University of Toronto at Scarborough Department of Computer and Mathematical Sciences

CSCD18: Computer Graphics

Midterm exam Fall 2005

Duration: 50 minutes No aids allowed

There are 4 pages total (including this page)

Answer in the spaces provided. (If you need more space, you the backs of pages)

Family name:

Given names:

Student number:

Question	Marks
1	
2	
3	
4	
5	
Total	

1. [8 marks] Let S be a 3D surface made up of points $\bar{p} = (x, y, z)$ that satisfy the implicit equation

$$4x^2 + 3y^2 + 2xz - 4 = 0$$

Find a vector that is normal to S at point (1, 0, 1). Show and explain your work.

2. [8 marks] Assume we have defined a camera in terms of \bar{e} , \vec{u} , \vec{v} , and \vec{w} , where \bar{e} denotes the eye location (the center of projection), and the vectors \vec{u} , \vec{v} and \vec{w} form a right-handed coordinate frame (i.e., \vec{u} , \vec{v} and \vec{w} provide the directions of the camera's x, y, and z axes in the world coordinate frame). Let \bar{p}^c be the representation of a point in camera-centered coordinates. Derive the homogeneous form of the transformation that maps the point \bar{p}^c into its representation in world-centered coordinates, denoted \bar{p}^w .

3. [8 marks] Let C be a circle in 2D with radius one, centered at the origin as shown in the figure. Define a transformation matrix T that transforms the circle to an ellipse rotated clockwise by 30° , with major axis of length 2 and minor axis length 1, as shown in the figure. (You may define T as a composition of elementary transformation matrices).

4. [10 marks] Suppose we define a 3D plane in parametric form as $\bar{p}(\alpha, \beta) = \bar{p}_0 + \alpha \vec{a} + \beta \vec{b}$. As usual, \vec{a} and \vec{b} are vectors, and \bar{p}_0 is a point. Further, let $\bar{r}(\lambda) = \bar{r}_0 + \lambda \vec{d}$ be a 3D ray with $\lambda \ge 0$, where \bar{r}_0 is a point, and \vec{d} is a vector. Derive formulae to determine whether the ray intersects the plane, and, if it does, to compute the intersection point.

5. [11 marks] (a) In words, what is a backface?

(b) Explain (mathematically) how to perform backface culling for a triangle with vertices \bar{p}_1 , \bar{p}_2 and \bar{p}_3 and outward-facing normal \vec{n} , where the eye of the camera is at location \bar{e} with a gaze direction of \vec{g} .

(c) Sketch a simple diagram to show one example in which a triangle is not visible but would not be removed by backface culling.