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Lecture Overview

Recap: marginal and conditional independence

« Bayesian Networks Introduction

« Hidden Markov Models



Marginal Independence

Definition (Marginal independence)
Random variable X is (marginally) independent of random

variable Y, written X 1L Y, if for all x € dom(X), y; € dom(Y) and
¥, € dom(Y), the following equation holds:
PX=x|Y =y)
=PX=x|Y =vy,)
=P(X =x)

 Intuitively: if X 1L Y, then
— learning that Y=y does not change your belief in X
— and this is true for all values y that Y could take

* For example, weather is marginally independent
of the result of a coin toss



Marginal Independence

Definition (Marginal independence)
Random variable X is (marginally) independent of random
variable Y, written X 1L Y, if for all x € dom(X), y; € dom(Y) and
¥, € dom(Y), the following equation holds:
P(X =x|Y =y))
=PX =x|Y =y,)
= P(X = x)

« Recall the product rule:
— PX=xANY=y)=PX =x|Y =y)XP(Y =)

« IfX1Y, we have:
— PX=xAY=y)=PX =x)XP(Y =vy)
— In distribution form: P(X,Y) = P(X) X P(Y)

n
« If X, 1L X, foralli, j P(Xl,...,Xn)=l_[ P(Xi)
=1



Conditional Independence

Definition (Conditional independence)
Random variable X is (conditionally) independent of random

variable Y given random variable Z, written X 1L Y | Z if, for all
x € dom(X), y; € dom(Y), y, € dom(Y) and z € dom(Z) the
following equation holds:
PX=x|Y=y,Z =2z)
=PX=x|Y=y,Z=2)
=PX=x|Z=2)

* Intuitively: if X 1L Y | Z, then
— learning that Y=y does not change your belief in X
when we already know Z=z

— and this is true for all values y that Y could take
and all values z that Z could take

 For example,
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Conditional Independence

Definition (Conditional independence)
Random variable X is (conditionally) independent of random

variable Y given random variable Z, written X 1L Y | Z if, for all
x € dom(X), y; € dom(Y), y, € dom(Y) and z € dom(Z) the
following equation holds:
PX=x|Y=y,Z =2z)
=PX=x|Y=y,Z =2)
=P(X =x|Z =2)

« Definition of X IL Y | Z in distribution form: P(X|Y,Z) = P(X|Z)
* Product rule still holds when every term is conditioned on Z=z:

— PX=xANY=y|Z=2z)=PX =x|Y =y,Z=2)XP({Y =y|Z =2z)
 Thus,ifX1Y|Z:

— PX=xANY=y|Z=2)=PX =x|Z=2z)XP(Y =vy|Z = 2)

— Indistribution form: P(X,Y|Z) = P(X|Z) X P(Y|Z)



Lecture Overview

* Recap: marginal and conditional independence

Bayesian Networks Introduction

« Hidden Markov Models



Bayesian Network Motivation

 We want a representation and reasoning system that is
based on conditional (and marginal) independence
— Compact yet expressive representation
— Efficient reasoning procedures

« BayesJ[ian] (Belief) Net[work]s are such a representation
— Named after Thomas Bayes (ca. 1702 -1761)
— Term coined in 1985 by Judea Pearl (1936 — )

— Their invention changed the primary focus of Al from logic to
probability!

Thomas Bayes Judea Pearl



Bayesian Networks: Intuition

« A graphical representation for a joint probability distribution
— Nodes are random variables
— Directed edges between nodes reflect dependence

Understood Smoking At
i Sensor
Material
Assignment
Grade

« Some informal examples:




Bayesian Networks: Definition

Definition (Bayesian Network)
A Bayesian network consists of
« Adirected acyclic graph (V,E) whose nodes are labeled
with random variables
« A domain for each random variable
* A conditional probability distribution for each variable V
- Specifies P(V|Parents(V))
- Parents(V) is the set of variables V' with (V',V) € E
For nodes V without predecessors, Parents(V) = {}

« The parents of variable V are those V directly depends on

« A Bayesian network is a compact representation of the
JPD: P(X,, ..., X)) =[[iY; P( X]|Pa(X) )
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Bayesian Networks: Definition

Definition (Bayesian Network)
A Bayesian network consists of
« Adirected acyclic graph (V,E) whose nodes are labeled
with random variables
« A domain for each random variable
* A conditional probability distribution for each variable V
- Specifies P(V|Parents(V))
- Parents(V) is the set of variables V' with (V',V) € E
« For nodes V without predecessors, Parents(V) = {}

* Discrete Bayesian networks:
— Domain of each variable is finite
— Conditional probability distribution is a conditional probability table

— We will assume this discrete case

« But everything we say about independence (marginal & conditional)
carries over to the continuous case 1




Example for BN construction: Fire Diagnosis

Bayesian networks are a compact representation of the
joint probability distribution (over all variables in the network)

Encoding the joint over X = {X,, ..., X.} as a Bayesian network:
1. Totally order the variables of interest: X,, ..., X,
2. Use chain rule with that ordering: P(X;, ..., X,) = [1i=; P(Xi|Xi.1,-.-,X)

3. Foreveryvariable X, find the smallest set of parents
Pa(X) < {X, ..., X4} such that X, 1L {X,, ..., X 4} \ Pa(X) | Pa(X))
«  X;is conditionally independent from its other ancestors given its parents

4. Then we can rewrite P(X, ..., X,) = 11i2; P( X|Pa(X)) )
 Thisis a compact representation of the joint probability distribution

12



Example for BN construction: Fire Diagnosis

5. Construct the Bayesian Net (BN)
* Nodes are the random variables
 Directed arc from each variable in Pa(X,) to X
« Conditional Probability Table (CPT)
for each variable X:: P(X.| Pa(X))

13



Example for BN construction: Fire Diagnosis

You want to diagnose whether there is a fire in a building

* You receive a noisy report about whether everyone is
leaving the building

 If everyone is leaving, this may have been caused by a fire
alarm

 If there is a fire alarm, it may have been caused by a fire or
by tampering

 If there is a fire, there may be smoke
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Example for BN construction: Fire Diagnosis

First you choose the variables. In this case, all are Boolean:
*Tampering is true when the alarm has been tampered with
Fire is true when there is a fire

*Alarm is true when there is an alarm

*Smoke is true when there is smoke

*Leaving is true if there are lots of people leaving the building

*Report is true if the sensor reports that lots of people are
leaving the building

Let’s construct the Bayesian network for this (whiteboard)

— First, you choose a total ordering of the variables, let’s say:
Fire; Tampering; Alarm; Smoke; Leaving; Report.

15



Example for BN construction: Fire Diagnosis

» Using the total ordering of variables:

Let's say Fire; Tampering; Alarm; Smoke; Leaving; Report.

* Now choose the parents for each variable by evaluating
conditional independencies

Fire is the first variable in the ordering, X,. It does not have parents.

Tampering independent of fire (learning that one is true would not
change your beliefs about the probability of the other)

Alarm depends on both Fire and Tampering: it could be caused by
either or both

Smoke is caused by Fire, and so is independent of Tampering and
Alarm given whether there is a Fire

Leaving is caused by Alarm, and thus is independent of the other
variables given Alarm

Report is caused by Leaving, and thus is independent of the other
variables given Leaving

16



Example for BN construction: Fire Diagnosis

» This results in the following Bayesian network

« P(Tampering, Fire, Alarm, Smoke, Leaving, Report)
= P(Tampering) x P(Fire) x P(Alarm|Tampering,Fire)
X P(Smoke|Fire) x P(Leaving|Alarm) X P(Report|Leaving)
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Example for BN construction: Fire Diagnosis

« We are not done yet: must specify the Conditional Probability
Table (CPT) for each variable. All variables are Boolean.

 How many probabilities do we need to specify for this
Bayesian network?

— This time taking into account that probability tables have to sum to 1

B 12 20 261
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Example for BN construction: Fire Diagnosis

« We are not done yet: must specify the Conditional Probability
Table (CPT) for each variable. All variables are Boolean.

 How many probabilities do we need to specify for this
Bayesian network?
« P(Tampering): 1 probability
« P(Alarm|Tampering, Fire): 4 (independent)
1 probability for each of the 4 instantiations of the parents

19
e Intotal: 1+1+4+2+2+2 = 12 (compared to 2° -1= 63 for full JPD!)



Example for BN construction: Fire Diagnosis

P(Tampering=t) | P(Tampering=f)
0.02 0.98

We don’t need to
store P(Tampering=f)
since probabilities sum to 1



Example for BN construction: Fire Diagnosis

P(Tampering=t)

0.02

Tampering T | Fire F | P(Alarm=t/T,F)

P(Alarm=fIT F)

t t 0.5 0.5
t f 0.85 0.15
f t 0.99 0.01
f f 0.0001 0.9999

P(Fire=t)
0.01

We don’t need to store
P(Alarm=f|T,F) since
probabilities sum to 1

Each row of this table is a conditional probability distribution
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Example for BN construction: Fire Diagnosis

P(Tampering=t)

0.02

Tampering T | Fire F | P(Alarm=t/T,F)

t

0.5

0.85

0.99

— | e~ | = | ~

t
f
f

0.0001

P(Fire=t)
0.01

We don’t need to store
P(Alarm=f|T,F) since
probabilities sum to 1
Each row of this table is a
conditional probability
distribution
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Example for BN construction: Fire Diagnosis

P(Tampering=t) P(Fire=t)
0.02 0.01
Tampering T | Fire F | P(Alarm=tIT,F) @ @ ~ | Fire F | P(Smoke=t IF)
t t 0.5 t 0.9
t f 0.85 f 0.01
f t 0.99 .
f f 0.0001 Alarm | P(Leaving=tIA)
t 0.88
~
Leaving | P(Report=tiA) f 0.001
t 0.75
f 0.01

P(Tampering=t, Fire=f, Alarm=t, Smoke=f, Leaving=t, Report=t)
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Example for BN construction: Fire Diagnosis

P(Tampering=t)

0.02
Tampering T | Fire F | P(Alarm=tIT)F)
t t 0.5
t f 0.85
f t 0.99
f f 0.0001
Leaving | P(Report=tIA)

f

0.01

P(Smoke=t IF)

0.9

0.01

P(Leaving=tIA)

0.001

P(Tampering=t, Fire=f, Alarm=t, Smoke=f,
= P(Tampering=t) x P(Fire=f) x P(Alarm=t|Tampering=t,Fire=f)

X P(Smoke=f|Fire=f) x

X

, )

24

=0.02 x(1-0.01) x 0.85 x (1-0.01) x X =0.126




What if we use a different ordering?

* Important for assignment 4, question 4:

« Say, we use the following order:
— Leaving; Tampering; Report; Smoke; Alarm; Fire.

Leaving

« We end up with a completely different network structure!
« Which of the two structures is better (think computationally)?

The previous structure

25



What if we use a different ordering?

* Important for assignment 4, question 4:

« Say, we use the following order:
— Leaving; Tampering; Report; Smoke; Alarm; Fire.

Leaving

« We end up with a completely different network structure!

« Which of the two structures is better (think computationally)?
— In the last network, we had to specify 12 probabilities
— Here?1+2+2+2+8+8=23
— The causal structure typically leads to the most compact network
« Compactness typically enables more efficient reasoning 26



Are there wrong network structures?

* Important for assignment 4, question 4

« Some variable orderings yield more compact, some less
compact structures

— Compact ones are better
— But all representations resulting from this process are correct

— One extreme: the fully connected network is always correct but
rarely the best choice

 How can a network structure be wrong?
— If it misses directed edges that are required
— E.g. an edge is missing below: Fire/u_/AIarm | {Tampering, Smoke}

Leaving
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Lecture Overview

* Recap: marginal and conditional independence

« Bayesian Networks Introduction

Hidden Markov Models
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Markov Chains

A Markov chain is a special kind of belief network:

X; represents a state at time t.
Its dependence structure yields: P(X,|X,, ..., X.;) = P(X{Xi4)

— This conditional probability distribution is called the
state transition probability

— Intuitively X; conveys all of the information about the history that can
affect the future states:
“The past is independent of the future given the present.”

JPD of a Markov Chain: P(X,,...,X7) = P(Xg) X II[_, P(X{X4)

29



Stationary Markov Chains

« A stationary Markov chain is when

— All state transition probability tables are the same
— l.e, forallt>0,t >0: P(X|X.)=P(X¢ | Xy 4)

« We only need to specify P(X,) and P(X; |X,).
— Simple model, easy to specify
— Often the natural model
— The network can extend indefinitely in time

« Example: Drunkard’s walk, robot random motion

30



Hidden Markov Models (HMMs)

« A Hidden Markov Model (HMM) is a Markov chain plus a
noisy observation about the state at each time step:

« Same conditional probability tables at each time step

— The state transition probability P(Xi|X:.1)
+ also called the system dynamics

— The observation probability P(OyX;)
 also called the sensor model

+ JPD of an HMM: P(X,, ..., X5, O;, ..., O;)
= P(Xo) X M=y P(X{X¢.1) x [T{=1 P(O{X;)
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Example HMM: Robot Tracking

* Robot tracking as an HMM:

* Robot is moving at random: P(Pos;|Pos, 4)
« Sensor observations of the current state P(O,|Pos;)

32



Filtering in Hidden Markov Models (HMMs)

* Filtering problem in HMMs:
at time step t, we would like to know P(X{|O,, ..., O,)

« (Can derive simple update equations:
— Compute P(X{|Oy, ..., O,) if we already know P(X_,|Oy, ..., O4)

33



Learning Goals For Today's Class

Build a Bayesian Network for a given domain

Compute the representational savings in terms of number
of probabilities required

Understand basics of Markov Chains and Hidden Markov
Models

Assignment 4 available on Connect

— Due Wednesday, April 4.
— You should now be able to solve questions 1, 2, 3 and 4. Do them!

— Material for question 5 (variable elimination): later this week
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