
CSCD18F Computer Graphics, Fall 2008
Assignment 1 (15% of course grade)

Part A (written): Due before class (9:59am) on Wednesday, October 1st, 2008.
Part B (programming): Due 11:59pm on Friday, October 10th, 2008.

Part A [50 marks in total]

Below are 4 exercises covering different topics from the first weeks of class. They require thought, so you
are advised to consult the relevant sections of the textbook, the online lecture notes and slides, and your
notes from class well in advance of the due date. Your proofs and derivations should be clearly written,
mathematically correct, and concise.

All questions require showing the steps toward the solution, and marks will be subtracted if this is
not the case. Even if you cannot answer a question completely, it is very important that you show your
(partial) answers and your reasoning. Otherwise your TA will not be able to award you partial marks.

You can either hand in your handwritten solutions to Part A into D18 drop box (outside of the elevator
on the 6th floor of SW building), or you can submit them online in PDF format by the due date/time (e.g.,
using a scanner).

1. Points & Polygons [15 marks]

Suppose the vertices of a convex polygon P are p̄1, . . . , p̄N , given in counter-clockwise order. Let
the coordinates of vertex p̄i be (xi, yi).

p
i

p
i+1

ni

q

(a) [3 marks] Express the coordinates of the outward-facing normal ~ni at p̄i+p̄i+1

2 in terms of the
coordinates of vertices p̄i and p̄i+1.

(b) [3 marks] Let q̄ = (x, y) be an arbitrary point on the 2D plane, let li be the line containing p̄i

and p̄i+1, and let ~ni be the normal in (a). Give a test that determines whether point q̄ is on the
“same (outward-facing) side” of li as ~ni.

(c) [9 marks] Describe an algorithm that can tell whether a 2D point q̄ is inside, outside, or on
the boundary of polygon P . Hint: Each edge is contained in an infinite line. Each infinite
line divides the 2D plane into two half-planes, the left half-plane and the right half-plane
(here left/right means left/right with respect to a counter-clockwise direction of traversal of
the vertices). The key insight you should use is that the interior of a convex polygon is the
intersection of the left half-planes of all the edges of the polygon.

2. Affine Transformations & Commutativity [12 marks]

We say that the 2D transformations f() and g() commute if and only if f(g(p̄)) = g(f(p̄)) for all



points p̄ ∈ R2. For each of the four cases below, where f() and g() are restricted affine transforma-
tions, prove whether or not they commute:

(a) [3 marks] Both f() and g() are arbitrary rotations.
(b) [3 marks] One is an arbitrary rotation and the other an arbitrary translation.
(c) [3 marks] One is an arbitrary rotation and the other is a uniform scaling.
(d) [3 marks] One is an arbitrary rotation and the other is a non-uniform scaling.

In each case, your solution can either be a derivation that proves/disproves commutativity or, if f()
and g() do not commute, a specific counter-example.

3. Points, Triangles & Affine Transformations [15 marks]

(a) [5 marks] Derive the affine transformation that maps points (0, 3), (−1, 0), (1, 0) to points
(15, 7), (24, 5), (24, 9), respectively. Now express it as a 3× 3 homogeneous transformation
matrix.

(b) [10 marks] Let f() be an arbitrary affine transformation, and let p̄1, p̄2, p̄3 be the vertices
of a triangle. Prove that if that triangle contains a point q̄, the affine-transformed triangle
defined by f(p̄1), f(p̄2), and f(p̄3) will contain point f(q̄). In other words, the inclusion
relationship between points and triangles is preserved under arbitrary affine transformations.
Hint: A triangle is always convex, so you may find the ideas in Question 1 useful.

4. Curves & Trajectories [8 marks]

Consider a computer game where all celestial bodies are represented by points on the 2D screen.

(a) [4 marks] A comet is traveling towards Earth on a parabolic trajectory that can be expressed
parametrically as follows:

x(t) = t

y(t) = at2 + b ,

where a and b are constants and −∞ < t < ∞ is the free parameter corresponding to time.
Compute the comet’s velocity vector and normal vector as a function of time t.

(b) [4 marks] Suppose that a = 4, b = −45 and we know that impact happened at t = 10. What
was the Earth’s position at the time of impact with the comet? With what velocity vector did
the comet strike?

Turning in your solutions to Part A online

To submit solution to Part A online, first make sure that the contents of the PDF file are legible, then use
the following command:

submit -N A1a cscd18f a1a_solution.pdf

[Continues on next page −→]



Part B: Animating a Hierarchical 2D Object [50 marks in total]

The figure below shows an articulated nine-part, seven-degree-of-freedom (DOF) planar robot penguin:

mouth closed

It has six rotational joints (depicted by circles), each with one rotational degree of freedom. The beak
has a single translational degree of freedom: the beak can only move up or down (in the coordinate frame
of the head). Your task will be to render and animate such a robot penguin using OpenGL.

Hierarchical objects like this are often defined by specifying each part in a natural, part-based coordi-
nate frame, along with transformations that specify the relative position and orientation of one part with
respect to another. These transformations are often organized into a kinematic tree (e.g., with the torso as
the root, and the jaw as a leaf). In addition to the kinematic tree, one must also specify the transformation
from the root (e.g., the torso) to the world coordinate frame. Then, for example, to draw the torso you
transform the points that define the torso from the torso’s coordinate frame to the world coordinate frame,
and then from the world coordinate frame into device coordinates. Then to draw an arm, you must trans-
form the points that define the arm in the arm coordinate frame to the torso’s coordinate frame, and then
from the torso’s coordinate frame to the world coordinate frame, and then into device coordinates. And so
on down the tree.

Rendering articulated objects is easiest if a current part-to-device mapping is accumulated as you
traverse the object/part hierarchy. You maintain a stack of coordinate transformations that represents a
sequence of transformations from the current part coordinates up through the part hierarchy to world
coordinates, and finally to device coordinates. For efficiency, we do not apply each of the transformations
on the stack in succession. Rather, the top of the stack always represents the composition of the preceding
transformations. OpenGL provides mechanisms to help maintain and apply these transformations.

Your Programming Task

Your task is to design and render the articulated robot penguin using OpenGL. When the program is run,
the robot should move (i.e., animate) in order to help test that the rendering is done correctly.



To accomplish this, you must perform the following basic tasks:

(a) [5 marks] Design the parts in terms of suitable generic shapes and deformations, and
draw them using OpenGL.

(b) [10 marks] Design and implement suitable transformations that map each part’s local
coordinate frame to the coordinate frame of its predecessor in the kinematic tree. Extend
the GUI with additional spinners to control each of the 9 degrees of freedom (DOFs).
Hint: The interactive DOF controls will be useful in debugging the transform hierarchy
you build.

(c) [10 marks] Design and implement a set of functions that will control the animation, i.e.,
will control the state of each joint in each frame. You can use simple functions such as
sinusoids to define the way in which parts move with respect to one another. Or, if you
wish, you could specify a sequence of specific joint angles that the rendering will loop
through. You can also use key-framing to specify a few key poses for the penguin (in
terms of the joint angles) and linearly interpolate between them for smooth animation.
Hint: You can use the GUI build for (b) to choose the set of key-frames or help you
specify the values for the joint angles that produce the desired animation.

(d) [15 marks] Put it all together to generate your animation, by drawing each part in turn as
you descend the kinematic tree (once per frame). Use the OpenGL transformation stack
to control relative transformations between parts, the world and the display device. It
is not necessary to write code that could be used to render arbitrary articulated objects,
thereby requiring that your code can traverse any kinematic tree. To keep things simple,
you may hardcode the sequence of parts that are drawn.

(e) [2 marks] Be sure to also draw the small circles which depict the locations of the rotary
joints.

(f) [8 marks] Explain everything you did in a written report (see below).

Helper Code

To get started, we have created a simple demo for you. This will show you how to use the very basic
commands of OpenGL to open a window and draw some basic shapes. It will also provide you with a
template Makefile for compilation and linking of your programs.

This simple demo program opens a window, and animates a two squares connected by a hinge. To
unpack, compile and run this demo on mathlab, download the file a1 starter.zip and use the
following commands

unzip a1_starter.zip
cd a1/penguin
make
penguin

Compilation

To compile programs easily we have set up a simple makefile for you, that builds the executable using the
make command you issued above. Make searches the current directory for the file called Makefile which
contains instructions for compilation and linking with the appropriate libraries.



You will find this Makefile useful when compiling programs for your later assignments. For example,
if you wish to compile a program with a different name, change all occurrences of penguin to the name of
the file you wish to compile. You can also change the Makefile to include code from several files by listing
the C++ source files (i.e., the files ending in .cpp) on the line CPPSRCS=. The name of the executable file
is determined by the name you use in the Makefile on the line PROGRAM = penguin.

When you run the demo program a graphics window will appear. The size of the window is determined
by parameters (xmax and ymax) to the initialization routine. Each pixel is indexed by an integer pair
denoting the (x, y) pixel coordinates with (0,0) in the top left hand corner and (xmax,ymax) in the bottom
right.

Turning in your Solution to Part B

All your code should remain in the directory a1/penguin. In addition to your code, you must complete the
files CHECKLIST and REPORT contained in that directory. Failure to complete these files will result in
zero marks on your assignment.

The REPORT file should be a well-structured written (or diagramatic) explanation of your design,
your part descriptions, and your transformations. The description should be a clear and concise guide to
the concepts, not a simple documentation of the code. In addition to correctness, you will also be marked
on the clarity and quality of your writing. We expect a well-written report explaining your design of parts
and transformations.

Note that this file should not be thought of as a substitute for putting detailed comments in your code.
Your code should be well commented if you want to receive full (or even partial) credit for it.

To pack and submit your solution, execute the following commands from the directory containing your
code (i.e., a1/penguin):

cd ../../
tar cvfz a1_solution.tgz a1
submit -N A1b cscd18f a1_solution.tgz

Compatibility

All of your assignments must run on mathlab (Linux). You are welcome, however, to develop on other
platforms (and then port to mathlab for the final submission). This sample code is designed to work on
Linux, but should be portable to other Unix platforms (including Windows with Visual C++). If you are
running your own machine, it almost certainly has OpenGL installed; if not, you can search for an rpm or
go to http://www.opengl.org/ (see their getting started FAQ).

If you are planning to develop for windows with Visual C++, we have included some starter code
to help you out. Unpack the starter code and place the unpacked files and the include directory in your
a1/penguin directory. You will then need to add the skeleton code to your Visual C++ project.

If you develop on a different platform, be sure you know how to compile and test your code on
mathlab, well before the deadline. Your assignment must run on the mathlab Linux configuration.
Several marks will be deducted if your code does not compile and/or run without modification. If the
marker cannot easily figure out how to compile and execute the code, it will most likely receive zero
marks. If you choose to develop the assignment in Windows, test porting your code to Linux long before
the deadline, perhaps even before you have finished the assignment. Often bugs that are “hidden” when
compiling on one platform, make their presence known by crashing the application on a different platform.
We will not be sympathetic to porting problems that you have at the last minute.


