies

« We saw:
For d decision variables (each with k binary parents and

b possible actions), there are (b2“) policies
— All combinations of (b2k) decision functions per decision

« Variable elimination saves the final exponent:
— Dynamic programming: consider each decision functions only once
— Resulting complexity: O(d * b2
— Much faster than enumerating policies (or search in policy space),
but still doubly exponential

— CS422: approximation algorithms for finding optimal policies

44
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Big Picture: Planning under Uncertainty

F______‘

Probablllty Theory Decision Theory

L—— s s s =l

»4 fow Know

qoug Kv\@wl &q m@

One-Off Decisions/ Markov Decision Processes (MDPs)
Sequential Decisions / \

Fully Observable Partially
MDPs Observable MDPs
(POMDPs)

Decision Support Systems
(medicine, business, ...)

Some Applicyt,, ,
0

46

Economics

Control
Systems




Decision Theory: Decision Support Systems

E.g., Computational Sustainability

* New interdisciplinary field, Al is a key component

— Models and methods for decision making concerning the management
and allocation of resources

— to solve most challenging problems related to sustainability
« Often constraint optimization problems. E.qg.
— Energy: when are where to produce green energy most economically?

— Which parcels of land to purchase to protect endangered species?
— Urban planning: how to use budget for best development in 30 years?

=




Planning Under Uncertainty

* Learning and Using
POMDP models of
Patient-Caregiver Interactions
During Activities of Daily Living

LR FE

* Goal: Help older adults living
with cognitive disabilities (such
as Alzheimer's) when they:

— forget the proper sequence of
tasks that need to be completed

— lose track of the steps that they
have already completed

Source: Jesse Hoey Uof T
2007
48



Planning Under Uncertainty

Helicopter control: MDP, reinforcement learning

(states: all possible positions, orientations, velocities and angular velocities)

Source:
Andrew

Ng




Planning Under Uncertainty

Autonomous driving: DARPA Urban Challenge - Stanford’s
Junior

Source:

Sebastian
Thrun




Learning Goals For Today s Class

« Sequential decision networks
— Represent sequential decision problems as decision networks
— Explain the non forgetting property
» Policies
— Verify whether a possible world satisfies a policy
— Define the expected utility of a policy
— Compute the number of policies for a decision problem
— Compute the optimal policy by Variable Elimination
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