University of Toronto at Scarborough
 Department of Computer and Mathematical Sciences

CSCD18: Computer Graphics

Midterm exam
Fall 2005
Duration: 50 minutes
No aids allowed
There are 4 pages total (including this page)
Answer in the spaces provided.
(If you need more space, you the backs of pages)

Family name: \qquad
Given names: \qquad
Student number:

Question	Marks
1	
2	
3	
4	
5	
Total	

1. [8 marks] Let S be a 3D surface made up of points $\bar{p}=(x, y, z)$ that satisfy the implicit equation

$$
4 x^{2}+3 y^{2}+2 x z-4=0
$$

Find a vector that is normal to S at point $(1,0,1)$. Show and explain your work.
2. [8 marks] Assume we have defined a camera in terms of $\vec{e}, \vec{u}, \vec{v}$, and \vec{w}, where \bar{e} denotes the eye location (the center of projection), and the vectors \vec{u}, \vec{v} and \vec{w} form a right-handed coordinate frame (i.e., \vec{u}, \vec{v} and \vec{w} provide the directions of the camera's x, y, and z axes in the world coordinate frame). Let \bar{p}^{c} be the representation of a point in camera-centered coordinates. Derive the homogeneous form of the transformation that maps the point \bar{p}^{c} into its representation in world-centered coordinates, denoted \bar{p}^{w}.
3. [8 marks] Let C be a circle in 2D with radius one, centered at the origin as shown in the figure. Define a transformation matrix \mathbf{T} that transforms the circle to an ellipse rotated clockwise by 30°, with major axis of length 2 and minor axis length 1 , as shown in the figure. (You may define \mathbf{T} as a composition of elementary transformation matrices).

4. [10 marks] Suppose we define a 3D plane in parametric form as $\bar{p}(\alpha, \beta)=\bar{p}_{0}+\alpha \vec{a}+\beta \vec{b}$. As usual, \vec{a} and \vec{b} are vectors, and \bar{p}_{0} is a point. Further, let $\bar{r}(\lambda)=\bar{r}_{0}+\lambda \vec{d}$ be a 3 D ray with $\lambda \geq 0$, where \bar{r}_{0} is a point, and \vec{d} is a vector. Derive formulae to determine whether the ray intersects the plane, and, if it does, to compute the intersection point.
5. [11 marks] (a) In words, what is a backface?
(b) Explain (mathematically) how to perform backface culling for a triangle with vertices \bar{p}_{1}, \bar{p}_{2} and \bar{p}_{3} and outward-facing normal \vec{n}, where the eye of the camera is at location \bar{e} with a gaze direction of \vec{g}.
(c) Sketch a simple diagram to show one example in which a triangle is not visible but would not be removed by backface culling.

