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Lecture Overview 

•  Recap: Bottom-up proof procedure is sound and complete 
 

•  Top-down Proof Procedure 

•  Datalog 

•  Logics: Big Picture 
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Logical consequence and BU proofs 

Example: KB = {h ← a, a, a ← c}. Then KB ⊧ ? 
 

Definition (logical consequence) 
If KB is a set of clauses and g is a conjunction of atoms, 
g is a logical consequence of KB, written KB ⊧ g,  

if g is true in every model of KB 
a c h h ← a a a ← c Model of KB 

I1 F F F T F T 
I2 F F T T F T 
I3 F T F T F F 
I4 F T T T F F 
I5 T F F F T T 
I6 T F T T T T 
I7 T T F F T T 
I8 T T T T T T 

no 
no 
no 
no 
no 

no 
yes 

yes 

Which atoms  
are entailed? 
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Logical consequence and BU proofs 

Example: KB = {h ← a, a, a ← c}. Then KB ⊧ ? 
 

Definition (logical consequence) 
If KB is a set of clauses and g is a conjunction of atoms, 
g is a logical consequence of KB, written KB ⊧ g,  

if g is true in every model of KB 
a c h h ← a a a ← c Model of KB 

I1 F F F T F T 
I2 F F T T F T 
I3 F T F T F F 
I4 F T T T F F 
I5 T F F F T T 
I6 T F T T T T 
I7 T T F F T T 
I8 T T T T T T 

no 
no 
no 
no 
no 

no 
yes 

yes 

Which atoms  
are entailed? 
 
KB ⊧ a and  
KB ⊧ h 
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What does BU derive for the KB above?  
 

Logical consequence and BU proofs 

Example: KB = {h ← a, a, a ← c}. Then KB ⊧ a and KB ⊧ h. 
 

C := {}; 
repeat 

  select clause h ← b1 ∧ … ∧ bm in KB  
                  such that bi ∈ C for all i, and h ∉ C; 

           C := C ∪ {h} 
until no more clauses can be selected. KB ⊦BU g if and only if g ∈ C 

Definition (logical consequence) 
If KB is a set of clauses and g is a conjunction of atoms, 
g is a logical consequence of KB, written KB ⊧ g,  

if g is true in every model of KB 

BU proof procedure 

5 



What does BU derive for the KB above?  
Trace: {a}, {a,h}. Thus KB ⊦BU a and KB ⊦BU h.  
Exactly the logical consequences! 

Logical consequence and BU proofs 

Example: KB = {h ← a, a, a ← c}. Then KB ⊧ a and KB ⊧ h. 
 

C := {}; 
repeat 

  select clause h ← b1 ∧ … ∧ bm in KB  
                  such that bi ∈ C for all i, and h ∉ C; 

           C := C ∪ {h} 
until no more clauses can be selected. KB ⊦BU g if and only if g ∈ C  

Definition (logical consequence) 
If KB is a set of clauses and g is a conjunction of atoms, 
g is a logical consequence of KB, written KB ⊧ g,  

if g is true in every model of KB 

BU proof procedure 
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Summary for bottom-up proof procedure BU 

•  Proved last time 
–  BU is sound:  

it derives only atoms that logically follow from KB 

–  BU is complete: 
it derives all atoms that logically follow from KB 

•  Together:  
it derives exactly the atoms that logically follow from KB ! 
–  That’s why the results for ⊧ and ⊦BU matched for the example above 

•  And, it is efficient! 
–  Outer loop linear in the number of clauses in KB 

•  Each clause is used maximally once by BU 
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Learning Goals Up To Here 

•  PDCL syntax & semantics 
-  Verify whether a logical statement belongs to the language of 

propositional definite clauses 
-  Verify whether an interpretation is a model of a PDCL KB.  
-  Verify when a conjunction of atoms is a logical consequence of a 

knowledge base 

•  Bottom-up proof procedure 
•  Define/read/write/trace/debug the Bottom Up (BU) proof procedure 
•  Prove that the BU proof procedure is sound and complete  
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Lecture Overview 

•  Recap: Bottom-up proof procedure is sound and complete 
 

•  Top-down Proof Procedure 

•  Datalog 

•  Logics: Big Picture 
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Bottom-up vs. Top-down 

KB 

g is proved if g ∈ C              

When does BU look at the query g? 

Bottom-up 

At the beginning 

In every loop iteration Never 

At the end 

C  
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Bottom-up vs. Top-down 
•  Key Idea of top-down: search backward from a query g 

to determine if it can be derived from KB. 

KB C  

g is proved if g ∈ C              

When does BU look at the query g? 
•   Never 
•   It derives the same C  
    regardless of the query 

KB answer 

Query g  
Bottom-up Top-down 

TD performs a backward search 
starting at g 

We’ll see how g is proved 



Top-down Ground Proof Procedure 
Idea: search backward from a query 

An answer clause is of the form:    yes ← a1 ∧ … ∧ am 
where a1, …, am are atoms 

 

We express the query as an answer clause 
–  E.g. query  q1 ∧ … ∧ qk  is expressed as   yes ← q1 ∧ … ∧ qk 

 

 
Basic operation: SLD Resolution of an answer clause  

  yes ← c1 ∧ … ∧ ci-1 ∧ ci  ∧ ci+1 … ∧ cm 
  on an atom ci  with another clause 

  ci  ← b1 ∧ … ∧ bp 
  yields the clause 
   yes ← c1 ∧ … ∧ ci-1 ∧ b1 ∧ … ∧ bp ∧ ci+1 … ∧ cm 
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Rules of derivation in top-down and bottom-up 
 

Top-down:  
SLD Resolution 
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yes ← c1 ∧ … ∧ ci-1 ∧ ci  ∧ ci+1 … ∧ cm ci   ← b1 ∧ … ∧ bp 
yes ← c1 ∧ … ∧ ci-1 ∧ b1 ∧ … ∧ bp ∧ ci+1 … ∧ cm 

 

Bottom-up:  
Generalized modus ponens 

h ← b1 ∧  … ∧ bm b1 ∧  … ∧ bm 
h 



γ1: yes ← e ∧ f 

γ3: yes ← 

Example for (successful) SLD  derivation 

γ0: yes ← a  

γ2: yes ← e 

1 

2 

3 

14 

a← b ∧ c.   a ← e ∧ f.   b← f ∧ k. 
c ← e.   d ← k                   e. 
f ← j ∧ e.             f .                          j ← c. 
 
Query: ?a 

 
Done. The question was  
“Can we derive a?” 
 

The answer is “Yes, we can” 



SLD Derivations 
•  An answer is an answer clause with m = 0.  
                              yes ← . 
 
•  A successful derivation from KB  of query  ?q1 ∧ ... ∧ qk 
    is a sequence of answer clauses γ0, γ1 , .., γn such that 

§  γ0 is the answer clause     yes ← q1 ∧ ... ∧ qk. 

§  γi is obtained by resolving γi-1with a clause in KB, and 

§  γn is an answer                yes ←    

  
•  An unsuccessful derivation from KB  of query ?q1 ∧ ... ∧ qk 

§  We get to something like  yes ← b1 ∧ ... ∧ bk, where 
there is no clause in KB with any of the bi as its head 
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To solve the query    ? q1 ∧ ... ∧ qk : 
 
ac:= yes ← body, where body is q1 ∧ ... ∧ qk  
repeat 

select qi ∈ body; 
choose clause C ∈ KB, C is qi ← bc; 
replace qi in body by bc 

until ac is an answer (fail if no clause with qi as head) 
 
select: any choice will work  

 (“Don’t care non-determinism”) 
choose:  truly non-deterministic, must pick the right one 

(“Don’t know non-determinism”) 

Top-down Proof Procedure for PDCL 
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γ1: yes ← e ∧ f 

γ3: yes ← k 

Example for failing SLD  derivation 

γ0: yes ← a  

γ2: yes ← e ∧ k 

1 

2 

3 
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There is no rule  
with k as its head,  
thus … fail 

“Can we derive a?” 

“This time we failed” 

a← b ∧ c.   a ← e ∧ f.   b← f ∧ k. 
c ← e.   d ← k                   e. 
f ← k.                   f .                         j ← c. 
 
Query: ?a 

 



Correspondence between BU and TD proofs 
If the following is a top-down (TD) derivation in a given KB, 

what would be the bottom-up (BU) derivation of the same 
query? 

 
    TD derivation 

 yes ← a. 
 yes ← b ∧ f. 
 yes ←  b ∧ g ∧ h. 
 yes ←  c ∧ d ∧ g ∧ h. 
 yes ←  d ∧ g ∧ h.  
 yes ←  g ∧ h. 
 yes ←  h. 
 yes ←  . 
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BU derivation 
{} 



Correspondence between BU and TD proofs 
If the following is a top-down (TD) derivation in a given KB, 

what would be the bottom-up (BU) derivation of the same 
query? 

 
    TD derivation 

 yes ← a. 
 yes ← b ∧ f. 
 yes ←  b ∧ g ∧ h. 
 yes ←  c ∧ d ∧ g ∧ h. 
 yes ←  d ∧ g ∧ h.  
 yes ←  g ∧ h. 
 yes ←  h. 
 yes ←  . 
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BU derivation 
{} 
{h} 
{g,h} 
{d,g,h} 
{c,d,g,h} 
{b,c,d,g,h} 
{b,c,d,f,g,h} 
{a,b,c,d,f,g,h} 
 
 



Is the Top-down procedure sound and complete? 

•  Yes, since there is a 1:1 correspondence between top-
down and bottom-up proofs 
–  The two methods derive exactly the same atoms (if the SLD 

resolution picks the successful derivations) 
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Search Graph for Top-down proofs 

a ←  b ∧ c.  a ←  g. 
a ← h.  b ← j. 
b ← k.   d ← m. 
d ← p.  f ← m.  
f ← p.   g ← m.   
g ← f.   k ← m.  
h ←m.  p.   

                    
 
                                       

  

Query: ?a ∧ d.   
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Breadth-first search Depth-first-search 

What kind of search is SLD resolution?      



Search Graph for Top-down proofs 

a ←  b ∧ c.  a ←  g. 
a ← h.  b ← j. 
b ← k.   d ← m. 
d ← p.  f ← m.  
f ← p.   g ← m.   
g ← f.   k ← m.  
h ←m.  p.   

                    
 
                                       

  

Query: ?a ∧ d.   
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What kind of search is SLD resolution?      
 
It’s a depth-first-search. Failing resolutions are 

paths where the search has to backtrack. 



Search Graph for Top-down proofs 

a ←  b ∧ c.  a ←  g. 
a ← h.  b ← j. 
b ← k.   d ← m. 
d ← p.  f ← m.  
f ← p.   g ← m.   
g ← f.   k ← m.  
h ←m.  p.   

                    
 
                                       

  

Query: ?a ∧ d.   
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Yes No 

Q: Can we use heuristics? 
A: Yes! E.g. number of atoms in the answer clause

  
     Admissible?    



Search Graph for Top-down proofs 

a ←  b ∧ c.  a ←  g. 
a ← h.  b ← j. 
b ← k.   d ← m. 
d ← p.  f ← m.  
f ← p.   g ← m.   
g ← f.   k ← m.  
h ←m.  p.   

                    
 
                                       

  

Query: ?a ∧ d.   
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Q: Can we use heuristics? 
A: Yes! E.g. number of atoms in the answer 

clause   
     Admissible? Yes, you need at least these many SLD steps to 

get an answer 
    



 
 
 
 

•  Constraint Satisfaction (Problems): 
–  State: assignments of values to a subset of the variables 
–  Successor function: assign values to a “free” variable 
–  Goal test: set of constraints 
–  Solution: possible world that satisfies the constraints 
–  Heuristic function: none (all solutions at the same distance from start) 

•  Planning :  
–  State: full assignment of values to features 
–  Successor function: states reachable by applying valid actions 
–  Goal test: partial assignment of values to features 
–  Solution: a sequence of actions 
–  Heuristic function: relaxed problem! E.g. “ignore delete lists” 

•  Inference (Top-down/SLD resolution) 
–  State: answer clause of the form yes ← q1 ∧ ... ∧ qk 
–  Successor function: all states resulting from substituting first 

atom a with b1 ∧ … ∧ bm  if there is a clause a ← b1 ∧ … ∧ bm 
–  Goal test: is the answer clause empty (i.e. yes ←) ? 
–  Solution: the proof, i.e. the sequence of SLD resolutions 
–  Heuristic function: number of atoms in the query clause  

Inference as Standard Search 
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Lecture Overview 

•  Recap: Bottom-up proof procedure is sound and complete 
 

•  Top-down Proof Procedure 

•  Datalog 

•  Logics: Big Picture 

26 



Representation and Reasoning in complex domains 

•  Expressing knowledge with 
propositions can be quite 
limiting 

up_s2   
up_s3 
ok_cb1 
ok_cb2 
live_w1 
connected_w1_w2 
 
 

up( s2 )   
up( s3 )  
ok( cb1 )  
ok( cb2 )  
live( w1) 
connected( w1 , w2 )  

•  It is often natural to consider 
individuals and their 
properties 

E.g. there is no notion that 
w1 is the same in live_w1 
and in connected_w1_w2 

 
 

 
 

Now there is a notion that 
w1 is the same in live(w1) 
and in connected(w1, w2) 

 
 

 
 



Datalog: What do we gain?  

•  An extension of propositional definite clause (PDC) logic 
–  We now have variables 
–  We now have relationships between variables 

–  We can express knowledge that holds for a set of  individuals, 
writing more powerful clauses by introducing variables, such as:  

 

 
–  We can ask generic queries,  

•  E.g. “which wires are connected to w1?“ 

28 

live(W) ← wire(W) ∧ connected_to(W,W1)  
             ∧ wire(W1) ∧ live(W1). 

? connected_to(W, w1) 



Datalog: a relational rule language 

A variable is a symbol starting with an upper case letter 

A constant is a symbol starting with lower-case letter or a 
sequence of digits. 

A predicate symbol is a symbol starting with a lower-case 
letter. 

A term is either a variable or a constant. 

Datalog expands the syntax of PDCL…. 

Examples: X,   Y 

Examples: alan, w1 

Examples: live, connected, part-of, in  

Examples: X, Y, alan,  w1 



Datalog Syntax (cont’d) 
An atom is a symbol of the form p or p(t1 …. tn) where p is a 

predicate symbol and ti  are terms 
 
 
 
 
 

A definite clause is either an atom (a fact) or of the form: 
        h   ←  b1 ∧… ∧ bm  
where h  and the bi are atoms (Read this as ``h  if b.'') 

A knowledge base is a set of definite clauses 

Examples: sunny,   in(alan,X) 

Example: in(X,Z) ← in(X,Y) ∧ part-of(Y,Z)  



Datalog Semantics 
•  Role of semantics is still to connect symbols and sentences in 

the language with the target domain. Main difference: 
•  need to create correspondence both between  terms and 

individuals, as well as between predicate symbols and 
relations 

We won’t cover the formal 
definition of Datalog 
semantics, but if you are 
interested  see 12.3.1 and 
12.3.2 in textbook 



Datalog: Top Down Proof Procedure 

•  Extension of Top-Down procedure for PDCL.  
How do we deal with variables? 
•  Idea:  

-  Find clauses with heads that match the query 
-  Substitute variable in the clause with the matching constant 

•  Example:  

•  We will not cover the formal details of this process, called unification. 
See P&M Section 12.4.2, p. 511 for the details. 

 

in(alan, r123). 
part_of(r123,cs_building). 
in(X,Y) ← part_of(Z,Y) & in(X,Z). 

Query:  yes ← in(alan, cs_building). 
          

yes ← part_of(Z,cs_building), in(alan, Z). 
 
          

in(X,Y) ← part_of(Z,Y) & in(X,Z). 
with Y = cs_building 



Example proof of a Datalog query 
in(alan, r123). 
part_of(r123,cs_building). 
in(X,Y) ← part_of(Z,Y) & in(X,Z). 

Query:  yes ← in(alan, cs_building). 
          

yes ← part_of(Z,cs_building), in(alan, Z). 
          

yes ← in(alan, r123). 
          

yes ← part_of(Z, r123), in(alan, Z). 
          

yes ←. 
          

Using clause: in(X,Y) ←  
   part_of(Z,Y) & in(X,Z), 
   with Y = cs_building 

Using clause: 
  part_of(r123,cs_building) 
  with Z = r123 

Using clause:  
  in(alan, r123). 

Using clause: in(X,Y) ←  
   part_of(Z,Y) & in(X,Z). 
   With Z = alan 

fail 

No clause with 
matching head: 
part_of(Z,r123). 



Tracing Datalog proofs in AIspace 

•  You can trace the example from the last slide in the  
AIspace Deduction Applet at http://aispace.org/deduction/ 
using file http://cs.ubc.ca/~mack/CS322/in-part-of.pl 

•  Question 4 of assignment 3 asks you to use this applet 
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Datalog: queries with variables 

What would the answer(s) be?  

Query:  in(alan, X1). 

in(alan, r123). 
part_of(r123,cs_building). 
in(X,Y) ← part_of(Z,Y) & in(X,Z). 

             yes(X1) ← in(alan, X1). 
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Datalog: queries with variables 

What would the answer(s) be?  
yes(r123). 
yes(cs_building). 

 

Query:  in(alan, X1). 

You can trace the SLD derivation for this query  
in the AIspace Deduction Applet, using file 
http://cs.ubc.ca/~mack/CS322/in-part-of.pl 

in(alan, r123). 
part_of(r123,cs_building). 
in(X,Y) ← part_of(Z,Y) & in(X,Z). 

             yes(X1) ← in(alan, X1). 



One important Datalog detail 

•  In its SLD resolution proof, Datalog always chooses the 
first clause with a matching head it finds in KB 

•  What does that mean for recursive function definitions? 
-  The clause(s) defining your base case(s) have to appear first in KB 
-  Otherwise, you can get infinite recursions 
-  This is similar to recursion in imperative and functional 

programming languages 

•  Datalog is a subset of Prolog (Programming in Logic) 
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Learning Goals For Logic 
•  PDCL syntax & semantics 

-  Verify whether a logical statement belongs to the language of 
propositional definite clauses 

-  Verify whether an interpretation is a model of a PDCL KB.  
-  Verify when a conjunction of atoms is a logical consequence of a KB 

•  Bottom-up proof procedure 
-  Define/read/write/trace/debug the Bottom Up (BU) proof procedure 
-  Prove that the BU proof procedure is sound and complete  

•  Top-down proof procedure 
-  Define/read/write/trace/debug the Top-down (SLD) proof procedure 

(as a search problem) 

•  Datalog 
-  Represent simple domains in Datalog 
-  Apply the Top-down proof procedure in Datalog 
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Lecture Overview 

•  Recap: Bottom-up proof procedure is sound and complete 
 

•  Top-down Proof Procedure 

•  Datalog 

•  Logics: Big Picture 
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Logics: Big picture 

Propositional 
Logics 

First-Order 
Logics 

Propositional Definite 
Clause  Logics 

Semantics and Proof 
Theory 

Description  
Logics 

Cognitive Architectures 

Video Games 

Hardware Verification 

Product Configuration 
Ontologies 

Semantic Web 

Information 
Extraction 

Summarization 

Production Systems 

Tutoring Systems 

Satisfiability Testing 
(SAT) 

Software Verification 

PDCL 
Soundness &  
Completeness 

Datalog From  
CSP 
module 



Logics: Big picture 

 
•  We only covered rather simple logics 

–  There are much more powerful representation and reasoning 
systems based on logics e.g. full first order logic (with negation, 
disjunction and function symbols), second-order logics, non-
monotonic logics, modal logics, … 

•  There are many important applications of logic 
–  For example, software agents roaming the web on our behalf 

•  Based on a more structured representation: the semantic web 
•  This is just one example for how logics are used 
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Example problem: automated travel agent 

•  Examples for typical queries 
–  How much is a typical flight to Mexico for a given date? 
–  What’s the cheapest vacation package to some place in the 

Caribbean in a given week? 
•  Plus, the hotel should have a white sandy beach and scuba diving 

 

•  If webpages are based on basic HTML 
–  Humans need to scout for the information and integrate it 
–  Computers are not reliable enough (yet?) 

•  Natural language processing can be powerful (see Watson and Siri!)  
•  But some information may be in pictures (beach), or implicit in the text, 

so simple approaches like Watson and Siri still don’t get all the info. 
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More structured representation:  
the Semantic Web 

•  Beyond HTML pages only made for humans 
•  Languages and formalisms based on logics that allow 

websites to include information in a more structured format 
–  Goal: software agents that can roam the web and carry out 

sophisticated tasks on our behalf.  
–  This is different than searching content for keywords and popularity! 

•  For further material, see P&M text, Chapter 13 and the 
Introduction to the Semantic Web tutorial given at 2011 
Semantic Technology Conference
http://www.w3.org/People/Ivan/CorePresentations/SWTutorial/ 
(This is the best technical intro; Herman keeps it up to date.) 
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Examples of ontologies for the Semantic Web 
•  “Ontology”: logic-based representation of the world 

•  eClassOwl: eBusiness ontology  
–  for products and services 
–  75,000 classes (types of individuals) and 5,500 properties 

•  National Cancer Institute’s ontology: 58,000 classes 
•  Open Biomedical Ontologies Foundry: several ontologies 

–  including the Gene Ontology to describe 
•  gene and gene product attributes in any organism or protein sequence 
•  annotation terminology and data 

•  OpenCyc project: a 150,000-concept ontology including 
–  Top-level ontology  

•  describes general concepts such as numbers, time, space, etc 
–  Hierarchical composition: superclasses and subclasses 
–  Many specific concepts such as “OLED display”, “iPhone” 
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Course Overview 
Environment 

Problem Type 

Logic 

Planning 

Deterministic Stochastic 

     Constraint 
Satisfaction Search 

Arc  
Consistency 

Search 

Search 

 Logics 

 STRIPS 

Variables +  
Constraints 

Variable 
Elimination 

Bayesian 
Networks 

Decision 
Networks 

 Markov Processes 

Static 

Sequential 

Representation 
Reasoning 
Technique 

Uncertainty 

Decision 
Theory   

Course Module 

Variable 
Elimination 

Value 
Iteration 

Planning 

This concludes 
the logic module 

As CSP (using 
arc consistency) 


