
CSCD18 Tutorial 3

Transformation Hierarchies
Consider building the following model of a hand with one finger:

Note that each object part is constructed by transforming a single object part and is defined in local
object part coordinates. Each object part is then positioned by a transformation that is performed
relative to its parents coordinate frame.

This can be constructed using a transformation hierarchy. In the following object tree, circles represent
transformations which position the object parts relative to their parents and squares represent
geometries which define the object parts in their own local coordinate frames.

Transformations
Mi = initial transformation matrix (top of stack)
Thand = translate to Csh origin.
Tf1 = translate(dhand, 0) rotate(-

�
1, z)

Tf2 = translate(d1, 0) rotate(-
���

, z)
Tf3 = translate(d2, 0) rotate(-

���
, z)

Local Object Geometries
draw hand = scale(dhand, 1)
draw f1 = scale(d1, 1)
draw f2 = scale(d2, 1)
draw f3 = scale(d3, 1)

Using these transformations, we can draw the object using the
following pseudocode:
M = Mi Thand
store M on stack and draw hand, restoring M after
M = Mi Tf1 = Mi Thand Tf1

page 9

y

xCS
h CS

1

CS
2

CS
3

d
hand d

1

d
2

d
3

�
1

�
2

�
3

T
hand

T
f1

T
f2

T
f3

draw hand

draw f1

draw f2

draw f3

CS
o

1

1

Fig. 3.1 Finger Hierarchy

CSCD18 Tutorial 3

store M on stack and draw f1, restoring M after
M = Mi Tf2 = Mi Thand Tf1 Tf2

store M on stack and draw f2, restoring M after
M = Mi Tf3 = Mi Thand Tf1 Tf2 Tf3

store M on stack and draw f3, restoring M after

Note: a stack can be implemented as a LIFO stack or by recursion. In our example, any time an object
part needs to be drawn, the current matrix, M, is copied first. In general, for any branch in the tree
hierarchy, a copy of the current matrix should be saved before the branch is made.

OpenGL maintains a matrix stack with the top of the stack being the current transformation matrix.
Each OpenGL transformation function manipulates the current matrix and if a transformation needs to
be reused, it can be copied and pushed on to the top of the stack using the command:

glPushMatrix(); // “remember where you are”

The top of the matrix stack can also be removed using the command:

glPopMatrix(); // “go back to where you were”

For our finger example we could write functions that define each object part in its own local coordinate
system:

void drawHand() {
glPushMatrix();
glScalef(d_hand, d_hand/2, 1);
drawSquare(1);
glPopMatrix();

}

void drawF1() {
glPushMatrix();
glScalef(3*d_hand/4, d_hand/2, 1);
drawSquare(1);
glPopMatrix();

}

void drawF2() {
glPushMatrix();
glScalef(3*d_hand/4, 2*d_hand/5, 1);
drawSquare(1);
glPopMatrix();

}

void drawF3() {
glPushMatrix();
glScalef(d_hand/2, d_hand/3, 1);
drawSquare(1);
glPopMatrix();

}

page 10

CSCD18 Tutorial 3

We can then again utilize the OpenGL matrix stack to draw each part relative to its parent as described
in our hierarchy tree:

 glMatrixMode(GL_MODELVIEW);
 glLoadIdentity();

 glTranslatef(0,100,0);
 drawHand();
 glPushMatrix();//save matrix on stack in case we want to draw second finger
 glTranslatef(d_hand, 0, 0);
 glRotatef(angle, 0,0,1);
 drawF1();
 glTranslatef(3*d_hand/4, 0, 0);
 glRotatef(angle, 0,0,1);
 drawF2();
 glTranslatef(3*d_hand/4, 0, 0);
 glRotatef(angle, 0,0,1);
 drawF3();
 glPopMatrix();
 glTranslatef(d_hand, 0, 0);
 glRotatef(-10, 0,0,1);
 drawF1();
 glTranslatef(3*d_hand/4, 0, 0);
 glRotatef(-10, 0,0,1);
 drawF2();
 glTranslatef(3*d_hand/4, 0, 0);
 glRotatef(-10, 0,0,1);
 drawF3();

A more general solution could implement a tree data structure with each node containing a shape
descriptor and a transform from local object coordinates to that of its parent as shown in Fig. 3.2:

If, for example we wanted to render Obj 3b in its
correct world coordinates position, we could
specify it as follows:

�

Pworld
� M o M1 b M 2 b M3 b

�

PObj 3 b

In order to render the entire object hierarchy, we
can define a recursive function which renders a
subtree at node j, with a transform, M, that maps
the parent of node j to the world:

render(node j, matrix M) {
� compute local object transform, Mj
� compute transform Mworld , for this

node: Mworld = M*Mj
� render object part j: Q=Mworld*PObj j
� for each child node i, recursively

call render(node i, matrix Mworld)
}

page 11

Obj 0
M

0

Obj 1a
M

1a

Obj 1b
M

1b

Obj 2a
M

2a

Obj 2b
M

2b

Obj 3a
M

3a

Obj 3b
M

3b

Fig. 3.2 Object Hierarchy

