Announcements

 Alex will have office hours on Thursday 11am-12pm in SW625A

Inverse Kinematics Example

MoCap Demo

NikoTroje

Approach

Measure motion of many actors using MoCap system

Derive "basis" that span the different styles of motion

Physics-Based Animation

Computer Graphics, CSCD18

Fall 2008 Instructor: Leonid Sigal

Animation vs. Simulation

- Animation: Make objects change over time according to a scripted actions within story-line
 It's generally hard to achieve physical realism
- Simulation: Predict how objects change over time according to physical laws
 - Math becomes very complicated very quickly

Note that nature can compute everything (all of you in the class, floor response forces, etc.) on the fly, computers can't

- Issues to think about in simulation
 - Simulation accuracy
 - Simulation stability

Forward vs. Inverse Dynamics

Forward Dynamics

- Given a sequence of forces find the motion that result $\mathbf{x}(t)$
- Reasonably easy to solve simple cases, but very sensitive to initial conditions, and difficult to control and predict paths of objects

Inverse dynamics

- Given path x(t) and masses, find forces forces that generated it
- Often under constrained and very difficult to solve computationally

Physics-based Simulation

Solve

$\vec{\mathbf{F}} = \mathbf{m}\vec{\mathbf{a}}$

 Sounds easy, and it is for very simple rigid objects that do not articulate, deform, melt, etc.

Approach

- Forces and masses determine accelerations
- Velocity and positions are estimated numerically

Physics-based Simulation

Solve

$\vec{\mathbf{F}} = \mathbf{m}\vec{\mathbf{a}}$

- Sounds easy, and it is for very simple rigid objects that do not articulate, deform, melt, etc.
- Doing if for realistic objects is hard
 - Imagine modeling water with droplets
 - How about, hair with folic particles

Final Fantasy: The Spirit Within, 2001

Dr. Aki Ross' hair is only half as dense as the average human crop, however, that still left 60,000 strands to put realistically into motion. When designing the computer graphics, a fifth of the time spent was devoted to those 60,000 hairs.

Simple Particle System

- Let's say we have a small particle of mass (m)
- We can then (given initial conditions) compute the motion of this particle

Euler Simulation

Simple Particle System

- Let's say we have a small particle of mass (m)
- We can then (given initial conditions) compute the motion of this particle

Simple Particle System

- Let's say we have a small particle of mass (m)
- We can then (given initial conditions) compute the motion of this particle

Collisions

Modeling collisions is very hard

- To deal with collisions typically you need to
 - Detect when collisions happen
 - Stop simulation at the time of collision
 - Adjust the conditions (e.g. depending on the elasticity of collision)
 - Re-start simulation

What can we model with this?

- With many many particles we can model
 - Fireworks
 - Waterfalls
 - Water fountains

- What if we are willing to add additional forces to our particles (e.g. thermodynamic forces)
 - Fire
 - Wind
 - Clouds
- Particles may also have
 Shape (birds), color, age

http://www.youtube.com/watch?v=nUrodylyJlg

Mass-Spring System

Let's say we have the same mass (m) but on a spring

Mass-Spring System Damping

Problem: springs store energy, so the system will oscillate forever (unrealistic) ... typically in all real systems energy is dissipated

Mass-Spring System with Gravity

Total force on the particle: $\mathbf{F} = \mathbf{F}_{s} + \mathbf{F}_{d} + \mathbf{F}_{g}$

Mass-Spring System with Two Particles

- For every particle we need to keep track of **position**, **velocity** and acceleration (solved for by accounting for the forces on that particle)
- Easy to extend to 3D (but we're not going to do it in interest of time)

More complex spring-mass systems

Jelly Cube

By applying forces we can make the cube "wiggle", but we can also make it as "strong" as we want by setting the spring constants very high

What if we have a really big system?

We can model cloth !!!

Cloth Example

Cloth with Collisions

Cloth with Collisions

Rubbery "Cloth"

Physics-based Animation

Pros:

Very realistic

Cons:

- Very expensive and slow
- Very difficult to control

Use:

Various physical phenomenon