
Logic: Top-down proof procedure,
Datalog, Big Picture

Alan Mackworth

UBC CS 322 – Logic 4

March 8, 2013

Textbook §5.2, §12.3

Lecture Overview

•  Recap: Bottom-up proof procedure is sound and complete

•  Top-down Proof Procedure

•  Datalog

•  Logics: Big Picture

2

Logical consequence and BU proofs

Example: KB = {h ← a, a, a ← c}. Then KB ⊧ ?

Definition (logical consequence)
If KB is a set of clauses and g is a conjunction of atoms,
g is a logical consequence of KB, written KB ⊧ g,

if g is true in every model of KB
a c h h ← a a a ← c Model of KB

I1 F F F T F T
I2 F F T T F T
I3 F T F T F F
I4 F T T T F F
I5 T F F F T T
I6 T F T T T T
I7 T T F F T T
I8 T T T T T T

no
no
no
no
no

no
yes

yes

Which atoms
are entailed?

3

Logical consequence and BU proofs

Example: KB = {h ← a, a, a ← c}. Then KB ⊧ ?

Definition (logical consequence)
If KB is a set of clauses and g is a conjunction of atoms,
g is a logical consequence of KB, written KB ⊧ g,

if g is true in every model of KB
a c h h ← a a a ← c Model of KB

I1 F F F T F T
I2 F F T T F T
I3 F T F T F F
I4 F T T T F F
I5 T F F F T T
I6 T F T T T T
I7 T T F F T T
I8 T T T T T T

no
no
no
no
no

no
yes

yes

Which atoms
are entailed?

KB ⊧ a and
KB ⊧ h

4

What does BU derive for the KB above?

Logical consequence and BU proofs

Example: KB = {h ← a, a, a ← c}. Then KB ⊧ a and KB ⊧ h.

C := {};
repeat

 select clause h ← b1 ∧ … ∧ bm in KB
 such that bi ∈ C for all i, and h ∉ C;

 C := C ∪ {h}
until no more clauses can be selected. KB ⊦BU g if and only if g ∈ C

Definition (logical consequence)
If KB is a set of clauses and g is a conjunction of atoms,
g is a logical consequence of KB, written KB ⊧ g,

if g is true in every model of KB

BU proof procedure

5

What does BU derive for the KB above?
Trace: {a}, {a,h}. Thus KB ⊦BU a and KB ⊦BU h.
Exactly the logical consequences!

Logical consequence and BU proofs

Example: KB = {h ← a, a, a ← c}. Then KB ⊧ a and KB ⊧ h.

C := {};
repeat

 select clause h ← b1 ∧ … ∧ bm in KB
 such that bi ∈ C for all i, and h ∉ C;

 C := C ∪ {h}
until no more clauses can be selected. KB ⊦BU g if and only if g ∈ C

Definition (logical consequence)
If KB is a set of clauses and g is a conjunction of atoms,
g is a logical consequence of KB, written KB ⊧ g,

if g is true in every model of KB

BU proof procedure

6

Summary for bottom-up proof procedure BU

•  Proved last time
–  BU is sound:

it derives only atoms that logically follow from KB

–  BU is complete:
it derives all atoms that logically follow from KB

•  Together:
it derives exactly the atoms that logically follow from KB !
–  That’s why the results for ⊧ and ⊦BU matched for the example above

•  And, it is efficient!
–  Outer loop linear in the number of clauses in KB

•  Each clause is used maximally once by BU

7

Learning Goals Up To Here

•  PDCL syntax & semantics
-  Verify whether a logical statement belongs to the language of

propositional definite clauses
-  Verify whether an interpretation is a model of a PDCL KB.
-  Verify when a conjunction of atoms is a logical consequence of a

knowledge base

•  Bottom-up proof procedure
•  Define/read/write/trace/debug the Bottom Up (BU) proof procedure
•  Prove that the BU proof procedure is sound and complete

8

Lecture Overview

•  Recap: Bottom-up proof procedure is sound and complete

•  Top-down Proof Procedure

•  Datalog

•  Logics: Big Picture

9

Bottom-up vs. Top-down

KB

g is proved if g ∈ C

When does BU look at the query g?

Bottom-up

At the beginning

In every loop iteration Never

At the end

C

10

11

Bottom-up vs. Top-down
•  Key Idea of top-down: search backward from a query g

to determine if it can be derived from KB.

KB C

g is proved if g ∈ C

When does BU look at the query g?
•  Never
•  It derives the same C
 regardless of the query

KB answer

Query g
Bottom-up Top-down

TD performs a backward search
starting at g

We’ll see how g is proved

Top-down Ground Proof Procedure
Idea: search backward from a query

An answer clause is of the form: yes ← a1 ∧ … ∧ am
where a1, …, am are atoms

We express the query as an answer clause
–  E.g. query q1 ∧ … ∧ qk is expressed as yes ← q1 ∧ … ∧ qk

Basic operation: SLD Resolution of an answer clause

 yes ← c1 ∧ … ∧ ci-1 ∧ ci ∧ ci+1 … ∧ cm
 on an atom ci with another clause

 ci ← b1 ∧ … ∧ bp
 yields the clause
 yes ← c1 ∧ … ∧ ci-1 ∧ b1 ∧ … ∧ bp ∧ ci+1 … ∧ cm

12

Rules of derivation in top-down and bottom-up

Top-down:
SLD Resolution

13

yes ← c1 ∧ … ∧ ci-1 ∧ ci ∧ ci+1 … ∧ cm ci ← b1 ∧ … ∧ bp
yes ← c1 ∧ … ∧ ci-1 ∧ b1 ∧ … ∧ bp ∧ ci+1 … ∧ cm

Bottom-up:
Generalized modus ponens

h ← b1 ∧ … ∧ bm b1 ∧ … ∧ bm
h

γ1: yes ← e ∧ f

γ3: yes ←

Example for (successful) SLD derivation

γ0: yes ← a

γ2: yes ← e

1

2

3

14

a← b ∧ c. a ← e ∧ f. b← f ∧ k.
c ← e. d ← k e.
f ← j ∧ e. f . j ← c.

Query: ?a

Done. The question was
“Can we derive a?”

The answer is “Yes, we can”

SLD Derivations
•  An answer is an answer clause with m = 0.
 yes ← .

•  A successful derivation from KB of query ?q1 ∧ ... ∧ qk
 is a sequence of answer clauses γ0, γ1 , .., γn such that

§  γ0 is the answer clause yes ← q1 ∧ ... ∧ qk.

§  γi is obtained by resolving γi-1with a clause in KB, and

§  γn is an answer yes ←

•  An unsuccessful derivation from KB of query ?q1 ∧ ... ∧ qk

§  We get to something like yes ← b1 ∧ ... ∧ bk, where
there is no clause in KB with any of the bi as its head

15

To solve the query ? q1 ∧ ... ∧ qk :

ac:= yes ← body, where body is q1 ∧ ... ∧ qk
repeat

select qi ∈ body;
choose clause C ∈ KB, C is qi ← bc;
replace qi in body by bc

until ac is an answer (fail if no clause with qi as head)

select: any choice will work

 (“Don’t care non-determinism”)
choose: truly non-deterministic, must pick the right one

(“Don’t know non-determinism”)

Top-down Proof Procedure for PDCL

16

γ1: yes ← e ∧ f

γ3: yes ← k

Example for failing SLD derivation

γ0: yes ← a

γ2: yes ← e ∧ k

1

2

3

17

There is no rule
with k as its head,
thus … fail

“Can we derive a?”

“This time we failed”

a← b ∧ c. a ← e ∧ f. b← f ∧ k.
c ← e. d ← k e.
f ← k. f . j ← c.

Query: ?a

Correspondence between BU and TD proofs
If the following is a top-down (TD) derivation in a given KB,

what would be the bottom-up (BU) derivation of the same
query?

 TD derivation

 yes ← a.
 yes ← b ∧ f.
 yes ← b ∧ g ∧ h.
 yes ← c ∧ d ∧ g ∧ h.
 yes ← d ∧ g ∧ h.
 yes ← g ∧ h.
 yes ← h.
 yes ← .

 18

BU derivation
{}

Correspondence between BU and TD proofs
If the following is a top-down (TD) derivation in a given KB,

what would be the bottom-up (BU) derivation of the same
query?

 TD derivation

 yes ← a.
 yes ← b ∧ f.
 yes ← b ∧ g ∧ h.
 yes ← c ∧ d ∧ g ∧ h.
 yes ← d ∧ g ∧ h.
 yes ← g ∧ h.
 yes ← h.
 yes ← .

 19

BU derivation
{}
{h}
{g,h}
{d,g,h}
{c,d,g,h}
{b,c,d,g,h}
{b,c,d,f,g,h}
{a,b,c,d,f,g,h}

Is the Top-down procedure sound and complete?

•  Yes, since there is a 1:1 correspondence between top-
down and bottom-up proofs
–  The two methods derive exactly the same atoms (if the SLD

resolution picks the successful derivations)

20

Search Graph for Top-down proofs

a ← b ∧ c. a ← g.
a ← h. b ← j.
b ← k. d ← m.
d ← p. f ← m.
f ← p. g ← m.
g ← f. k ← m.
h ←m. p.

Query: ?a ∧ d.

21

Breadth-first search Depth-first-search

What kind of search is SLD resolution?

Search Graph for Top-down proofs

a ← b ∧ c. a ← g.
a ← h. b ← j.
b ← k. d ← m.
d ← p. f ← m.
f ← p. g ← m.
g ← f. k ← m.
h ←m. p.

Query: ?a ∧ d.

22

What kind of search is SLD resolution?

It’s a depth-first-search. Failing resolutions are

paths where the search has to backtrack.

Search Graph for Top-down proofs

a ← b ∧ c. a ← g.
a ← h. b ← j.
b ← k. d ← m.
d ← p. f ← m.
f ← p. g ← m.
g ← f. k ← m.
h ←m. p.

Query: ?a ∧ d.

23

Yes No

Q: Can we use heuristics?
A: Yes! E.g. number of atoms in the answer clause

 Admissible?

Search Graph for Top-down proofs

a ← b ∧ c. a ← g.
a ← h. b ← j.
b ← k. d ← m.
d ← p. f ← m.
f ← p. g ← m.
g ← f. k ← m.
h ←m. p.

Query: ?a ∧ d.

24

Q: Can we use heuristics?
A: Yes! E.g. number of atoms in the answer

clause
 Admissible? Yes, you need at least these many SLD steps to

get an answer

•  Constraint Satisfaction (Problems):
–  State: assignments of values to a subset of the variables
–  Successor function: assign values to a “free” variable
–  Goal test: set of constraints
–  Solution: possible world that satisfies the constraints
–  Heuristic function: none (all solutions at the same distance from start)

•  Planning :
–  State: full assignment of values to features
–  Successor function: states reachable by applying valid actions
–  Goal test: partial assignment of values to features
–  Solution: a sequence of actions
–  Heuristic function: relaxed problem! E.g. “ignore delete lists”

•  Inference (Top-down/SLD resolution)
–  State: answer clause of the form yes ← q1 ∧ ... ∧ qk
–  Successor function: all states resulting from substituting first

atom a with b1 ∧ … ∧ bm if there is a clause a ← b1 ∧ … ∧ bm
–  Goal test: is the answer clause empty (i.e. yes ←) ?
–  Solution: the proof, i.e. the sequence of SLD resolutions
–  Heuristic function: number of atoms in the query clause

Inference as Standard Search

25

Lecture Overview

•  Recap: Bottom-up proof procedure is sound and complete

•  Top-down Proof Procedure

•  Datalog

•  Logics: Big Picture

26

Representation and Reasoning in complex domains

•  Expressing knowledge with
propositions can be quite
limiting

up_s2
up_s3
ok_cb1
ok_cb2
live_w1
connected_w1_w2

up(s2)
up(s3)
ok(cb1)
ok(cb2)
live(w1)
connected(w1 , w2)

•  It is often natural to consider
individuals and their
properties

E.g. there is no notion that
w1 is the same in live_w1
and in connected_w1_w2

Now there is a notion that
w1 is the same in live(w1)
and in connected(w1, w2)

Datalog: What do we gain?

•  An extension of propositional definite clause (PDC) logic
–  We now have variables
–  We now have relationships between variables

–  We can express knowledge that holds for a set of individuals,
writing more powerful clauses by introducing variables, such as:

–  We can ask generic queries,

•  E.g. “which wires are connected to w1?“

28

live(W) ← wire(W) ∧ connected_to(W,W1)
 ∧ wire(W1) ∧ live(W1).

? connected_to(W, w1)

Datalog: a relational rule language

A variable is a symbol starting with an upper case letter

A constant is a symbol starting with lower-case letter or a
sequence of digits.

A predicate symbol is a symbol starting with a lower-case
letter.

A term is either a variable or a constant.

Datalog expands the syntax of PDCL….

Examples: X, Y

Examples: alan, w1

Examples: live, connected, part-of, in

Examples: X, Y, alan, w1

Datalog Syntax (cont’d)
An atom is a symbol of the form p or p(t1 …. tn) where p is a

predicate symbol and ti are terms

A definite clause is either an atom (a fact) or of the form:
 h ← b1 ∧… ∧ bm
where h and the bi are atoms (Read this as ``h if b.'')

A knowledge base is a set of definite clauses

Examples: sunny, in(alan,X)

Example: in(X,Z) ← in(X,Y) ∧ part-of(Y,Z)

Datalog Semantics
•  Role of semantics is still to connect symbols and sentences in

the language with the target domain. Main difference:
•  need to create correspondence both between terms and

individuals, as well as between predicate symbols and
relations

We won’t cover the formal
definition of Datalog
semantics, but if you are
interested see 12.3.1 and
12.3.2 in textbook

Datalog: Top Down Proof Procedure

•  Extension of Top-Down procedure for PDCL.
How do we deal with variables?
•  Idea:

-  Find clauses with heads that match the query
-  Substitute variable in the clause with the matching constant

•  Example:

•  We will not cover the formal details of this process, called unification.
See P&M Section 12.4.2, p. 511 for the details.

in(alan, r123).
part_of(r123,cs_building).
in(X,Y) ← part_of(Z,Y) & in(X,Z).

Query: yes ← in(alan, cs_building).

yes ← part_of(Z,cs_building), in(alan, Z).

in(X,Y) ← part_of(Z,Y) & in(X,Z).
with Y = cs_building

Example proof of a Datalog query
in(alan, r123).
part_of(r123,cs_building).
in(X,Y) ← part_of(Z,Y) & in(X,Z).

Query: yes ← in(alan, cs_building).

yes ← part_of(Z,cs_building), in(alan, Z).

yes ← in(alan, r123).

yes ← part_of(Z, r123), in(alan, Z).

yes ←.

Using clause: in(X,Y) ←
 part_of(Z,Y) & in(X,Z),
 with Y = cs_building

Using clause:
 part_of(r123,cs_building)
 with Z = r123

Using clause:
 in(alan, r123).

Using clause: in(X,Y) ←
 part_of(Z,Y) & in(X,Z).
 With Z = alan

fail

No clause with
matching head:
part_of(Z,r123).

Tracing Datalog proofs in AIspace

•  You can trace the example from the last slide in the
AIspace Deduction Applet at http://aispace.org/deduction/
using file http://cs.ubc.ca/~mack/CS322/in-part-of.pl

•  Question 4 of assignment 3 asks you to use this applet

34

35

Datalog: queries with variables

What would the answer(s) be?

Query: in(alan, X1).

in(alan, r123).
part_of(r123,cs_building).
in(X,Y) ← part_of(Z,Y) & in(X,Z).

 yes(X1) ← in(alan, X1).

36

Datalog: queries with variables

What would the answer(s) be?
yes(r123).
yes(cs_building).

Query: in(alan, X1).

You can trace the SLD derivation for this query
in the AIspace Deduction Applet, using file
http://cs.ubc.ca/~mack/CS322/in-part-of.pl

in(alan, r123).
part_of(r123,cs_building).
in(X,Y) ← part_of(Z,Y) & in(X,Z).

 yes(X1) ← in(alan, X1).

One important Datalog detail

•  In its SLD resolution proof, Datalog always chooses the
first clause with a matching head it finds in KB

•  What does that mean for recursive function definitions?
-  The clause(s) defining your base case(s) have to appear first in KB
-  Otherwise, you can get infinite recursions
-  This is similar to recursion in imperative and functional

programming languages

•  Datalog is a subset of Prolog (Programming in Logic)

37

Learning Goals For Logic
•  PDCL syntax & semantics

-  Verify whether a logical statement belongs to the language of
propositional definite clauses

-  Verify whether an interpretation is a model of a PDCL KB.
-  Verify when a conjunction of atoms is a logical consequence of a KB

•  Bottom-up proof procedure
-  Define/read/write/trace/debug the Bottom Up (BU) proof procedure
-  Prove that the BU proof procedure is sound and complete

•  Top-down proof procedure
-  Define/read/write/trace/debug the Top-down (SLD) proof procedure

(as a search problem)

•  Datalog
-  Represent simple domains in Datalog
-  Apply the Top-down proof procedure in Datalog

38

Lecture Overview

•  Recap: Bottom-up proof procedure is sound and complete

•  Top-down Proof Procedure

•  Datalog

•  Logics: Big Picture

39

40

Logics: Big picture

Propositional
Logics

First-Order
Logics

Propositional Definite
Clause Logics

Semantics and Proof
Theory

Description
Logics

Cognitive Architectures

Video Games

Hardware Verification

Product Configuration
Ontologies

Semantic Web

Information
Extraction

Summarization

Production Systems

Tutoring Systems

Satisfiability Testing
(SAT)

Software Verification

PDCL
Soundness &
Completeness

Datalog From
CSP
module

Logics: Big picture

•  We only covered rather simple logics

–  There are much more powerful representation and reasoning
systems based on logics e.g. full first order logic (with negation,
disjunction and function symbols), second-order logics, non-
monotonic logics, modal logics, …

•  There are many important applications of logic
–  For example, software agents roaming the web on our behalf

•  Based on a more structured representation: the semantic web
•  This is just one example for how logics are used

41

Example problem: automated travel agent

•  Examples for typical queries
–  How much is a typical flight to Mexico for a given date?
–  What’s the cheapest vacation package to some place in the

Caribbean in a given week?
•  Plus, the hotel should have a white sandy beach and scuba diving

•  If webpages are based on basic HTML
–  Humans need to scout for the information and integrate it
–  Computers are not reliable enough (yet?)

•  Natural language processing can be powerful (see Watson and Siri!)
•  But some information may be in pictures (beach), or implicit in the text,

so simple approaches like Watson and Siri still don’t get all the info.

42

More structured representation:
the Semantic Web

•  Beyond HTML pages only made for humans
•  Languages and formalisms based on logics that allow

websites to include information in a more structured format
–  Goal: software agents that can roam the web and carry out

sophisticated tasks on our behalf.
–  This is different than searching content for keywords and popularity!

•  For further material, see P&M text, Chapter 13 and the
Introduction to the Semantic Web tutorial given at 2011
Semantic Technology Conference
http://www.w3.org/People/Ivan/CorePresentations/SWTutorial/
(This is the best technical intro; Herman keeps it up to date.)

43

Examples of ontologies for the Semantic Web
•  “Ontology”: logic-based representation of the world

•  eClassOwl: eBusiness ontology
–  for products and services
–  75,000 classes (types of individuals) and 5,500 properties

•  National Cancer Institute’s ontology: 58,000 classes
•  Open Biomedical Ontologies Foundry: several ontologies

–  including the Gene Ontology to describe
•  gene and gene product attributes in any organism or protein sequence
•  annotation terminology and data

•  OpenCyc project: a 150,000-concept ontology including
–  Top-level ontology

•  describes general concepts such as numbers, time, space, etc
–  Hierarchical composition: superclasses and subclasses
–  Many specific concepts such as “OLED display”, “iPhone”

44

45

Course Overview
Environment

Problem Type

Logic

Planning

Deterministic Stochastic

 Constraint
Satisfaction Search

Arc
Consistency

Search

Search

 Logics

 STRIPS

Variables +
Constraints

Variable
Elimination

Bayesian
Networks

Decision
Networks

 Markov Processes

Static

Sequential

Representation
Reasoning
Technique

Uncertainty

Decision
Theory

Course Module

Variable
Elimination

Value
Iteration

Planning

This concludes
the logic module

As CSP (using
arc consistency)

