2D OpenGL Transformations

OpenGL transformation commands set up a 4 by 4 transformation matrix for all transformations. Therefore, the transformation looks like this:

$$
\left[\begin{array}{c}
Q_{x} \\
Q_{y} \\
0 \\
1
\end{array}\right]=\left[\begin{array}{cccc}
m_{11} & m_{12} & 0 & t_{x} \\
m_{21} & m_{22} & 0 & t_{y} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
P_{x} \\
P_{y} \\
0 \\
1
\end{array}\right]
$$

As mentioned previously the transformation matrix, M , is normally created using one or more of the following OpenGL function calls:

Translation (in the x or y directions):
gITranslatef($\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}, 0.0$);
Rotation (Θ° about the z -axis):
gIRotatef($\left.\Theta^{\circ}, 0.0,0.0,1.0\right) ;$
Scaling (in the x or y directions):
$\boldsymbol{g I S c a l e f}\left(\alpha_{\mathrm{x}}, \boldsymbol{\alpha}_{\mathrm{y}}, 1.0\right)$;
Shearing: there is no specific GL command; use a combination of scaling and rotation.

Combining Transformations

We can combine two or more transformations and compactly define them using a single matrix. Consider the following rectangular object:

Its points are defined in the local or object coord system as a set of points starting from the origin and proceeding in a CCW direction as follows:

OBJ: $\{(0,0),(2,0),(2,1),(0,1)\}$

- Suppose that we translate the object by 1 unit in the x-direction and 1 unit in the y-direction. Denote this transformation by T.
- We can express this transformation as:

$$
\mathrm{P}^{\prime}{ }_{\text {OBJ }}=\mathrm{T}^{\mathrm{OBJ}}
$$

- Now suppose that we rotate the object by 45° about the origin (z-axis) and denote this transformation by R.
- We can express this overall transformation as:

$$
\begin{aligned}
\mathrm{P}_{\text {OBJ }}^{\prime \prime} & =\mathrm{R} \mathrm{P}^{\prime} \text { овJ } \\
& =\mathrm{R} \mathrm{~T}_{\text {OBJ }}
\end{aligned}
$$

- Note that all of the transformations were described with respect to a fixed set of axes, namely the origin.

Now, if we perform the transformations in reverse order starting with the rotation:

- We can express the rotation transformation as:

$$
\mathrm{P}_{\text {ОВЈ }}^{\prime}=\mathrm{R}^{\text {ОВЈ }}
$$

- Then, after performing the translation we get:

$$
\begin{aligned}
\mathrm{P}^{\prime \prime}{ }_{\text {овJ }} & =\mathrm{TP}^{\prime}{ }_{\text {овл }} \\
& =\text { T R P }{ }_{\text {OвJ }}
\end{aligned}
$$

Notice that the result is not the same; matrix composition is non-commutative:

$$
\mathrm{RT} \neq \mathrm{TR}
$$

Also, there are 2 ways of looking at these transformations; either in world coords or in object coords. If we are describing all of our transformations w.r.t. a fixed set of axes, then the transformations are written down from right to left, as in the example above.
If we are describing all of our transformations in terms of a local (object) coordinate system, they should be ordered from left to right.
Both views are correct, but often it is easier to think in terms moving with a local coordinate system, especially when displaying hierarchical objects that are relative to one another.

