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Announcements 
•  Assignment 4 posted today. Due Wed. April 3. 
•  Exercise 10 posted today. Marginal and Conditional 

Independence, AIspace Belief and Decision App. 
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Lecture Overview 

•  Recap 
–  Conditioning & Inference by Enumeration 
–  Bayes Rule & The Chain Rule 

•  Independence 
–  Marginal Independence 
–  Conditional Independence 
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Recap: Conditioning 

•  Conditioning: revise beliefs based on new observations 

•  We need to integrate two sources of knowledge 
–   Prior probability distribution P(X): all background knowledge  
–   New evidence e 

•  Combine the two to form a posterior probability distribution 
–   The conditional probability P(h|e) 
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Recap: Example for conditioning 
•  You have a prior for the joint distribution of weather and 

temperature, and the marginal distribution of temperature 

•  Now, you look outside and see that it’s sunny 
–  You are certain that you’re in world w1, w2, or w3  
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Possible 
world!

Weather! Temperature! µ(w)!

w1 sunny hot" 0.10"
w2 sunny mild" 0.20"
w3 sunny cold" 0.10"
w4 cloudy hot" 0.05"
w5 cloudy mild" 0.35"
w6 cloudy cold" 0.20"

T! P(T|W=sunny)!
hot ?"
mild ?"
cold ?"



Recap: Example for conditioning 
•  You have a prior for the joint distribution of weather and 

temperature, and the marginal distribution of temperature 

•  Now, you look outside and see that it’s sunny 
–  You are certain that you’re in world w1, w2, or w3  
–  To get the conditional probability, you simply renormalize to sum to 1 
–  0.10+0.20+0.10=0.40 
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Possible 
world!

Weather! Temperature! µ(w)!

w1 sunny hot" 0.10"
w2 sunny mild" 0.20"
w3 sunny cold" 0.10"
w4 cloudy hot" 0.05"
w5 cloudy mild" 0.35"
w6 cloudy cold" 0.20"

T! P(T|W=sunny)!
hot 0.10/0.40=0.25"
mild 0.20/0.40=0.50"
cold 0.10/0.40=0.25"



Recap: Conditional probability 
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Possible 
world!

Weather! Temperature! µ(w)!

w1 sunny hot" 0.10"
w2 sunny mild" 0.20"
w3 sunny cold" 0.10"
w4 cloudy hot" 0.05"
w5 cloudy mild" 0.35"
w6 cloudy cold" 0.20"

T! P(T|W=sunny)!
hot 0.10/0.40=0.25"
mild 0.20/0.40=0.50"
cold 0.10/0.40=0.25"



Recap: Inference by Enumeration 
•  Great, we can compute arbitrary probabilities now! 

•  Given  
–  Prior joint probability distribution (JPD) on set of variables X 
–  specific values e for the evidence variables E (subset of X) 

•  We want to compute 
–  posterior joint distribution of query variables Y (a subset of X)  

given evidence e 

•  Step 1: Condition to get distribution P(X|e) 
•  Step 2: Marginalize to get distribution P(Y|e) 

•  Generally applicable, but memory-heavy and slow 
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Recap: Bayes rule and Chain Rule 
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Lecture Overview 

•  Recap 
–  Conditioning & Inference by Enumeration 
–  Bayes Rule & The Chain Rule 

•  Independence 
–  Marginal Independence 
–  Conditional Independence 

10 



Marginal Independence: example 
•  Some variables are independent: 

–  Knowing the value of one does not 
tell you anything about the other 

–  Example: variables W (weather) and 
R (result of a die throw) 

•  Let’s compare P(W) vs. P(W | R = 6 ) 

•  What is P(W=cloudy) ? 

11 

Weather W! Result R! P(W,R)!

sunny 1" 0.066"

sunny 2" 0.066"

sunny 3" 0.066"

sunny 4" 0.066"

sunny 5" 0.066"

sunny 6" 0.066"

cloudy 1" 0.1"

cloudy 2" 0.1"

cloudy 3" 0.1"

cloudy 4" 0.1"

cloudy 5" 0.1"

cloudy 6" 0.1"

0.1 0.066 0.4 0.6 



Marginal Independence: example 
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Weather W! Result R! P(W,R)!

sunny 1" 0.066"

sunny 2" 0.066"

sunny 3" 0.066"

sunny 4" 0.066"

sunny 5" 0.066"

sunny 6" 0.066"

cloudy 1" 0.1"

cloudy 2" 0.1"

cloudy 3" 0.1"

cloudy 4" 0.1"

cloudy 5" 0.1"

cloudy 6" 0.1"

•  Some variables are independent: 
–  Knowing the value of one does not 

tell you anything about the other 
–  Example: variables W (weather) and 

R (result of a die throw) 
•  Let’s compare P(W) vs. P(W | R = 6 ) 

•  What is P(W=cloudy) ? 
–  P(W=cloudy) =  
Σr∈dom(R)  P(W=cloudy, R = r)  
 

= 0.1+0.1+0.1+0.1+0.1+0.1 = 0.6 

•  What is P(W=cloudy|R=6) ? 

0.1/0.166 0.066/0.166 

0.066+0.1 0.1/0.6 



Marginal Independence: example 

Weather W! Result R! P(W,R)!

sunny 1" 0.066"

sunny 2" 0.066"

sunny 3" 0.066"

sunny 4" 0.066"

sunny 5" 0.066"

sunny 6" 0.066"

cloudy 1" 0.1"

cloudy 2" 0.1"

cloudy 3" 0.1"

cloudy 4" 0.1"

cloudy 5" 0.1"

cloudy 6" 0.1"
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Marginal Independence: example 

Weather W! Result R! P(W,R)!

sunny 1" 0.066"

sunny 2" 0.066"

sunny 3" 0.066"

sunny 4" 0.066"

sunny 5" 0.066"

sunny 6" 0.066"

cloudy 1" 0.1"

cloudy 2" 0.1"

cloudy 3" 0.1"

cloudy 4" 0.1"

cloudy 5" 0.1"

cloudy 6" 0.1"

14 



Marginal Independence: example 
•  Some variables are independent: 

–  Knowing the value of one does not  
tell you anything about the other 

–  Example: variables W (weather) and  
R (result of a die throw) 

•  Let’s compare P(W) vs. P(W | R = 6 ) 
•  The two distributions are identical 
•  Knowing the result of the die does not 

change our belief in the weather 

 

15 

Weather W! Result R! P(W,R)!

sunny 1" 0.066"

sunny 2" 0.066"

sunny 3" 0.066"

sunny 4" 0.066"

sunny 5" 0.066"

sunny 6" 0.066"

cloudy 1" 0.1"

cloudy 2" 0.1"

cloudy 3" 0.1"

cloudy 4" 0.1"

cloudy 5" 0.1"

cloudy 6" 0.1"

Weather W! P(W)!

sunny 0.4"

cloudy 0.6"

Weather W! P(W|R=6)!

sunny 0.066/0.166=0.4"

cloudy 0.1/0.166=0.6"



Marginal Independence 

•  Intuitively: if X and Y are marginally independent, then 
–  learning that Y=y does not change your belief in X 
–  and this is true for all values y that Y could take 

•  For example, weather is marginally independent  
of the result of a dice throw 16 



Examples for marginal independence 

•  Results C1 and C2 of  
two tosses of a fair coin 

•  Are C1 and C2  
marginally independent? 
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C1! C2! P(C1 , C2)!

heads heads 0.25"

heads tails 0.25"

tails heads 0.25"

tails tails 0.25"no yes 



Examples for marginal independence 

•  Results C1 and C2 of  
two tosses of a fair coin 

•  Are C1 and C2  
marginally independent? 
–  Yes. All probabilities in  

the definition above are 0.5. 
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C1! C2! P(C1 , C2)!

heads heads 0.25"

heads tails 0.25"

tails heads 0.25"

tails tails 0.25"



Examples for marginal independence 

•  Are Weather and Temperature 
marginally independent? 

Weather W! Temperature T! P(W,T)!
sunny hot" 0.10"
sunny mild" 0.20"
sunny cold" 0.10"
cloudy hot" 0.05"
cloudy mild" 0.35"
cloudy cold" 0.20"

no yes 



Examples for marginal independence 

•  Are Weather and Temperature 
marginally independent? 
–  No. We saw before that knowing 

the Weather changes our 
belief about the Temperature 

–  E.g. P(hot) = 0.10+0.05=0.15 
P(hot|cloudy) = 0.05/0.6 ≅ 0.083 

Weather W! Temperature T! P(W,T)!
sunny hot" 0.10"
sunny mild" 0.20"
sunny cold" 0.10"
cloudy hot" 0.05"
cloudy mild" 0.35"
cloudy cold" 0.20"



Examples for marginal independence 

•  Intuitively (without numbers): 
–  Boolean random variable “Canucks win the Stanley Cup this season” 
–  Numerical random variable “Canucks’ revenue last season” ? 
–  Are the two marginally independent?  
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no yes 



Examples for marginal independence 

•  Intuitively (without numbers): 
–  Boolean random variable “Canucks win the Stanley Cup this season” 
–  Numerical random variable “Canucks’ revenue last season” ? 
–  Are the two marginally independent?  

•  No! Without revenue they cannot afford to keep their best players 
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Exploiting marginal independence 

23 



Exploiting marginal independence 
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2n 2n 2+n n2 



Exploiting marginal independence 
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2n 2n 2+n n2 



Exploiting marginal independence 
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Exponentially fewer than the JPD! 



Lecture Overview 

•  Recap 
–  Conditioning & Inference by Enumeration 
–  Bayes Rule & The Chain Rule 

•  Independence 
–  Marginal Independence 
–  Conditional Independence 
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Follow-up Example 

•  Intuitively (without numbers): 
–  Boolean random variable “Canucks win the Stanley Cup this season” 
–  Numerical random variable “Canucks’ revenue last season” ? 
–  Are the two marginally independent?  

•  No! Without revenue they cannot afford to keep their best players 

–  But they are conditionally independent given the Canucks line-up 
•  Once we know who is playing then learning their revenue last year 

won’t change our belief in their chances 
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Conditional Independence 
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•  Intuitively: if X and Y are conditionally independent given Z, 
then 
–  learning that Y=y does not change your belief in X  

when we already know Z=z 
–  and this is true for all values y that Y could take  

and all values z that Z could take 



Example for Conditional Independence 

•  Whether light l1 is lit is conditionally independent from the 
position of switch s2 given whether there is power in wire w0 

•  Once we know Power(w0) learning values for any other 
variable will not change our beliefs about Lit(l1) 
–  I.e., Lit(l1) is independent of any other variable given Power(w0) 
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Example: conditionally but not marginally independent 

•  ExamGrade and AssignmentGrade are not marginally 
independent 
–  Students who do well on one typically do well on the other 

•  But conditional on UnderstoodMaterial, they are 
independent 
–  Variable UnderstoodMaterial is a common cause of  

variables ExamGrade and AssignmentGrade 
–  UnderstoodMaterial shields any information we could get from 

AssignmentGrade 
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Understood
Material 

Assignment 
Grade 

Exam 
Grade 



Example: marginally but not conditionally independent 

•  Two variables can be marginally 
but not conditionally independent 
–  “Smoking At Sensor” S: resident smokes cigarette next to fire sensor 
–  “Fire” F: there is a fire somewhere in the building 
–  “Alarm” A: the fire alarm rings 
–  S and F are marginally independent 

•  Learning S=true or S=false does not change your belief in F 
–  But they are not conditionally independent given alarm 

•  If the alarm rings and you learn S=true your belief in F decreases 
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Alarm 

Smoking At 
Sensor 

Fire 



Conditional vs. Marginal Independence 
•  Two variables can be  

–  Both marginally and conditionally independent 
•  CanucksWinStanleyCup and Lit(l1) 
•  CanucksWinStanleyCup and Lit(l1) given Power(w0) 
 

–  Neither marginally nor conditionally independent 
•  Temperature and Cloudiness 
•  Temperature and Cloudiness given Wind 

–  Conditionally but not marginally independent 
•  ExamGrade and AssignmentGrade 
•  ExamGrade and AssignmentGrade given UnderstoodMaterial 

–  Marginally but not conditionally independent 
•  SmokingAtSensor and Fire 
•  SmokingAtSensor and Fire given Alarm 
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Exploiting Conditional Independence 
•  Example 1: Boolean variables A,B,C 

–  C is conditionally independent of A given B 
–  We can then rewrite P(C | A,B) as P(C|B) 



Exploiting Conditional Independence 
•  Example 2: Boolean variables A,B,C,D 

–  D is conditionally independent of A given C 
–  D is conditionally independent of B given C 
–  We can then rewrite P(D | A,B,C) as P(D|B,C) 
–  And can further rewrite P(D|B,C) as P(D|C) 



Exploiting Conditional Independence 
•  Recall the chain rule 
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•  Define and use marginal independence 
•  Define and use conditional independence 

•  Assignment 4 available on Connect 
–  Due in 2.5 weeks 
–  Do the questions early  

•  Right after the material for the question has been covered in class 
•  This will help you stay on track 
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Learning Goals For Today’s Class 


